Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach
Abstract
:1. Introduction
2. Objectives and Scope
3. 3D DEM Adopted Framework
3.1. Generalized Kelvin Contact Model Formulation
3.2. Calibration of Contact Model Parameters
4. Numerical Modeling of Asphalt Mixture Affected by the Encapsulated Rejuvenators
4.1. Particle Generation Procedure of Standard Asphalt Mixture
4.2. Numerical Model of the Effect of Encapsulated Rejuvenators
4.3. Study Cases
4.3.1. Case 1
4.3.2. Case 2
4.3.3. Case 3
4.4. Numerical Tests
5. Results and Discussion
5.1. Case Study 1
5.2. Case Study 2
5.3. Case Study 3
5.4. Effect of Capsule Content (Case 3 Only)
6. Summary and Conclusions
- When the entire particle assembly adopted rejuvenator-modified contacts, the asphalt mixture stiffness modulus reduced by between 37% and 99%. This decrease was attributed to a significant reduction in the binder viscosity, ultimately compromising the mechanical performance of the asphalt mixture. The phase angle performed differently than expected (decreased with frequency) in most analyses due to the excessively softened state.
- When a larger volume of influence was adopted (Case 3 vs. Case 2) to model the extended effect of encapsulated rejuvenators, a more noticeable impact on the stiffness modulus of mixtures was observed. For example, for cases considering a 0.30 wt% capsule content, the average reduction in the stiffness modulus verified in Case 2 and Case 3 reached 0.4% and 6.7%, respectively.
- For cases considering more suitable modified mastic ratios (less than 1.20 wt% of capsules content), the effect on the mixture stiffness modulus was, as expected, less pronounced. Numerical predictions indicated an average reduction in the modulus ranging from 3.6% to 29.3%. The phase angle was not significantly affected, aligning with known experimental reports that adopted a similar rejuvenator type and capsule content. These numerical findings suggested that the activated capsules within the studied contents did not have a meaningful impact on the rheological properties of asphalt mixtures.
- The rejuvenator-to-mastic ratio and the number of rejuvenator-modified contacts, associated with the mastic content and volume of influence, were influential parameters of the stiffness properties of asphalt mixtures.
- The effects on the asphalt mixture stiffness modulus observed in samples containing CM-10- and CM-20-modified contacts were relatively similar. This result suggested that capsules with release rates exceeding 48% produced a similar effect on the rheological properties of asphalt mixtures.
- The presented numerical simulations showed that the capsule content in asphalt mixtures can be increased up to 0.75 wt%, surpassing the often-used experimental test values of 0.50 wt%, without compromising their rheological properties. This increase may even have the potential to enhance their self-healing properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Mansoori, T.; Micaelo, R.; Artamendi, I.; Norambuena-Contreras, J.; Garcia, A. Microcapsules for Self-Healing of Asphalt Mixture without Compromising Mechanical Performance. Constr. Build. Mater. 2017, 155, 1091–1100. [Google Scholar] [CrossRef]
