A Review on Numerical Modeling of the Hygrothermal Behavior of Building Envelopes Incorporating Phase Change Materials
Abstract
:1. Introduction
 the classification of hygrothermal models based on their driving potential.
 the integration of phase change materials (PCMs) models into these hygrothermal frameworks.
2. Physical Phenomena of Heat, Air, and Moisture Transfer
2.1. Moisture Transfer
2.1.1. Liquid Water Transfer
2.1.2. Water Vapor Transfer
2.2. Air Transfer
2.3. Heat Transfer
3. Coupled Heat, Air, and Moisture Transfer
3.1. Nodal Approach
 the temperature and density of water vapor are represented by electrical potentials;
 energy flows and mass transfers are represented by current intensities;
 thermal and moisture resistances are represented by electrical resistances;
 the thermal and moisture retention capacities are represented by capacitors.
3.2. Heat, Air, and Moisture Conservation Based Models
3.2.1. Models Using Moisture Content as Driving Potential
3.2.2. Models Using Relative Humidity as Driving Potential
3.2.3. Models Using Capillary Pressure as Driving Potential
3.2.4. Models Using Pressure Vapor as Driving Potential
3.3. CoSimulation Approach
3.4. Boundary Condition
3.5. Models Validation
3.5.1. Theoretical Validation
3.5.2. Intermodel Validation
3.5.3. Experimental Validation
4. Integration of Phase Change Materials in HAM Models
4.1. Modeling of PCMs
4.1.1. The Enthalpy Method
4.1.2. The Heat Capacity Method
4.1.3. The Heat Source or EnthalpyPorosity Method
4.1.4. PhaseField Model
4.2. PCMs in HAM Models
5. Assessment of Material Properties
5.1. Hydric Properties
5.2. Thermal Properties
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
 Liu, S.; Kwok, Y.T.; Lau, K.; Ng, E. Applicability of Different Extreme Weather Datasets for Assessing Indoor Overheating Risks of Residential Buildings in a Subtropical HighDensity City. Build. Environ. 2021, 194, 107711. [Google Scholar] [CrossRef]
 Xia, D.; Zhong, Z.; Huang, Y.; Zou, Y.; Lou, S.; Zhan, Q.; Guo, J.; Yang, J.; Guo, T. Impact of Coupled Heat and Moisture Transfer on Indoor Comfort and Energy Demand for Residential Buildings in HotHumid Regions. Energy Build. 2023, 288, 113029. [Google Scholar] [CrossRef]
 Hamard, E.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.C. Cob, a Vernacular Earth Construction Process in the Context of Modern Sustainable Building. Build. Environ. 2016, 106, 103–119. [Google Scholar] [CrossRef]
 Niroumand, H.; Zain, M.F.M.; Jamil, M. Various Types of Earth Buildings. Procedia Soc. Behav. Sci. 2013, 89, 226–230. [Google Scholar] [CrossRef]
 Evans, I.; Smiley, L.; Smith, M.G. The HandSculpted House: A Philosophical and Practical Guide to Building a Cob Cottage; Chelsea Green Publishing: Chelsea, VT, USA, 2002. [Google Scholar]
 BenAlon, L.; Loftness, V.; Harries, K.A.; Hameen, E.C.; Bridges, M. Integrating earthen building materials and methods into mainstream construction. J. Green Build. 2020, 15, 87–106. [Google Scholar] [CrossRef]
 Watson, L.; McCabe, K. The Cob Building Technique. Past, Present and Future. Inf. Constr. 2011, 63, 59–70. [Google Scholar] [CrossRef]
 Benmahiddine, F.; Cherif, R.; Bennai, F.; Belarbi, R.; Tahakourt, A.; Abahri, K. Effect of Flax Shives Content and Size on the Hygrothermal and Mechanical Properties of Flax Concrete. Constr. Build. Mater. 2020, 262, 120077. [Google Scholar] [CrossRef]
 Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; GuéguenMinerbe, M.; Diafi, D.; Nour, I.; Amziane, S.; Farcas, F. Aging of Hemp Shiv Used for Concrete. Mater. Des. 2018, 160, 752–762. [Google Scholar] [CrossRef]
 Seng, B.; Lorente, S.; Magniont, C. Scale Analysis of Heat and Moisture Transfer through BioBased Materials—Application to Hemp Concrete. Energy Build. 2017, 155, 546–558. [Google Scholar] [CrossRef]
 Abahri, K.; El Hachem, C.; Bennai, F.; Toan, N.; Belarbi, R. Prediction of Hemp Concrete Morphological Deformation by XRay Tomography; American Concrete Institute: Farmington Hills, MI, USA, 2017; Volume 320, pp. 616–625. [Google Scholar]
 Recart, C.; Sturts Dossick, C. Hygrothermal Behavior of PostRetrofit Housing: A Review of the Impacts of the Energy Efficiency Upgrade Strategies. Energy Build. 2022, 262, 112001. [Google Scholar] [CrossRef]
 Wang, R.; Ge, H.; Baril, D. MoistureSafe Attic Design in Extremely Cold Climate: Hygrothermal Simulations. Build. Environ. 2020, 182, 107166. [Google Scholar] [CrossRef]
 Bastien, D.; WintherGaasvig, M. Influence of Driving Rain and Vapour Diffusion on the Hygrothermal Performance of a Hygroscopic and Permeable Building Envelope. Energy 2018, 164, 288–297. [Google Scholar] [CrossRef]
 Liu, Y.; Wang, Y.; Wang, D.; Liu, J. Effect of Moisture Transfer on Internal Surface Temperature. Energy Build. 2013, 60, 83–91. [Google Scholar] [CrossRef]
