A Systematic Review of Artificial Intelligence Applied to Facility Management in the Building Information Modeling Context and Future Research Directions
Abstract
:1. Introduction
The Review’s Novelty
2. Methodology
3. Bibliometric Analysis
3.1. Data and Systems Integration
3.2. Predictive Models
3.3. Automatic As-Built and Classification
3.4. Internet of Things
3.5. Energy Management
3.6. Augmented/Virtual Reality
4. Conclusions
5. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BS EN ISO 41001:2018; Facility Management—Management Systems—Requirements with Guidance for Use. BSI Standards Publication: London, UK, 2018; ISBN 9780539011708.
- Bonanomi, M. Building Information Modeling (BIM) and Facility Management (FM). In Knowledge Management and Information Tools for Building Maintenance and Facility Management; Springer International Publishing: Cham, Switzerland, 2016; pp. 149–177. [Google Scholar]
- Wong, J.K.W.; Ge, J.; He, S.X. Digitisation in Facilities Management: A Literature Review and Future Research Directions. Autom. Constr. 2018, 92, 312–326. [Google Scholar]
- Ilter, D.; Ergen, E. BIM for Building Refurbishment and Maintenance: Current Status and Research Directions. Struct. Surv. 2015, 33, 228–256. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. The Building Information Modelling Trajectory in Facilities Management: A Review. Autom. Constr. 2017, 75, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for Existing Buildings—Literature Review and Future Needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Teicholz, E. Bridging the AEC Technology Gap. IFMA Facil. Manag. J. 2004, 1–8. [Google Scholar]
- Rondeau, E.P.; Brown, R.K.; Lapides, P.D. Facility Management, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jallow, A.K.; Demian, P.; Baldwin, A.N.; Anumba, C. An Empirical Study of the Complexity of Requirements Management in Construction Projects. Eng. Constr. Archit. Manag. 2014, 21, 505–531. [Google Scholar] [CrossRef] [Green Version]
- Gallaher, M.P.; O’Connor, A.C.; Dettbarn, J.L., Jr.; Gilday, L.T. Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. [Google Scholar]
- McArthur, J.J.; Bortoluzzi, B. Lean-Agile FM-BIM: A Demonstrated Approach. Facilities 2018, 36, 676–695. [Google Scholar] [CrossRef]
- Vieira, R.; Carreira, P.; Domingues, P.; Costa, A.A. Supporting Building Automation Systems in BIM/IFC: Reviewing the Existing Information Gap. Eng. Constr. Archit. Manag. 2020, 27, 1357–1375. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Grilo, A. Bibliometric Analysis and Review of Building Information Modelling Literature Published between 2005 and 2015. Autom. Constr. 2017, 80, 118–136. [Google Scholar]
- Costa, A.A.; Lopes, P.M.; Antunes, A.; Cabral, I.; Grilo, A.; Rodrigues, F.M. 3I Buildings: Intelligent, Interactive and Immersive Buildings. Procedia Eng. 2015, 123, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-La Rivera, F.; Mora-Serrano, J.; Valero, I.; Oñate, E. Methodological-Technological Framework for Construction 4.0. Arch. Comput. Methods Eng. 2021, 28, 689–711. [Google Scholar] [CrossRef]
- Omar, A.; Mostafa, M.S.; Yasser, A.; Alaqeeli, M.M. Benefits and Challenges of Integrating IoT, VR & AR in the BIM-Based Facility Management Process: Literature and Case-Based Analysis. J. Eng. Res. 2022, 6, 25–40. [Google Scholar]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A Literature Review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, J.R.; Zhang, J.P.; Hu, Z.Z. A Hybrid Data Mining Approach on BIM-Based Building Operation and Maintenance. Build. Environ. 2017, 126, 483–495. [Google Scholar] [CrossRef]