- Gómez-Meijide, B.; Ajam, H.; Garcia, A.; Vansteenkiste, S. Effect of Bitumen Properties in the Induction Healing Capacity of Asphalt Mixes. Constr. Build. Mater. 2018, 190, 131–139. [Google Scholar] [CrossRef]
- Thejaswi, P.; Vengala, J.; Dharek, M.S.; Manjunatha, M.; Poudel, A. Sugarcane Bagasse Fibers for Enhancing Moisture Susceptibility Properties in Stone Mastic Asphalt. Adv. Mater. Sci. Eng. 2023, 2023, 5378738. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Garcia, A. Effect of Capsule Addition and Healing Temperature on the Self-Healing Potential of Asphalt Mixtures. Mater. Struct. 2018, 51, 53. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Yalcin, E.; Hudson-Griffiths, R.; García, A. Mechanical and Self-Healing Properties of Stone Mastic Asphalt Containing Encapsulated Rejuvenators. J. Mater. Civ. Eng. 2019, 31, 04019052. [Google Scholar] [CrossRef]
- He, Y.; Lv, S.; Wang, Z.; Ma, H.; Lei, W.; Pu, C.; Meng, H.; Xie, N.; Peng, X. Research on the Modulus Decay Model under a Three-Dimensional Stress State of Asphalt Mixture during Fatigue Damage. Buildings 2023, 13, 2570. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M.; Sierra-Beltrán, G. Preparation of Capsules Containing Rejuvenators for Their Use in Asphalt Concrete. J. Hazard. Mater. 2010, 184, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Norambuena-Contreras, J.; Liu, Q.; Zhang, L.; Wu, S.; Yalcin, E.; Garcia, A. Influence of Encapsulated Sunflower Oil on the Mechanical and Self-Healing Properties of Dense-Graded Asphalt Mixtures. Mater. Struct. 2019, 52, 78. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; van de Ven, M. Induction Healing of Porous Asphalt Concrete Beams on an Elastic Foundation. J. Mater. Civ. Eng. 2013, 25, 880–885. [Google Scholar] [CrossRef]
- Lou, B.; Sha, A.; Li, Y.; Wang, W.; Liu, Z.; Jiang, W.; Cui, X. Effect of Metallic-Waste Aggregates on Microwave Self-Healing Performances of Asphalt Mixtures. Constr. Build. Mater. 2020, 246, 118510. [Google Scholar] [CrossRef]
- Ji, J.; Yao, H.; Suo, Z.; You, Z.; Li, H.; Xu, S.; Sun, L. Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders. J. Mater. Civ. Eng. 2017, 29, D4016003. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Tabaković, A.; Schlangen, E. Experimental Investigation of the Performance of a Hybrid Self-Healing System in Porous Asphalt under Fatigue Loadings. Materials 2021, 14, 3415. [Google Scholar] [CrossRef]
- Tabaković, A.; Faloon, C.; O’Prey, D. The Effect of Conductive Alginate Capsules Encapsulating Rejuvenator (HealRoad Capsules) on the Healing Properties of 10 Mm Stone Mastic Asphalt Mix. Appl. Sci. 2022, 12, 3648. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Tabaković, A.; Schlangen, E. Investigation of the Potential Use of Calcium Alginate Capsules for Self-Healing in Porous Asphalt Concrete. Materials 2019, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.; Nie, L.; Xiang, F.; Bao, X. The Effect of Waste Plant Oil on the Composition and Micro-Morphological Properties of Old Asphalt Composition. Buildings 2021, 11, 407. [Google Scholar] [CrossRef]
- Quezada, J.C.; Chazallon, C. Complex Modulus Modeling of Asphalt Concrete Mixes Using the Non-Smooth Contact Dynamics Method. Comput. Geotech. 2020, 117, 103255. [Google Scholar] [CrossRef]
- Micaelo, R.; Al-Mansoori, T.; Garcia, A. Study of the Mechanical Properties and Self-Healing Ability of Asphalt Mixture Containing Calcium-Alginate Capsules. Constr. Build. Mater. 2016, 123, 734–744. [Google Scholar] [CrossRef]