 Belarbi, R.; Qin, M.; AïtMokhtar, A.; Nilsson, L.O. Experimental and Theoretical Investigation of NonIsothermal Transfer in Hygroscopic Building Materials. Build. Environ. 2008, 43, 2154–2162. [Google Scholar] [CrossRef]
 Qin, M.; AïtMokhtar, A.; Belarbi, R. TwoDimensional Hygrothermal Transfer in Porous Building Materials. Appl. Therm. Eng. 2010, 30, 2555–2562. [Google Scholar] [CrossRef]
 Bennai, F.; Ferroukhi, M.Y.; Benmahiddine, F.; Belarbi, R.; Nouviaire, A. Assessment of Hygrothermal Performance of Hemp Concrete Compared to Conventional Building Materials at Overall Building Scale. Constr. Build. Mater. 2022, 316, 126007. [Google Scholar] [CrossRef]
 Trabelsi, A.; Belarbi, R.; Abahri, K.; Qin, M. Assessment of Temperature Gradient Effects on Moisture Transfer through Thermogradient Coefficient. Build. Simul. 2012, 5, 107–115. [Google Scholar] [CrossRef]
 Busser, T.; Berger, J.; Piot, A.; Pailha, M.; Woloszyn, M. Comparison of Model Numerical Predictions of Heat and Moisture Transfer in Porous Media with Experimental Observations at Material and Wall Scales: An Analysis of Recent Trends. Dry. Technol. 2019, 37, 1363–1395. [Google Scholar] [CrossRef]
 Dong, W.; Chen, Y.; Bao, Y.; Fang, A. A Validation of Dynamic Hygrothermal Model with Coupled Heat and Moisture Transfer in Porous Building Materials and Envelopes. J. Build. Eng. 2020, 32, 101484. [Google Scholar] [CrossRef]
 Luikov, A.V. Heat and Mass Transfer in CapillaryPorous Bodies; Elsevier: Amsterdam, The Netherlands, 1966; pp. 233–303. ISBN 9781483200651. [Google Scholar]
 Philip, J.R. Flow in Porous Media. Annu. Rev. Fluid Mech. 1970, 2, 177–204. [Google Scholar] [CrossRef]
 Qin, M.; Belarbi, R.; AïtMokhtar, A.; Nilsson, L.O. Coupled Heat and Moisture Transfer in MultiLayer Building Materials. Constr. Build. Mater. 2009, 23, 967–975. [Google Scholar] [CrossRef]
 Künzel, H. Simultaneous Heat and Moisture Transport in Building Components. One and TwoDimensional Calculation Using Simple Parameters; Fraunhofer IBP: Stuttgart, Germany, 1995. [Google Scholar]
 Pedersen, C.R. Prediction of Moisture Transfer in Building Constructions. Build. Environ. 1992, 27, 387–397. [Google Scholar] [CrossRef]
 Janssen, H.; Carmeliet, J.; Hens, H. The Influence of Soil Moisture in the Unsaturated Zone on the Heat Loss from Buildings via the Ground. J. Therm. Envel. Build. Sci. 2002, 25, 275–298. [Google Scholar] [CrossRef]
 Basecq, V.; Michaux, G.; Blondeau, P.; Inard, C. Short Term Storage Systems of the Thermal Energy for Buildings: A Review. Adv. Build. Energy Res. 2013, 7, 66–119. [Google Scholar] [CrossRef]
 Ben Romdhane, S.; Amamou, A.; Ben Khalifa, R.; Saïd, N.M.; Younsi, Z.; Jemni, A. A Review on Thermal Energy Storage Using Phase Change Materials in Passive Building Applications. J. Build. Eng. 2020, 32, 101563. [Google Scholar] [CrossRef]
 Lamrani, B.; Johannes, K.; Kuznik, F. Phase Change Materials Integrated into Building Walls: An Updated Review. Renew. Sustain. Energy Rev. 2021, 140, 110751. [Google Scholar] [CrossRef]
 AlRashed, A.A.A.A.; Alnaqi, A.A.; Alsarraf, J. EnergySaving of Building Envelope Using Passive PCM Technique: A Case Study of Kuwait City Climate Conditions. Sustain. Energy Technol. Assess. 2021, 46, 101254. [Google Scholar] [CrossRef]
 BohórquezÓrdenes, J.; TapiaCalderón, A.; Vasco, D.A.; EstuardoFlores, O.; Haddad, A.N. Methodology to Reduce Cooling Energy Consumption by Incorporating PCM Envelopes: A Case Study of a Dwelling in Chile. Build. Environ. 2021, 206, 108373. [Google Scholar] [CrossRef]
 Yang, Y.K.; Kang, I.S.; Chung, M.H.; Kim, S.; Park, J.C. Effect of PCM Cool Roof System on the Reduction in Urban Heat Island Phenomenon. Build. Environ. 2017, 122, 411–421. [Google Scholar] [CrossRef]
 ALSaadi, S.N.; Zhai, Z.J. Modeling Phase Change Materials Embedded in Building Enclosure: A Review. Renew. Sustain. Energy Rev. 2013, 21, 659–673. [Google Scholar] [CrossRef]
 Zeneli, M.; Nikolopoulos, A.; Karellas, S.; Nikolopoulos, N. Chapter 7—Numerical Methods for SolidLiquid PhaseChange Problems. In UltraHigh Temperature Thermal Energy Storage, Transfer and Conversion; Datas, A., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2021; pp. 165–199. ISBN 9780128199558. [Google Scholar]
 Fraine, Y.; Seladji, C.; AïtMokhtar, A. Effect of Microencapsulation Phase Change Material and Diatomite Composite Filling on Hygrothermal Performance of Sintered Hollow Bricks. Build. Environ. 2019, 154, 145–154. [Google Scholar] [CrossRef]
 Wu, D.; Rahim, M.; El Ganaoui, M.; Bennacer, R.; Liu, B. Multilayer Assembly of Phase Change Material and BioBased Concrete: A Passive Envelope to Improve the Energy and Hygrothermal Performance of Buildings. Energy Convers. Manag. 2022, 257, 115454. [Google Scholar] [CrossRef]