- Gawin, B.; Marcinkowski, B. Business Intelligence in Facility Management: Determinants and Benchmarking Scenarios for Improving Energy Efficiency. Inf. Syst. Manag. 2017, 34, 347–358. [Google Scholar] [CrossRef]
- Marzouk, M.; Zaher, M. Artificial Intelligence Exploitation in Facility Management Using Deep Learning. Constr. Innov. 2020, 20, 609–624. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Chen, W.; Chen, K.; Wang, Q. Data-Driven Predictive Maintenance Planning Framework for MEP Components Based on BIM and IoT Using Machine Learning Algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Motamedi, A.; Hammad, A.; Asen, Y. Knowledge-Assisted BIM-Based Visual Analytics for Failure Root Cause Detection in Facilities Management. Autom. Constr. 2014, 43, 73–83. [Google Scholar] [CrossRef]
- Wang, C.; Cho, Y.K.; Kim, C. Automatic BIM Component Extraction from Point Clouds of Existing Buildings for Sustainability Applications. Autom. Constr. 2015, 56, 1–13. [Google Scholar] [CrossRef]
- Turner, C.J.; Stergioulas, L.; Oyekan, J.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2021, 17, 746–756. [Google Scholar] [CrossRef]
- Ahmed, V.; Tezel, A.; Aziz, Z.; Sibley, M. The Future of Big Data in Facilities Management: Opportunities and Challenges. Facilities 2017, 35, 725–745. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- ISO 19650-3; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM): Information Management Using Building Information Modelling. Part 3, Operational Phase of the Assets. ISO: Geneva, Switzerland, 2020.
- ISO 23387; Building Information Modelling (BIM)—Data Templates for Construction Objects Used in the Life Cycle of Built Assets—Concepts and Principles Modélisation Des Informations de La Construction (BIM)-Modèles de Données Pour Les Objets de Construction Utilisés Durant Le Cycle de Vie Des Biens Construits-Concepts et Principes Copyright Protected Document. ISO: Geneva, Switzerland, 2020.
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A Unified Approach to Mapping and Clustering of Bibliometric Networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Meske, C.; Osmundsen, K.S.; Junglas, I. Designing and Implementing Digital Twins in the Energy Grid Sector. MIS Q. Exec. 2021, 20, 183–198. [Google Scholar] [CrossRef]
- Lietaert, P.; Meyers, B.; van Noten, J.; Sips, J.; Gadeyne, K. Knowledge Graphs in Digital Twins for AI in Production. In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, Proceedings of the IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, 5–9 September 2021; Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 249–257. [Google Scholar]
- Nota, G.; Peluso, D.; Lazo, A.T. The Contribution of Industry 4.0 Technologies to Facility Management. Int. J. Eng. Bus. Manag. 2021, 13. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. BIM Assisted Building Automation System Information Exchange Using BACnet and IFC. Autom. Constr. 2020, 110, 103049. [Google Scholar] [CrossRef]
- Jang, R.; Collinge, W. Improving BIM Asset and Facilities Management Processes: A Mechanical and Electrical (M&E) Contractor Perspective. J. Build. Eng. 2020, 32, 101540. [Google Scholar] [CrossRef]
- Quinn, C.; Shabestari, A.Z.; Misic, T.; Gilani, S.; Litoiu, M.; McArthur, J.J. Building Automation System—BIM Integration Using a Linked Data Structure. Autom. Constr. 2020, 118, 103257. [Google Scholar] [CrossRef]