- Garcia, A.; Austin, C.J.; Jelfs, J. Mechanical Properties of Asphalt Mixture Containing Sunflower Oil Capsules. J. Clean. Prod. 2016, 118, 124–132. [Google Scholar] [CrossRef]
- Micaelo, R.; Freire, A.C.; Pereira, G. Asphalt Self-Healing with Encapsulated Rejuvenators: Effect of Calcium-Alginate Capsules on Stiffness, Fatigue and Rutting Properties. Mater. Struct. 2020, 53, 20. [Google Scholar] [CrossRef]
- Kargari, A.; Arabani, M.; Mirabdolazimi, S.M. Effect of Palm Oil Capsules on the Self-Healing Properties of Aged and Unaged Asphalt Mixtures Gained by Resting Period and Microwave Heating. Constr. Build. Mater. 2022, 316, 125901. [Google Scholar] [CrossRef]
- Concha, J.L.; Arteaga-Pérez, L.E.; Alpizar-Reyes, E.; Segura, C.; Gonzalez-Torre, I.; Kanellopoulos, A.; Norambuena-Contreras, J. Effect of Rejuvenating Oil Type on the Synthesis and Properties of Alginate-Based Polynuclear Capsules for Asphalt Self-Healing. Road Mater. Pavement Des. 2022, 24, 1669–1694. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Tabaković, A.; Lin, P.; Zhang, Y.; Nahar, S.; Lommerts, B.J.; Schlangen, E. The Role of Rejuvenators in Embedded Damage Healing for Asphalt Pavement. Mater. Des. 2021, 202, 109564. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Yan, B.; Kong, D.; Li, Y.; Wu, S. Diffusion Mechanism of Rejuvenator and Its Effects on the Physical and Rheological Performance of Aged Asphalt Binder. Materials 2019, 12, 4130. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, C.; Jie, J.; Cui, H. Rheological Properties and Microscopic Morphology Evaluation of UHMWPE-Modified Corn Stover Oil Bio-Asphalt. Buildings 2023, 13, 2167. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Concha, J.; Arteaga-Pérez, L.; Gonzalez-Torre, I. Synthesis and Characterisation of Alginate-Based Capsules Containing Waste Cooking Oil for Asphalt Self-Healing. Appl. Sci. 2022, 12, 2739. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Jin, C.; Li, S.; Yang, X.; Zhou, X.; You, Z. Aggregate Representation Approach in 3D Discrete-Element Modeling Supporting Adaptive Shape and Mass Property Fitting of Realistic Aggregates. J. Eng. Mech. 2020, 146, 04020042. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Liu, Y.; Wang, Z.; Ji, X. Study on the Cracking Behavior of Asphalt Mixture by Discrete Element Modeling with Real Aggregate Morphology. Constr. Build. Mater. 2023, 368, 130406. [Google Scholar] [CrossRef]
- Dan, H.-C.; Zhang, Z.; Chen, J.; Cao, W. Low-Temperature Fracture Characteristics of Asphalt Mixtures Using the Eccentric Single-Edge Notched Bend Test: A 3D Discrete Element Study. Constr. Build. Mater. 2022, 344, 128182. [Google Scholar] [CrossRef]
- Abbas, A.; Masad, E.; Papagiannakis, T.; Harman, T. Micromechanical Modeling of the Viscoelastic Behavior of Asphalt Mixtures Using the Discrete-Element Method. Int. J. Geomech. 2007, 7, 131–139. [Google Scholar] [CrossRef]