 Crausse, P.; Laurent, J.P.; Perrin, B. Influence des phénomènes d’hystérésis sur les propriétés hydriques de matériaux poreux: Comparaison de deux modèles de simulation du comportement thermohydrique de parois de bâtiment. Rev. Générale Therm. 1996, 35, 95–106. [Google Scholar] [CrossRef]
 Fick, A.V. On Liquid Diffusion. Lond. Edinb. Phil. Mag. 1855, 10, 30–39. [Google Scholar] [CrossRef]
 Tariku, F.; Kumaran, K.; Fazio, P. Transient Model for Coupled Heat, Air and Moisture Transfer through Multilayered Porous Media. Int. J. Heat Mass Transf. 2010, 53, 3035–3044. [Google Scholar] [CrossRef]
 Hens, H. Heat transfer. In Building Physics—Heat, Air and Moisture: Fundamentals and Engineering Methods with Examples and Exercises; Wiley: Hoboken, NJ, USA, 2017; pp. 15–124. [Google Scholar] [CrossRef]
 Fourier, J.B.J. Theorie Analytique de la Chaleur; Didot: Paris, France, 1822; pp. 499–508. [Google Scholar]
 Hamdaoui, M.A.; Benzaama, M.H.; El Mendili, Y.; Chateigner, D. A Review on Physical and DataDriven Modeling of Buildings Hygrothermal Behavior: Models, Approaches and Simulation Tools. Energy Build. 2021, 251, 111343. [Google Scholar] [CrossRef]
 Boyer, H.; Chabriat, J.P.; GrondinPerez, B.; Tourrand, C.; Brau, J. Thermal Building Simulation and Computer Generation of Nodal Models. Build. Environ. 1996, 31, 207–214. [Google Scholar] [CrossRef]
 TRNSYS. Transient System Simulation Tool. Available online: https://www.trnsys.com/ (accessed on 8 August 2023).
 Kerestecioglu, A.; Kamel, A. Theoretical and Computational Investigation of Simultaneous Heat and Moisture Transfer in Buildings: “Effective Penetration Depth” Theory. In Proceedings of the ASHRAE 1990 Winter Meeting, Atlanta, GA, USA, 11–14 February 1990. [Google Scholar]
 Abadie, M.; Mendes, N. Comparative Analysis of ResponseFactor and FiniteVolume Based Methods for Predicting Heat and Moisture Transfer through Porous Building Materials. J. Build. Phys. 2006, 30, 7–37. [Google Scholar] [CrossRef]
 Luikov, A.V. Heat and Mass Transfer in CapillaryPorous Bodies. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1964; Volume 1, pp. 123–184. ISBN 9780120200016. [Google Scholar]
 Irudayaraj, J.; Wu, Y. Analysis and Application of Luikov’s Heat, Mass, and Pressure Transfer Model to a Capillary Porous Media. Dry. Technol. 1996, 14, 803–824. [Google Scholar] [CrossRef]
 Lewis, R.W.; Ferguson, W.J. The Effect of Temperature and Total Gas Pressure on the Moisture Content in a Capillary Porous Body. Int. J. Numer. Methods Eng. 1990, 29, 357–369. [Google Scholar] [CrossRef]
 Mendes, N.; Ridley, I.; Lamberts, R.; Philippi, P.C.; Budag, K. Umidus: A PC program for the Prediction of Heat and Mass Transfer in Porous Building Elements. In Proceedings of the International Conference on Building Performance Simulation 99, Kyoto, Japan, 13–15 September 1999; pp. 277–283. [Google Scholar]
 Mendes, N.; Philippi, P.C.; Lamberts, R. A New Mathematical Method to Solve Highly Coupled Equations of Heat and Mass Transfer in Porous Media. Int. J. Heat Mass Transf. 2002, 45, 509–518. [Google Scholar] [CrossRef]
 Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. In Advances in Heat Transfer; Hartnett, J.P., Irvine, T.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1977; Volume 13, pp. 119–203. [Google Scholar]
 Milly, P.C.D. The Coupled Transport of Water and Heat in a Vertical Soil Column under Atmospheric Excitation. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1980. [Google Scholar]
 Abahri, K. Modélisation Des Transferts Couplés de Chaleur, d’air et d’humidité Dans Les Matériaux Poreux de Construction. Ph.D. Thesis, University of La Rochelle, La Rochelle, France, 2012. [Google Scholar]
 Qin, M.; Belarbi, R.; AïtMokhtar, A.; Seigneurin, A. An Analytical Method to Calculate the Coupled Heat and Moisture Transfer in Building Materials. Int. Commun. Heat Mass Transf. 2006, 33, 39–48. [Google Scholar] [CrossRef]
 Steeman, M.; Janssens, A.; Steeman, H.J.; Van Belleghem, M.; De Paepe, M. On Coupling 1D NonIsothermal Heat and Mass Transfer in Porous Materials with a Multizone Building Energy Simulation Model. Build. Environ. 2010, 45, 865–877. [Google Scholar] [CrossRef]
 Steeman, M.; Van Belleghem, M.; De Paepe, M.; Janssens, A. Experimental Validation and Sensitivity Analysis of a Coupled BES–HAM Model. Build. Environ. 2010, 45, 2202–2217. [Google Scholar] [CrossRef]
 Alioua, T.; Agoudjil, B.; Boudenne, A.; Benzarti, K. Sensitivity Analysis of Transient Heat and Moisture Transfer in a BioBased Date Palm Concrete Wall. Build. Environ. 2021, 202, 108019. [Google Scholar] [CrossRef]
 Oumeziane, Y.A. Evaluation des performances hygrothermiques d’une paroi par simulation numérique: Application aux parois en béton de chanvre. Ph.D. Thesis, INSA de Rennes, Rennes, France, 2013. [Google Scholar]