- Rogage, K.; Clear, A.; Alwan, Z.; Lawrence, T.; Kelly, G. Assessing Building Performance in Residential Buildings Using BIM and Sensor Data. Int. J. Build. Pathol. Adapt. 2020, 38, 176–191. [Google Scholar] [CrossRef]
- Ashworth, S.; Tucker, M.; Druhmann, C.K. Critical Success Factors for Facility Management Employer’s Information Requirements (EIR) for BIM. Facilities 2019, 37, 103–118. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Chang, N.W. Dynamic Construction Material Layout Planning Optimization Model by Integrating 4D BIM. Eng. Comput. 2019, 35, 703–720. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, J.; Wang, J.; Huang, X.; Li, X.; Guo, M.; Xie, P. Parallel Computing-Based Online Geometry Triangulation for Building Information Modeling Utilizing Big Data. Autom. Constr. 2019, 107, 102942. [Google Scholar] [CrossRef]
- Dawood, H.; Siddle, J.; Dawood, N. Integrating IFC and NLP for Automating Change Request Validations. J. Inf. Technol. Constr. 2019, 24, 540–552. [Google Scholar] [CrossRef]
- Ashtari Talkhestani, B.; Jung, T.; Lindemann, B.; Sahlab, N.; Jazdi, N.; Schloegl, W.; Weyrich, M. An Architecture of an Intelligent Digital Twin in a Cyber-Physical Production System. Automatisierungstechnik 2019, 67, 762–782. [Google Scholar] [CrossRef]
- Lee, Y.C.; Eastman, C.M.; Solihin, W. Erratum: Logic for Ensuring the Data Exchange Integrity of Building Information Models. (Automation in Construction (2018) 85 (249–262) (S0926580517307276) (10.1016/j.Autcon.2017.08.010)). Autom. Constr. 2018, 93, 388–401. [Google Scholar] [CrossRef]
- Farghaly, K.; Abanda, F.H.; Vidalakis, C.; Wood, G. Taxonomy for BIM and Asset Management Semantic Interoperability. J. Manag. Eng. 2018, 34, 103257. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, T.; Amor, R.; East, E.W. Information Model Purposes in Building and Facility Design. J. Comput. Civ. Eng. 2017, 31, 04017054. [Google Scholar] [CrossRef]
- Khan, R.R.A.; Ahmed, V. Building Information Modelling and Vertical Farming: Data Integration to Manage Facilities and Processes. Facilities 2017, 35, 710–724. [Google Scholar] [CrossRef]
- Edirisinghe, R.; London, K.A.; Kalutara, P.; Aranda-Mena, G. Building Information Modelling for Facility Management: Are We There Yet? Eng. Constr. Archit. Manag. 2017, 24, 1119–1154. [Google Scholar] [CrossRef]
- Rodriguez-Trejo, S.; Ahmad, A.M.; Hafeez, M.A.; Dawood, H.; Vukovic, V.; Kassem, M.; Naji, K.K.; Dawood, N. Hierarchy Based Information Requirements for Sustainable Operations of Buildings in Qatar. Sustain. Cities Soc. 2017, 32, 435–448. [Google Scholar] [CrossRef]
- Greenwood, D.; Kassem, M. Supporting Building Owners and Facility Managers in the Validation and Visualisation of Asset Information Models (AIM) through Open Standards and Open Technologies. J. Inf. Technol. Constr. 2016, 21, 434–455. [Google Scholar]
- Skandhakumar, N.; Salim, F.; Reid, J.; Drogemuller, R.; Dawson, E. Graph Theory Based Representation of Building Information Models for Access Control Applications. Autom. Constr. 2016, 68, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.Z.; Zhang, J.P.; Yu, F.Q.; Tian, P.L.; Xiang, X.S. Construction and Facility Management of Large MEP Projects Using a Multi-Scale Building Information Model. Adv. Eng. Softw. 2016, 100, 215–230. [Google Scholar] [CrossRef]