- Al Khateeb, L.; Anupam, K.; Erkens, S.; Scarpas, T. Micromechanical Simulation of Porous Asphalt Mixture Compaction Using Discrete Element Method (DEM). Constr. Build. Mater. 2021, 301, 124305. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Lu, W.; Moharekpour, M.; Oeser, M.; Wang, D. Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements. Buildings 2022, 12, 932. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Y.; Xu, Y.; Xia, S.; Lu, X.; Li, Y. Discrete Element Modelling of Mechanical Response of Crumb Rubber-Modified Asphalt Pavements under Traffic Loads. Int. J. Pavement Eng. 2022, 1–18. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; You, W. Microstructural Behavior of the Low-Temperature Cracking and Self-Healing of Asphalt Mixtures Based on the Discrete Element Method. Mater. Struct. 2022, 55, 18. [Google Scholar] [CrossRef]
- Câmara, G.; Micaelo, R.; Monteiro Azevedo, N. 3D DEM Model Simulation of Asphalt Mastics with Sunflower Oil. Comp. Part. Mech. 2023, 10, 1569–1586. [Google Scholar] [CrossRef]
- Câmara, G.; Azevedo, N.M.; Micaelo, R.; Silva, H. Generalised Kelvin Contact Models for DEM Modelling of Asphalt Mixtures. Int. J. Pavement Eng. 2023, 24, 2179625. [Google Scholar] [CrossRef]
- Zhang, L.; Hoff, I.; Zhang, X.; Yang, C. Investigation of the Self-Healing and Rejuvenating Properties of Aged Asphalt Mixture Containing Multi-Cavity Ca-Alginate Capsules. Constr. Build. Mater. 2022, 361, 129685. [Google Scholar] [CrossRef]
- Xu, S.; Tabaković, A.; Liu, X.; Schlangen, E. Calcium Alginate Capsules Encapsulating Rejuvenator as Healing System for Asphalt Mastic. Constr. Build. Mater. 2018, 169, 379–387. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Micaelo, R.; Garcia, A. Self-Healing of Asphalt Mastic by the Action of Polymeric Capsules Containing Rejuvenators. Constr. Build. Mater. 2018, 161, 330–339. [Google Scholar] [CrossRef]
- Bao, S.; Liu, Q.; Li, H.; Zhang, L.; Maria Barbieri, D. Investigation of the Release and Self-Healing Properties of Calcium Alginate Capsules in Asphalt Concrete under Cyclic Compression Loading. J. Mater. Civ. Eng. 2021, 33, 04020401. [Google Scholar] [CrossRef]
- Li, R.; Zhou, T.; Pei, J. Design, Preparation and Properties of Microcapsules Containing Rejuvenator for Asphalt. Constr. Build. Mater. 2015, 99, 143–149. [Google Scholar] [CrossRef]
- Xue, B.; Wang, H.; Pei, J.; Li, R.; Zhang, J.; Fan, Z. Study on Self-Healing Microcapsule Containing Rejuvenator for Asphalt. Constr. Build. Mater. 2017, 135, 641–649. [Google Scholar] [CrossRef]
- Ruiz-Riancho, N.; Garcia, A.; Grossegger, D.; Saadoon, T.; Hudson-Griffiths, R. Properties of Ca-Alginate Capsules to Maximise Asphalt Self-Healing Properties. Constr. Build. Mater. 2021, 284, 122728. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Li, H.; Norambuena-Contreras, J.; Wu, S.; Bao, S.; Shu, B. Synthesis and Characterization of Multi-Cavity Ca-Alginate Capsules Used for Self-Healing in Asphalt Mixtures. Constr. Build. Mater. 2019, 211, 298–307. [Google Scholar] [CrossRef]
- Su, J.-F.; Schlangen, E.; Wang, Y.-Y. Investigation the Self-Healing Mechanism of Aged Bitumen Using Microcapsules Containing Rejuvenator. Constr. Build. Mater. 2015, 85, 49–56. [Google Scholar] [CrossRef]
- Su, J.-F.; Zhang, X.-L.; Guo, Y.-D.; Wang, X.-F.; Li, F.-L.; Fang, Y.; Ding, Z.; Han, N.-X. Experimental Observation of the Vascular Self-Healing Hollow Fibers Containing Rejuvenator States in Bitumen. Constr. Build. Mater. 2019, 201, 715–727. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Yalcin, E.; Garcia, A.; Al-Mansoori, T.; Yilmaz, M.; Hudson-Griffiths, R. Effect of Mixing and Ageing on the Mechanical and Self-Healing Properties of Asphalt Mixtures Containing Polymeric Capsules. Constr. Build. Mater. 2018, 175, 254–266. [Google Scholar] [CrossRef]