 Reuge, N.; Collet, F.; Pretot, S.; Moisette, S.; Bart, M.; Style, O.; Shea, A.; Lanos, C. Hygrothermal Effects and Moisture Kinetics in a BioBased MultiLayered Wall: Experimental and Numerical Studies. Constr. Build. Mater. 2020, 240, 117928. [Google Scholar] [CrossRef]
 Zirkelbach, D.; Mehra, S.R.; Sedlbauer, K.P.; Künzel, H.M.; Stöckl, B. A Hygrothermal Green Roof Model to Simulate Moisture and Energy Performance of Building Components. Energy Build. 2017, 145, 79–91. [Google Scholar] [CrossRef]
 Krejčí, T.; Kruis, J.; Šejnoha, M.; Koudelka, T. Numerical Analysis of Coupled Heat and Moisture Transport in Masonry. Comput. Math. Appl. 2017, 74, 229–248. [Google Scholar] [CrossRef]
 Medjelekh, D.; Ulmet, L.; Gouny, F.; Fouchal, F.; NaitAli, B.; Maillard, P.; Dubois, F. Characterization of the Coupled Hygrothermal Behavior of Unfired Clay Masonries: Numerical and Experimental Aspects. Build. Environ. 2016, 110, 89–103. [Google Scholar] [CrossRef]
 Nespoli, L.; Janetti, M.B.; Ochs, F. Comparing Different Approaches for Moisture Transfer inside Constructions with Air Gaps. In Proceedings of the COMSOL Conference, Rotterdam, The Netherlands, 23–25 October 2013; Volume 61. [Google Scholar]
 Xu, Y.; Zeng, Z.; Sun, D. Experimental and Numerical Investigation on the Effect of Heat and Moisture Coupling Migration of Unsaturated Lateritic Clay for the Soil Thermal Storage System. Energy Build. 2022, 276, 112499. [Google Scholar] [CrossRef]
 Promis, G.; Douzane, O.; Le, A.D.T.; Langlet, T. Moisture hysteresis influence on mass transfer through biobased building materials in dynamic state. Energy Build. 2018, 166, 450–459. [Google Scholar] [CrossRef]
 Thibaut, C.; Dylan, L.; Patrick, G. Hygrothermal behavior of biobased building materials including hysteresis effects: Experimental and numerical analyses. Energy Build. 2014, 84, 617–627. [Google Scholar] [CrossRef]
 Lelièvre, D. Simulation Numérique Des Transferts de Chaleur et d’humidité Dans Une Paroi Multicouche de Bâtiment En Matériaux Biosourcés. Ph.D. Thesis, Université de Bretagne Sud, Lorient, France, 2015. [Google Scholar]
 Janetti, M.B.; Ochs, F.; Feist, W. 3D Simulation of Heat and Moisture Diffusion in Constructions. In Proceedings of the Comsol Conference Stuttgart 2011, Stuttgart, Germany, 26–28 October 2011. [Google Scholar]
 Rong, L.; Yuewu, H. Heat and Moisture Transfer Characteristics of Multilayer Walls. Energy Procedia 2018, 152, 324–329. [Google Scholar] [CrossRef]
 Liu, F.; Jia, B.; Chen, B.; Geng, W. Moisture Transfer in Building Envelope and Influence on Heat Transfer. Procedia Eng. 2017, 205, 3654–3661. [Google Scholar] [CrossRef]
 Wang, X.; Jin, X.; Yin, Y.; Shi, X.; Zhou, X. A Transient Heat and Moisture Transfer Model for Building Materials Based on Phase Change Criterion under Isothermal and NonIsothermal Conditions. Energy 2021, 224, 120112. [Google Scholar] [CrossRef]
 CEN/TC 89/WG 10—Moisture. Available online: https://standards.iteh.ai/catalog/tc/cen/827dd119af0f4d12a3713d0f0008b295/centc89wg10 (accessed on 31 July 2023).
 CarlEric, H.; Olaf, A.; Bijan, A.Z.; Rachel, B.; Harold, B.; Jan, C.; Reda, D.; Max, F.; John, G.; Hugo, H.; et al. Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for OneDimensional Cases. J. Therm. Envel. Build. Sci. 2004, 27, 327–352. [Google Scholar] [CrossRef]
 Janssen, H.; Blocken, B.; Carmeliet, J. Conservative Modelling of the Moisture and Heat Transfer in Building Components under Atmospheric Excitation. Int. J. Heat Mass Transf. 2007, 50, 1128–1140. [Google Scholar] [CrossRef]
 Li, Q.; Rao, J.; Fazio, P. Development of HAM Tool for Building Envelope Analysis. Build. Environ. 2009, 44, 1065–1073. [Google Scholar] [CrossRef]
 Fang, A.; Chen, Y.; Wu, L. Modeling and Numerical Investigation for Hygrothermal Behavior of Porous Building Envelope Subjected to the Wind Driven Rain. Energy Build. 2021, 231, 110572. [Google Scholar] [CrossRef]
 Fang, A.; Chen, Y.; Wu, L. Transient Simulation of Coupled Heat and Moisture Transfer through MultiLayer Walls Exposed to Future Climate in the Hot and Humid Southern China Area. Sustain. Cities Soc. 2020, 52, 101812. [Google Scholar] [CrossRef]
 Odgaard, T.; Bjarløv, S.P.; Rode, C. Influence of Hydrophobation and Deliberate Thermal Bridge on Hygrothermal Conditions of Internally Insulated Historic Solid Masonry Walls with Builtin Wood. Energy Build. 2018, 173, 530–546. [Google Scholar] [CrossRef]
 Remki, B.; Abahri, K.; Tahlaiti, M.; Belarbi, R. Hygrothermal Transfer in Wood Drying under the Atmospheric Pressure Gradient. Int. J. Therm. Sci. 2012, 57, 135–141. [Google Scholar] [CrossRef]
 Berger, J.; Dutykh, D.; Mendes, N.; Rysbaiuly, B. A New Model for Simulating Heat, Air and Moisture Transport in Porous Building Materials. Int. J. Heat Mass Transf. 2019, 134, 1041–1060. [Google Scholar] [CrossRef]