- Lee, W.L.; Tsai, M.H.; Yang, C.H.; Juang, J.R.; Su, J.Y. V3DM+: BIM Interactive Collaboration System for Facility Management. Vis. Eng. 2016, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Kang, T.W.; Choi, H.S. BIM Perspective Definition Metadata for Interworking Facility Management Data. Adv. Eng. Inform. 2015, 29, 958–970. [Google Scholar] [CrossRef]
- Pittet, P.; Cruz, C.; Nicolle, C. An Ontology Change Management Approach for Facility Management. Comput. Ind. 2014, 65, 1301–1315. [Google Scholar] [CrossRef]
- Zhou, W.; Heesom, D.; Georgakis, P.; Tah, J.H.M. User-Centred Design for Collaborative 4D Modelling. Constr. Innov. 2014, 14, 493–517. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Wang, J.; Shou, W.; Wang, X.; Guo, J. Improving Quality and Performance of Facility Management Using Building Information Modelling. In Cooperative Design, Visualization, and Engineering; Springer: Cham, Switzerland, 2014; Volume 8683. [Google Scholar]
- Kang, T.W.; Hong, C.H. A Study on Software Architecture for Effective BIM/GIS-Based Facility Management Data Integration. Autom. Constr. 2015, 54, 25–38. [Google Scholar] [CrossRef]
- Lin, C.L.; Chen, J.K.C.; Ho, H.H. Bim for Smart Hospital Management during Covid-19 Using Mcdm. Sustainability 2021, 13, 6181. [Google Scholar] [CrossRef]
- Shalabi, F.; Turkan, Y. IFC BIM-Based Facility Management Approach to Optimize Data Collection for Corrective Maintenance. J. Perform. Constr. Facil. 2017, 31, 04016081. [Google Scholar] [CrossRef]
- Zhang, J.; Seet, B.C.; Lie, T.T. Building Information Modelling for Smart Built Environments. Buildings 2015, 5, 100–115. [Google Scholar] [CrossRef] [Green Version]
- Yitmen, I.; Alizadehsalehi, S.; Akıner, İ.; Akıner, M.E. An Adapted Model of Cognitive Digital Twins for Building Lifecycle Management. Appl. Sci. 2021, 11, 4276. [Google Scholar] [CrossRef]
- González, E.; Piñeiro, J.D.; Toledo, J.; Arnay, R.; Acosta, L. An Approach Based on the IfcOWL Ontology to Support Indoor Navigation. Egypt. Inform. J. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Marmo, R.; Polverino, F.; Nicolella, M.; Tibaut, A. Building Performance and Maintenance Information Model Based on IFC Schema. Autom. Constr. 2020, 118, 103275. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J. Conceptualising the FinDD API Plug-in: A Study of BIM-FM Integration. Autom. Constr. 2017, 80, 11–21. [Google Scholar] [CrossRef]
- Motamedi, A.; Soltani, M.M.; Setayeshgar, S.; Hammad, A. Extending IFC to Incorporate Information of RFID Tags Attached to Building Elements. Adv. Eng. Inform. 2016, 30, 39–53. [Google Scholar] [CrossRef]
- Kensek, K. BIM Guidelines Inform Facilities Management Databases: A Case Study over Time. Buildings 2015, 5, 899–916. [Google Scholar] [CrossRef] [Green Version]
- Becerik-Gerber, B.; Jazizadeh, F.; Li, N.; Calis, G. Application Areas and Data Requirements for BIM-Enabled Facilities Management. J. Constr. Eng. Manag. 2012, 138, 431–442. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Kim, W.; Kim, C.; Kim, J.; Yu, J. Integration of IFC Objects and Facility Management Work Information Using Semantic Web. Autom. Constr. 2018, 87, 173–187. [Google Scholar] [CrossRef]
- Niknam, M.; Karshenas, S. A Shared Ontology Approach to Semantic Representation of BIM Data. Autom. Constr. 2017, 80, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Lok, K.L.; So, A.; Opoku, A.; Chen, C. A Sustainable Facility Management Outsourcing Relationships System: Artificial Neural Networks. Sustainability 2021, 13, 4740. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.H.; Zhang, J.L.; Lu, F.M.; Meng, R.G.; Wang, Z. Research on Fault Recognition Method Combining 3D Res-UNet and Knowledge Distillation. Appl. Geophys. 2021, 18, 199–212. [Google Scholar] [CrossRef]