- Tabaković, A.; Braak, D.; van Gerwen, M.; Copuroglu, O.; Post, W.; Garcia, S.J.; Schlangen, E. The Compartmented Alginate Fibres Optimisation for Bitumen Rejuvenator Encapsulation. J. Traffic Transp. Eng. 2017, 4, 347–359. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M. Properties of Capsules Containing Rejuvenators for Their Use in Asphalt Concrete. Fuel 2011, 90, 583–591. [Google Scholar] [CrossRef]
Property Type | CM-0 | CM-2.5 | CM-5 | CM-10 | CM-20 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Chains | (kPa) a | (kPa·s) b | ||||||||
1 | ||||||||||
2 | ||||||||||
3 | ||||||||||
4 | ||||||||||
5 | ||||||||||
6 | ||||||||||
7 | ||||||||||
8 | - | - | ||||||||
9 | - | - | - | - | - | - | - | - | ||
Aggregates | Mastic | |||||
---|---|---|---|---|---|---|
Sieve size (mm) | 19 | 12.5 | 9.5 | 4.75 | 2 | >2 |
Particles | - | 13 | 29 | 309 | 2388 | 24,907 |
Volume (mm3) | - | 27,794.5 | 20,957.6 | 39,365.8 | 25,788.0 | 64,830.3 |
Case 2 | Case 3 | ||||
---|---|---|---|---|---|
Contact Property | (%) | (mm3) | R (%) | (mm3) | R (%) |
CM-2.5 | 1.7 | 2.54 | 2.8 | 11.49 | 12.7 |
CM-5 | 3.4 | 5.5 | 25.1 | ||
CM-10 | 6.6 | 10.7 | 48.5 | ||
CM-20 | 12.4 | 20.1 | 90.9 |
Contact Property | Variation in Stiffness (%) | Difference in Phase Angle (°) |
---|---|---|
Min (Max) | Min (Max) | |
CM-2.5 | 36.5 (46.3) | 0.92 (5.55) |
CM-5 | 53.2 (59.8) | −4.93 (8.01) |
CM-10 | 77.2 (80.2) | −15.26 (8.29) |
CM-20 | 99.0 (99.3) | −4.34 (19.95) |
Contact Property | Variation in Stiffness (%) | Difference in Phase Angle (°) |
---|---|---|
Min (Max) | Min (Max) | |
CM-2.5 | 0.1 (0.4) | −0.20 (0.02) |
CM-5 | 0.2 (0.5) | −0.21 (0.04) |
CM-10 | 0.3 (0.6) | −0.20 (0.01) |
CM-20 | 0.2 (0.3) | −0.39 (−0.19) |
Contact Property | Variation in Stiffness (%) | Difference in Phase Angle (°) |
---|---|---|
Min (Max) | Min (Max) | |
CM-2.5 | 3.5 (3.9) | −0.03 (0.17) |
CM-5 | 4.9 (5.3) | −0.14 (0.11) |
CM-10 | 6.1 (6.9) | −0.34 (−0.04) |
CM-20 | 6.0 (7.5) | −0.56 (−0.31) |
Particle Assembly | Variation in Stiffness (%) Min (Max) | Difference in Phase Angle (°) Min (Max) | ||
---|---|---|---|---|
CM-5 | CM-20 | CM-5 | CM-20 | |
AM-30 | 4.9 (5.3) | 6.0 (7.2) | −0.14 (0.11) | −0.70 (−0.31) |
AM-75 | 13.5 (13.9) | 17.0 (18.4) | −0.05 (0.01) | −1.18 (−0.40) |
AM-120 | 22.1 (23.6) | 28.9 (30.0) | −0.26 (0.46) | −1.57 (−1.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Câmara, G.; Azevedo, N.M.; Micaelo, R. Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach. Buildings 2023, 13, 3023. https://doi.org/10.3390/buildings13123023
Câmara G, Azevedo NM, Micaelo R. Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach. Buildings. 2023; 13(12):3023. https://doi.org/10.3390/buildings13123023
Chicago/Turabian StyleCâmara, Gustavo, Nuno Monteiro Azevedo, and Rui Micaelo. 2023. "Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach" Buildings 13, no. 12: 3023. https://doi.org/10.3390/buildings13123023
APA StyleCâmara, G., Azevedo, N. M., & Micaelo, R. (2023). Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach. Buildings, 13(12), 3023. https://doi.org/10.3390/buildings13123023