 Ayres de Mello, L.; Moura, L.M.; Mendes, N. A Model for Predicting Heat, Air and Moisture Transfer through Fibrous Materials. Int. J. Therm. Sci. 2019, 145, 106036. [Google Scholar] [CrossRef]
 Ayres de Mello, L.; Moura, L.M.; Mendes, N. A Model for Assessment of Heat and Moisture Transfer through Hollow Porous Buildings Elements. Case Stud. Therm. Eng. 2019, 14, 100446. [Google Scholar] [CrossRef]
 Sawadogo, M.; Benmahiddine, F.; Godin, A.; Duquesne, M.; Belarbi, R.; Hamami, A. Development and Hygrothermal Performance Analysis of a Novel EcoFriendly Insulating Wall under Various Climatic Conditions. Build. Environ. 2023, 245, 110841. [Google Scholar] [CrossRef]
 Nagata, G.A.; Costa, T.V.; Perazzini, M.T.B.; Perazzini, H. Coupled Heat and Mass Transfer Modelling in Convective Drying of Biomass at ParticleLevel: Model Validation with Experimental Data. Renew. Energy 2020, 149, 1290–1299. [Google Scholar] [CrossRef]
 Qin, M.; Belarbi, R.; AitMokhtar, A.; Nilsson, L.O. Nonisothermal Moisture Transport in Hygroscopic Building Materials: Modeling for the Determination of Moisture Transport Coefficients. Transp. Porous. Med. 2008, 72, 255–271. [Google Scholar] [CrossRef]
 Zhai, Z.; Chen, Q.; Haves, P.; Klems, J.H. On Approaches to Couple Energy Simulation and Computational Fluid Dynamics Programs. Build. Environ. 2002, 37, 857–864. [Google Scholar] [CrossRef]
 Kwiatkowski, J.; Woloszyn, M.; Roux, J.J. Influence of Sorption Isotherm Hysteresis Effect on Indoor Climate and Energy Demand for Heating. Appl. Therm. Eng. 2011, 31, 1050–1057. [Google Scholar] [CrossRef]
 Ferroukhi, M.Y.; Djedjig, R.; Limam, K.; Belarbi, R. Hygrothermal Behavior Modeling of the Hygroscopic Envelopes of Buildings: A Dynamic CoSimulation Approach. Build. Simul. 2016, 9, 501–512. [Google Scholar] [CrossRef]
 Ferroukhi, M.Y.; Djedjig, R.; Belarbi, R.; Limam, K.; Abahri, K. Effect of Coupled Heat, Air and Moisture Transfers Modeling in the Wall on the Hygrothermal Behavior of Buildings. Energy Procedia 2015, 78, 2584–2589. [Google Scholar] [CrossRef]
 Ferroukhi, M.Y.; Abahri, K.; Belarbi, R.; Limam, K. Integration of a Hygrothermal Transfer Model for Envelope in a Building Energy Simulation Model: Experimental Validation of a HAM–BES CoSimulation Approach. Heat Mass Transfer 2017, 53, 1851–1861. [Google Scholar] [CrossRef]
 Frasca, F.; Verticchio, E.; Cornaro, C.; Siani, A.M. Performance Assessment of Hygrothermal Modelling for Diagnostics and Conservation in an Italian Historical Church. Build. Environ. 2021, 193, 107672. [Google Scholar] [CrossRef]
 AlvaradoAlvarado, A.A.; De Bock, A.; Ysebaert, T.; Belmans, B.; Denys, S. Modeling the Hygrothermal Behavior of Green Walls in Comsol Multiphysics^{®}: Validation against Measurements in a Climate Chamber. Build. Environ. 2023, 238, 110377. [Google Scholar] [CrossRef]
 Blocken, B.; Carmeliet, J. Spatial and Temporal Distribution of Driving Rain on a LowRise Building. Wind. Struct. Int. J. 2002, 5, 441–462. [Google Scholar] [CrossRef]
 Yu, S.; Liu, X.; Li, Y.; He, S.; Yao, Y.; Sun, S. Experimental and Numerical Simulation Study on Hygrothermal Migration of Damaged Envelope Walls during WindDriven Rain. Build. Environ. 2023, 243, 110653. [Google Scholar] [CrossRef]
 EN 15026; Hygrothermal Performance of Building Components and Elements—Assessment of Moisture Transfer by Numerical Simulation. British Standards: London, UK, 2007.
 Judkoff, R.; Neymark, J. International Energy Agency Building Energy Simulation Test (BESTEST) and Diagnostic Method; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1995. [Google Scholar]
 Van Schijndel, A.W.M.; Goesten, S.; Schellen, H.L. Simulating the Complete HAMSTAD Benchmark Using a Single Model Implemented in Comsol. Energy Procedia 2017, 132, 429–434. [Google Scholar] [CrossRef]
 Shen, X.; Li, L.; Cui, W.; Feng, Y. Coupled Heat and Moisture Transfer in Building Material with Freezing and Thawing Process. J. Build. Eng. 2018, 20, 609–615. [Google Scholar] [CrossRef]
 Chen, G.; Luo, Q.; Guo, X.; Liu, X.; Tu, M.; He, Y. Study on Mould Germination Risk in Hydroscopic Building Wall. Procedia Eng. 2017, 205, 2712–2719. [Google Scholar] [CrossRef]
 Knarud, J.I.; Geving, S. Implementation and Benchmarking of a 3D Hygrothermal Model in the COMSOL Multiphysics Software. Energy Procedia 2015, 78, 3440–3445. [Google Scholar] [CrossRef]
 Wan, H.; Huang, G.; Xu, X. Development of a Moisture Transfer Calculation Method of Hygroscopic Material Plate in Buildings. Build. Environ. 2018, 142, 398–413. [Google Scholar] [CrossRef]
 Korjenic, A.; Bednar, T. An Analytical Solution of a Moisture Transfer Problem for Coupled Room and Building Component. Energy Build. 2012, 47, 254–259. [Google Scholar] [CrossRef]
 COMSOL: Multiphysics Software for Optimizing Designs. Available online: https://www.comsol.com/ (accessed on 4 August 2023).