- Magalhaes, R.P.; Lettich, F.; Macedo, J.A.; Nardini, F.M.; Perego, R.; Renso, C.; Trani, R. Speed Prediction in Large and Dynamic Traffic Sensor Networks. Inf. Syst. 2021, 98, 101444. [Google Scholar] [CrossRef]
- Ji, S.; Wang, Y.; Wang, Y. Geographically Weighted Poisson Regression under Linear Model of Coregionalization Assistance: Application to a Bicycle Crash Study. Accid. Anal. Prev. 2021, 159, 106230. [Google Scholar] [CrossRef]
- Betz, T.S.; Grussing, M.N.; Bartels, L. Optimizing Markov Probabilities for Generation of a Weibull Model to Characterize Building Component Failure Processes. J. Perform. Constr. Facil. 2021, 35, 04021077. [Google Scholar] [CrossRef]
- Chang, X.; Huang, Y.; Li, M.; Bo, X.; Kumar, S. Efficient Detection of Environmental Violators: A Big Data Approach. Prod. Oper. Manag. 2021, 30, 1246–1270. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Qayyum, S.; Khan, S.I.; Mojtahedi, M. Uavs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection. Sustainability 2021, 13, 7547. [Google Scholar] [CrossRef]
- Luo, X.J.; Oyedele, L.O. Forecasting Building Energy Consumption: Adaptive Long-Short Term Memory Neural Networks Driven by Genetic Algorithm. Adv. Eng. Inform. 2021, 50, 101357. [Google Scholar] [CrossRef]
- Alishahi, N.; Nik-Bakht, M.; Ouf, M.M. A Framework to Identify Key Occupancy Indicators for Optimizing Building Operation Using WiFi Connection Count Data. Build. Environ. 2021, 200, 107936. [Google Scholar] [CrossRef]
- Chuluunsaikhan, T.; Heak, M.; Nasridinov, A.; Choi, S. Comparative Analysis of Predictive Models for Fine Particulate Matter in Daejeon, South Korea. Atmosphere 2021, 12, 1295. [Google Scholar] [CrossRef]
- Yang, H.; Liu, C.; Zhuang, Y.; Sun, W.; Murthy, K.; Pu, Z.; Wang, Y. Truck Parking Pattern Aggregation and Availability Prediction by Deep Learning. IEEE Trans. Intell. Transp. Syst. 2021, 23, 12778–12789. [Google Scholar] [CrossRef]
- Sresakoolchai, J.; Kaewunruen, S. Integration of Building Information Modeling and Machine Learning for Railway Defect Localization. IEEE Access 2021, 9, 166039–166047. [Google Scholar] [CrossRef]
- Wu, J.; Lepech, M.D. Incorporating Multi-Physics Deterioration Analysis in Building Information Modeling for Life-Cycle Management of Durability Performance. Autom. Constr. 2020, 110, 103004. [Google Scholar] [CrossRef]
- Yousefli, Z.; Nasiri, F.; Moselhi, O. Maintenance Workflow Management in Hospitals: An Automated Multi-Agent Facility Management System. J. Build. Eng. 2020, 32, 101431. [Google Scholar] [CrossRef]
- Mo, Y.; Zhao, D.; Du, J.; Syal, M.; Aziz, A.; Li, H. Automated Staff Assignment for Building Maintenance Using Natural Language Processing. Autom. Constr. 2020, 113, 103150. [Google Scholar] [CrossRef]
- Gao, X.; Pishdad-Bozorgi, P. A Framework of Developing Machine Learning Models for Facility Life-Cycle Cost Analysis. Build. Res. Inf. 2020, 48, 501–525. [Google Scholar] [CrossRef]
- Alawad, H.; An, M.; Kaewunruen, S. Utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Overcrowding Level Risk Assessment in Railway Stations. Appl. Sci. 2020, 10, 5156. [Google Scholar] [CrossRef]
- Moretti, N.; Re Cecconi, F. A Cross-Domain Decision Support System to Optimize Building Maintenance. Buildings 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.Q.; Li, S.W.; Hu, Z.Z. Automatically Generating a MEP Logic Chain from Building Information Models with Identification Rules. Appl. Sci. 2019, 9, 2204. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Tang, L. BIM-Based Integrated Management Workflow Design for Schedule and Cost Planning of Building Fabric Maintenance. Autom. Constr. 2019, 107, 102944. [Google Scholar] [CrossRef]
- Wang, T.-K.; Piao, Y. Development of BIM-AR-Based Facility Risk Assessment and Maintenance System. J. Perform. Constr. Facil. 2019, 33, 04019068. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Allocation of Emergency Response Centres in Response to Pluvial Flooding-Prone Demand Points Using Integrated Multiple Layer Perceptron and Maximum Coverage Location Problem Models. Int. J. Disaster Risk Reduct. 2019, 38, 101205. [Google Scholar] [CrossRef]
- Bortolini, R.; Forcada, N. Building Inspection System for Evaluating the Technical Performance of Existing Buildings. J. Perform. Constr. Facil. 2018, 32, 04018073. [Google Scholar] [CrossRef]
- Xiao, J.; Lou, Y.; Frisby, J. How Likely Am I to Find Parking?—A Practical Model-Based Framework for Predicting Parking Availability. Transp. Res. Part B Methodol. 2018, 112, 19–39. [Google Scholar] [CrossRef]
- Mawed, M.; Aal-Hajj, A. Using Big Data to Improve the Performance Management: A Case Study from the UAE FM Industry. Facilities 2017, 35, 746–765. [Google Scholar] [CrossRef]
- Yang, X.; Ergan, S. BIM for FM: Information Requirements to Support HVAC-Related Corrective Maintenance. J. Archit. Eng. 2017, 23, 04017023. [Google Scholar] [CrossRef]
- Yang, X.; Ergan, S.; Asce, M. Design and Evaluation of an Integrated Visualization Platform to Support Corrective Maintenance of HVAC Problem-Related Work Orders. J. Comput. Civ. Eng. 2015, 30, 04015041. [Google Scholar] [CrossRef]
- Ivanko, D.; Sørensen, Å.L.; Nord, N. Selecting the Model and Influencing Variables for DHW Heat Use Prediction in Hotels in Norway. Energy Build. 2020, 228, 110441. [Google Scholar] [CrossRef]
- Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood Susceptibility Modelling Using Advanced Ensemble Machine Learning Models. Geosci. Front. 2021, 12, 101075. [Google Scholar] [CrossRef]
- Anand, P.; Deb, C.; Yan, K.; Yang, J.; Cheong, D.; Sekhar, C. Occupancy-Based Energy Consumption Modelling Using Machine Learning Algorithms for Institutional Buildings. Energy Build. 2021, 252, 111478. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, T.; Song, X. An Energy-Aware, Agent-Based Maintenance-Scheduling Framework to Improve Occupant Satisfaction. Autom. Constr. 2015, 60, 49–57. [Google Scholar] [CrossRef]
- Lundkvist, R.; Meiling, J.H.; Sandberg, M. A Proactive Plan-Do-Check-Act Approach to Defect Management Based on a Swedish Construction Project. Constr. Manag. Econ. 2014, 32, 1051–1065. [Google Scholar] [CrossRef]
- Ma, J.W.; Czerniawski, T.; Leite, F. An Application of Metadata-Based Image Retrieval System for Facility Management. Adv. Eng. Inform. 2021, 50, 101417. [Google Scholar] [CrossRef]
- Kim, T.W.; Oh, J.; Min, C.; Hwang, S.Y.; Kim, M.S.; Lee, J.H. An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems. Sensors 2021, 21, 457. [Google Scholar] [CrossRef]
- Agapaki, E.; Brilakis, I. CLOI: An Automated Benchmark Framework for Generating Geometric Digital Twins of Industrial Facilities. J. Constr. Eng. Manag. 2021, 147, 0002171. [Google Scholar] [CrossRef]