 Liu, X.; Chen, Y.; Ge, H.; Fazio, P.; Chen, G. Numerical Investigation for Thermal Performance of Exterior Walls of Residential Buildings with Moisture Transfer in Hot Summer and Cold Winter Zone of China. Energy Build. 2015, 93, 259–268. [Google Scholar] [CrossRef]
 WUFI. Available online: https://www.wufi.de/ (accessed on 6 December 2023).
 Huang, Z.; Sun, Y.; Musso, F. Hygrothermal Performance Optimization on Bamboo Building Envelope in HotHumid Climate Region. Constr. Build. Mater. 2019, 202, 223–245. [Google Scholar] [CrossRef]
 Park, J.H.; Kang, Y.; Lee, J.; Chang, S.J.; Wi, S.; Kim, S. Development of WoodLime Boards as Building Materials Improving Thermal and Moisture Performance Based on Hygrothermal Behavior Evaluation. Constr. Build. Mater. 2019, 204, 576–585. [Google Scholar] [CrossRef]
 López, O.; Torres, I.; Guimarães, A.S.; Delgado, J.M.P.Q.; de Freitas, V.P. InterLaboratory Variability Results of Porous Building Materials Hygrothermal Properties. Constr. Build. Mater. 2017, 156, 412–423. [Google Scholar] [CrossRef]
 Luisa, S.; Andreas, N.; Stefan, V. Validierung der Solverimplementierung des Hygrothermischen Simulationsprogramms Delphin; Technische Universität Dresden: Dresden, Germany, 2013. [Google Scholar]
 Ruiz, M.; Masson, V.; Bonhomme, M.; Ginestet, S. Numerical Method for Solving Coupled Heat and Mass Transfer through Walls for Future Integration into an Urban Climate Model. Build. Environ. 2023, 231, 110028. [Google Scholar] [CrossRef]
 Gonçalves, M.; Simões, N.; Serra, C.; FloresColen, I. Laboratory Assessment of the Hygrothermal Performance of an External VacuumInsulation Composite System. Energy Build. 2022, 254, 111549. [Google Scholar] [CrossRef]
 Pavlík, Z.; Černý, R. Experimental Assessment of Hygrothermal Performance of an Interior Thermal Insulation System Using a Laboratory Technique Simulating OnSite Conditions. Energy Build. 2008, 40, 673–678. [Google Scholar] [CrossRef]
 Wu, D.; Rahim, M.; El Ganaoui, M.; Bennacer, R.; Djedjig, R.; Liu, B. Dynamic Hygrothermal Behavior and Energy Performance Analysis of a Novel Multilayer Building Envelope Based on PCM and Hemp Concrete. Constr. Build. Mater. 2022, 341, 127739. [Google Scholar] [CrossRef]
 Talukdar, P.; Olutmayin, S.O.; Osanyintola, O.F.; Simonson, C.J. An Experimental Data Set for Benchmarking 1D, Transient Heat and Moisture Transfer Models of Hygroscopic Building Materials. Part I: Experimental Facility and Material Property Data. Int. J. Heat Mass Transf. 2007, 50, 4527–4539. [Google Scholar] [CrossRef]
 Olutimayin, S.O.; Simonson, C.J. Measuring and Modeling Vapor Boundary Layer Growth during Transient Diffusion Heat and Moisture Transfer in Cellulose Insulation. Int. J. Heat Mass Transf. 2005, 48, 3319–3330. [Google Scholar] [CrossRef]
 Van Belleghem, M.; Steeman, M.; Willockx, A.; Janssens, A.; De Paepe, M. Benchmark Experiments for Moisture Transfer Modelling in Air and Porous Materials. Build. Environ. 2011, 46, 884–898. [Google Scholar] [CrossRef]
 Evrard, A.; De Herde, A. Hygrothermal Performance of LimeHemp Wall Assemblies. J. Build. Phys. 2010, 34, 5–25. [Google Scholar] [CrossRef]
 Colinart, T.; Lelievre, D.; Glouannec, P. Experimental and Numerical Analysis of the Transient Hygrothermal Behavior of Multilayered Hemp Concrete Wall. Energy Build. 2016, 112, 1–11. [Google Scholar] [CrossRef]
 Boukhelf, F.; Trabelsi, A.; Belarbi, R.; Bachir Bouiadjra, M. Experimental and Numerical Modelling of Hygrothermal Transfer: Application on Building Energy Performance. Energy Build. 2022, 254, 111633. [Google Scholar] [CrossRef]
 Belloum, R.; Agoudjil, B.; Chennouf, N.; Boudenne, A. Hygrothermal Performance Assessment of a BioBased Building Made with Date Palm Concrete Walls. Build. Environ. 2022, 223, 109467. [Google Scholar] [CrossRef]
 Chennouf, N.; Agoudjil, B.; Alioua, T.; Boudenne, A.; Benzarti, K. Experimental Investigation on Hygrothermal Performance of a BioBased Wall Made of Cement Mortar Filled with Date Palm Fibers. Energy Build. 2019, 202, 109413. [Google Scholar] [CrossRef]
 Rahim, M.; Djedjig, R.; Wu, D.; Bennacer, R.; Ganaoui, M.E. Experimental Investigation of Hygrothermal Behavior of WoodenFrame House under Real Climate Conditions. Energy Built Environ. 2023, 4, 122–129. [Google Scholar] [CrossRef]
 Zhan, Q.; Pungercar, V.; Musso, F.; Ni, H.; Xiao, Y. Hygrothermal Investigation of Lightweight SteelFramed Wall Assemblies in HotHumid Climates: Measurement and Simulation Validation. J. Build. Eng. 2021, 42, 103044. [Google Scholar] [CrossRef]
 Friis, N.K.; Møller, E.B.; Lading, T. Hygrothermal Assessment of External Walls in Arctic Climates: Field Measurements and Simulations of a Test Facility. Build. Environ. 2023, 238, 110347. [Google Scholar] [CrossRef]
 Stefan, J. Über einige probleme der theorie der wärmeleitung. Sitzungber. Wien Akad. Mat. Natur. 1889, 98, 473–484. [Google Scholar]
 Alexiades, V. Mathematical Modeling of Melting And Freezing Processes; CRC Press: Boca Raton, FL, USA, 1992; ISBN 9781560321255. [Google Scholar]
 Eyres, N.R.; Hartree, D.R.; Ingham, J.; Sarjant, R.J.; Wagstaff, J.B. The Calculation of Variable Heat Flow in Solids. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1946, 240, 1–57. [Google Scholar] [CrossRef]
 Swaminathan, C.R.; Voller, V.R. On the Enthalpy Method. Int. J. Numer. Methods Heat Fluid Flow 1993, 3, 233–244. [Google Scholar] [CrossRef]