- Bortolini, R.; Forcada, N. Analysis of Building Maintenance Requests Using a Text Mining Approach: Building Services Evaluation. Build. Res. Inf. 2020, 48, 207–217. [Google Scholar] [CrossRef]
- Bouabdallaoui, Y.; Lafhaj, Z.; Yim, P.; Ducoulombier, L.; Bennadji, B. Natural Language Processing Model for Managing Maintenance Requests in Buildings. Buildings 2020, 10, 160. [Google Scholar] [CrossRef]
- Bortoluzzi, B.; Efremov, I.; Medina, C.; Sobieraj, D.; McArthur, J.J. Automating the Creation of Building Information Models for Existing Buildings. Autom. Constr. 2019, 105, 102838. [Google Scholar] [CrossRef]
- Stojanovic, V.; Trapp, M.; Richter, R.; Döllner, J. Service-Oriented Semantic Enrichment of Indoor Point Clouds Using Octree-Based Multiview Classification. Graph. Models 2019, 105, 101039. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Tian, P.L.; Li, S.W.; Zhang, J.P. BIM-Based Integrated Delivery Technologies for Intelligent MEP Management in the Operation and Maintenance Phase. Adv. Eng. Softw. 2018, 115, 1–16. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, C.P.; Hu, H.T.; Su, Y.C. Developing Final As-Built BIM Model Management System for Owners during Project Closeout: A Case Study. Adv. Eng. Inform. 2018, 36, 178–193. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Cheng, J.C.P.; Wang, Q.; Gan, V.J.L. BIM-Based Framework for Automatic Scheduling of Facility Maintenance Work Orders. Autom. Constr. 2018, 91, 15–30. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Y.; Cho, Y.K. Performance Evaluation of 3D Descriptors for Object Recognition in Construction Applications. Autom. Constr. 2018, 86, 44–52. [Google Scholar] [CrossRef]
- Lau, L.; Quan, Y.; Wan, J.; Zhou, N.; Wen, C.; Qian, N.; Jing, F. An Autonomous Ultra-Wide Band-Based Attitude and Position Determination Technique for Indoor Mobile Laser Scanning. ISPRS Int. J. Geo-Inf. 2018, 7, 155. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Lee, S. Image-Based Technologies for Constructing As-Is Building Information Models for Existing Buildings. J. Comput. Civ. Eng. 2017, 31, 04017005. [Google Scholar] [CrossRef]
- Yang, X.; Ergan, S. Leveraging BIM to Provide Automated Support for Efficient Troubleshooting of HVAC-Related Problems. J. Comput. Civ. Eng. 2016, 30, 04015023. [Google Scholar] [CrossRef]
- Tang, P.; Chen, G.; Shen, Z.; Ganapathy, R. A Spatial-Context-Based Approach for Automated Spatial Change Analysis of Piece-Wise Linear Building Elements. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 65–80. [Google Scholar] [CrossRef]
- Golabchi, A.; Akula, M.; Kamat, V. Automated Building Information Modeling for Fault Detection and Diagnostics in Commercial HVAC Systems. Facilities 2016, 34, 233–246. [Google Scholar] [CrossRef]
- Valero, E.; Adán, A.; Bosché, F. Semantic 3D Reconstruction of Furnished Interiors Using Laser Scanning and RFID Technology. J. Comput. Civ. Eng. 2016, 30, 04015053. [Google Scholar] [CrossRef]
- Yuan, L.; Guo, J.; Wang, Q. Automatic Classification of Common Building Materials from 3D Terrestrial Laser Scan Data. Autom. Constr. 2020, 110, 103017. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models. J. Comput. Civ. Eng. 2015, 29, 04014025. [Google Scholar] [CrossRef]
- Werbrouck, J.; Pauwels, P.; Bonduel, M.; Beetz, J.; Bekers, W. Scan-to-Graph: Semantic Enrichment of Existing Building Geometry. Autom. Constr. 2020, 119, 103286. [Google Scholar] [CrossRef]