 Voller, V.R. An Overview of Numerical Methods for Solving Phase Change Problems. Adv. Numer. Heat Transf. 1997, 1, 341–380. [Google Scholar]
 Hashemi, H.T.; Sliepcevich, C.M. A Numerical Method for Solving TwoDimensional Problems of Heat Conduction with Change of Phase. Chem. Eng. Prog. Symp. Series 1967, 63, 34–41. [Google Scholar]
 Günther, E.; Hiebler, S.; Mehling, H.; Redlich, R. Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods. Int. J. Thermophys. 2009, 30, 1257–1269. [Google Scholar] [CrossRef]
 Bonacina, C.; Comini, G.; Fasano, A.; Primicerio, M. Numerical Solution of PhaseChange Problems. Int. J. Heat Mass Transf. 1973, 16, 1825–1832. [Google Scholar] [CrossRef]
 Morgan, K.; Lewis, R.W.; Zienkiewicz, O.C. An improved algrorithm for heat conduction problems with phase change. Int. J. Numer. Methods Eng. 1978, 12, 1191–1195. [Google Scholar] [CrossRef]
 Poirier, D.; Salcudean, M. On Numerical Methods Used in Mathematical Modeling of Phase Change in Liquid Metals. J. Heat Transf. 1988, 110, 562–570. [Google Scholar] [CrossRef]
 Han, X.X.; Tian, Y.; Zhao, C.Y. An Effectiveness Study of Enhanced Heat Transfer in Phase Change Materials (PCMs). Int. J. Heat Mass Transf. 2013, 60, 459–468. [Google Scholar] [CrossRef]
 Ghoneim, A.Y. A Smoothed Particle HydrodynamicsPhase Field Method with Radial Basis Functions and Moving Least Squares for Meshfree Simulation of Dendritic Solidification. Appl. Math. Model. 2020, 77, 1704–1741. [Google Scholar] [CrossRef]
 Shen, Y.; Liu, S.; Zeng, C.; Zhang, Y.; Li, Y.; Han, X.; Yang, L.; Yang, X. Experimental Thermal Study of a New PCMConcrete Thermal Storage Block (PCMCTSB). Constr. Build. Mater. 2021, 293, 123540. [Google Scholar] [CrossRef]
 Dehmous, M.; Franquet, E.; Lamrous, N. Mechanical and Thermal Characterizations of Various Thermal Energy Storage Concretes Including LowCost BioSourced PCM. Energy Build. 2021, 241, 110878. [Google Scholar] [CrossRef]
 Jia, C.; Geng, X.; Liu, F.; Gao, Y. Thermal Behavior Improvement of Hollow Sintered Bricks Integrated with Both Thermal Insulation Material (TIM) and PhaseChange Material (PCM). Case Stud. Therm. Eng. 2021, 25, 100938. [Google Scholar] [CrossRef]
 Hamidi, Y.; Aketouane, Z.; Malha, M.; Bruneau, D.; Bah, A.; Goiffon, R. Integrating PCM into Hollow Brick Walls: Toward Energy Conservation in Mediterranean Regions. Energy Build. 2021, 248, 111214. [Google Scholar] [CrossRef]
 Li, M.; Cao, Q.; Pan, H.; Wang, X.; Lin, Z. Effect of Melting Point on Thermodynamics of Thin PCM Reinforced Residential Frame Walls in Different Climate Zones. Appl. Therm. Eng. 2021, 188, 116615. [Google Scholar] [CrossRef]
 Frazzica, A.; Brancato, V.; Palomba, V.; La Rosa, D.; Grungo, F.; Calabrese, L.; Proverbio, E. Thermal Performance of Hybrid Cement MortarPCMs for Warm Climates Application. Sol. Energy Mater. Sol. Cells 2019, 193, 270–280. [Google Scholar] [CrossRef]
 Zhou, D.; Shire, G.S.F.; Tian, Y. Parametric Analysis of Influencing Factors in Phase Change Material Wallboard (PCMW). Appl. Energy 2014, 119, 33–42. [Google Scholar] [CrossRef]
 Thiele, A.M.; Sant, G.; Pilon, L. Diurnal Thermal Analysis of Microencapsulated PCMConcrete Composite Walls. Energy Convers. Manag. 2015, 93, 215–227. [Google Scholar] [CrossRef]
 Jia, J.; Liu, B.; Ma, L.; Wang, H.; Li, D.; Wang, Y. Energy Saving Performance Optimization and Regional Adaptability of Prefabricated Buildings with PCM in Different Climates. Case Stud. Therm. Eng. 2021, 26, 101164. [Google Scholar] [CrossRef]
 AlAbsi, Z.A.; Mohd Isa, M.H.; Ismail, M. Phase Change Materials (PCMs) and Their Optimum Position in Building Walls. Sustainability 2020, 12, 1294. [Google Scholar] [CrossRef]
 Wi, S.; Chang, S.J.; Kim, S. Improvement of Thermal Inertia Effect in Buildings Using Shape Stabilized PCM Wallboard Based on the EnthalpyTemperature Function. Sustain. Cities Soc. 2020, 56, 102067. [Google Scholar] [CrossRef]
 Shi, X.; Memon, S.A.; Tang, W.; Cui, H.; Xing, F. Experimental Assessment of Position of Macro Encapsulated Phase Change Material in Concrete Walls on Indoor Temperatures and Humidity Levels. Energy Build. 2014, 71, 80–87. [Google Scholar] [CrossRef]
 Chang, S.J.; Kang, Y.; Wi, S.; Jeong, S.G.; Kim, S. Hygrothermal Performance Improvement of the Korean Wood Frame Walls Using MacroPacked Phase Change Materials (MPPCM). Appl. Therm. Eng. 2017, 114, 457–465. [Google Scholar] [CrossRef]
 Zhu, N.; Li, X.; Hu, P.; Lei, F.; Wei, S.; Wang, W. An Exploration on the Performance of Using Phase Change Humidity Control Material Wallboards in Office Buildings. Energy 2022, 239, 122433. [Google Scholar] [CrossRef]
 Wu, Z.; Qin, M.; Zhang, M. Phase Change Humidity Control Material and Its Impact on Building Energy Consumption. Energy Build. 2018, 174, 254–261. [Google Scholar] [CrossRef]
 Benmahiddine, F. Études des transferts couplés de chaleur, d’air et d’humidité par des techniques de changement d’échelle (microscopiquemacroscopique): Application à L’évaluation de la Performance Energétique et la Durabilité des Matériaux de Construction. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2020. [Google Scholar]
 CEN, EN ISO 12572; Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties. International Standards Organization: Geneva, Switzerland, 2001.
 Oubrahim, I. Fiabilisation des Approches Théoriques Pour la Caractérisation des Matériaux et la Modélisation Hygrothermique des Enveloppes du Bâtiment; Université de La Rochelle: La Rochelle, France, 2023. [Google Scholar]
 Kaemmerlen, A. Transfert de Chaleur à Travers Les Isolants Thermiques Du Bâtiment. Ph.D. Thesis, Université Henri Poincaré, Nancy, France, 2009. [Google Scholar]
 Sawadogo, M.; Godin, A.; Duquesne, M.; Lacroix, E.; Veillère, A.; Hamami, A.E.A.; Belarbi, R. Investigation of EcoFriendly and Economic ShapeStabilized Composites for Building Walls and Thermal Comfort. Build. Environ. 2023, 231, 110026. [Google Scholar] [CrossRef]
 Sawadogo, M.; Benmahiddine, F.; Hamami, A.E.A.; Belarbi, R.; Godin, A.; Duquesne, M. Investigation of a Novel BioBased Phase Change Material Hemp Concrete for Passive Energy Storage in Buildings. Appl. Therm. Eng. 2022, 212, 118620. [Google Scholar] [CrossRef]
 Duquesne, M.; Mailhé, C.; Doppiu, S.; Dauvergne, J.L.; SantosMoreno, S.; Godin, A.; Fleury, G.; Rouault, F.; Palomo del Barrio, E. Characterization of Fatty Acids as Biobased Organic Materials for Latent Heat Storage. Materials 2021, 14, 4707. [Google Scholar] [CrossRef] [PubMed]
 Mailhé, C.; Duquesne, M.; Palomo del Barrio, E.; Azaiez, M.; Achchaq, F. Phase Diagrams of Fatty Acids as Biosourced Phase Change Materials for Thermal Energy Storage. Appl. Sci. 2019, 9, 1067. [Google Scholar] [CrossRef]
Driving Potential  References 

Moisture content  [15,23,24,26,48,49,50,51,52,53,54,55,56,57,58] 
Relative humidity  [25,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73] 
Capillary pressure  [74,75,76,77,78,79,80] 
Vapor pressure  [81,82,83,84,85] 
Validation Methods  References  

Theoretical validation  [56,73,75,99,100,101,102,103,104]  
Intermodel validation  [99,105,106,107,108,109,110,111,112]  
Experimental validation  Material scale  [16,17,21,68,113,114,115,116,117,118] 
Wall scale  [2,94,119,120,121,122,123,124,125,126] 
Models  Advantages  Disadvantages 

Enthalpy 


Heat capacity 


Heat source 


Phasefield 


Properties  Measurement Techniques  

Hydric properties  Moisture content 

Liquid permeability 
 
Vapor permeability  Cup method  
Moisture storage capacity $({C}_{m}=\frac{\partial w}{\partial \phi}$)  Retrieve from the sorption isotherm  
Thermal properties  $\mathrm{Thermal}\mathrm{conductivity}(\lambda $)  Hot plate method, guarded hotbox method, hot wire method, hot disk method, flash method 
$\mathrm{Heat}\mathrm{capacity}({C}_{p}$) 
 
Melting/fusion temperature  
Latent heat of fusion/crystallization 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawadogo, M.; Godin, A.; Duquesne, M.; Hamami, A.E.A.; Belarbi, R. A Review on Numerical Modeling of the Hygrothermal Behavior of Building Envelopes Incorporating Phase Change Materials. Buildings 2023, 13, 3086. https://doi.org/10.3390/buildings13123086
Sawadogo M, Godin A, Duquesne M, Hamami AEA, Belarbi R. A Review on Numerical Modeling of the Hygrothermal Behavior of Building Envelopes Incorporating Phase Change Materials. Buildings. 2023; 13(12):3086. https://doi.org/10.3390/buildings13123086
Chicago/Turabian StyleSawadogo, Mohamed, Alexandre Godin, Marie Duquesne, Ameur El Amine Hamami, and Rafik Belarbi. 2023. "A Review on Numerical Modeling of the Hygrothermal Behavior of Building Envelopes Incorporating Phase Change Materials" Buildings 13, no. 12: 3086. https://doi.org/10.3390/buildings13123086