- Klein, L.; Li, N.; Becerik-Gerber, B. Imaged-Based Verification of as-Built Documentation of Operational Buildings. Autom. Constr. 2012, 21, 161–171. [Google Scholar] [CrossRef]
- Bloch, T.; Sacks, R. Comparing Machine Learning and Rule-Based Inferencing for Semantic Enrichment of BIM Models. Autom. Constr. 2018, 91, 256–272. [Google Scholar] [CrossRef]
- Chow, J.K.; Liu, K.F.; Tan, P.S.; Su, Z.; Wu, J.; Li, Z.; Wang, Y.H. Automated Defect Inspection of Concrete Structures. Autom. Constr. 2021, 132, 103959. [Google Scholar] [CrossRef]
- Edirisinghe, R.; Woo, J. BIM-Based Performance Monitoring for Smart Building Management. Facilities 2021, 39, 19–35. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Moselhi, O.; Bagchi, A. Integrating BIM into Sensor-Based Facilities Management Operations. J. Facil. Manag. 2022, 20, 385–400. [Google Scholar] [CrossRef]
- Parn, E.A.; Edwards, D.; Riaz, Z.; Mehmood, F.; Lai, J. Engineering-out Hazards: Digitising the Management Working Safety in Confined Spaces. Facilities 2019, 37, 196–215. [Google Scholar] [CrossRef]
- Wei, Y.; Akinci, B. A Vision and Learning-Based Indoor Localization and Semantic Mapping Framework for Facility Operations and Management. Autom. Constr. 2019, 107, 102915. [Google Scholar] [CrossRef]
- Pešić, S.; Tošić, M.; Iković, O.; Radovanović, M.; Ivanović, M.; Bošković, D. BLEMAT: Data Analytics and Machine Learning for Smart Building Occupancy Detection and Prediction. Int. J. Artif. Intell. Tools 2019, 28, 1960005. [Google Scholar] [CrossRef]
- Chang, K.M.; Dzeng, R.J.; Wu, Y.J. An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management. Appl. Sci. 2018, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Dibley, M.; Li, H.; Rezgui, Y.; Miles, J. Software Agent Reasoning Supporting Non-Intrusive Building Space Usage Monitoring. Comput. Ind. 2013, 64, 678–693. [Google Scholar] [CrossRef]
- Seghezzi, E.; Locatelli, M.; Pellegrini, L.; Pattini, G.; di Giuda, G.M.; Tagliabue, L.C.; Boella, G. Towards an Occupancy-Oriented Digital Twin for Facility Management: Test Campaign and Sensors Assessment. Appl. Sci. 2021, 11, 3108. [Google Scholar] [CrossRef]
- Motamedi, A.; Soltani, M.M.; Hammad, A. Localization of RFID-Equipped Assets during the Operation Phase of Facilities. Adv. Eng. Inform. 2013, 27, 566–579. [Google Scholar] [CrossRef]
- Booyse, W.; Wilke, D.N.; Heyns, S. Deep Digital Twins for Detection, Diagnostics and Prognostics. Mech. Syst. Signal Process. 2020, 140, 106612. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital Twin-Enabled Anomaly Detection for Built Asset Monitoring in Operation and Maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, Y.; Oh, Y.S.; Lee, J.C.; Ahn, N.; Lee, J.; Yoon, S.H. An Integrated Approach to Intelligent Urban Facilities Management for Real-Time Emergency Response. Autom. Constr. 2013, 30, 256–264. [Google Scholar] [CrossRef]
- Marzouk, M.; Abdelaty, A. Monitoring Thermal Comfort in Subways Using Building Information Modeling. Energy Build. 2014, 84, 252–257. [Google Scholar] [CrossRef]
- Zhan, J.; Ge, X.J.; Huang, S.; Zhao, L.; Wong, J.K.W.; He, S.X.J. Improvement of the Inspection-Repair Process with Building Information Modelling and Image Classification. Facilities 2019, 37, 395–414. [Google Scholar] [CrossRef] [Green Version]
- Costin, A.M.; Teizer, J. Fusing Passive RFID and BIM for Increased Accuracy in Indoor Localization. Vis. Eng. 2015, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.G.B.; Pegalajar, M.C.; Molina-Solana, M.; Guo, Y.K. A Case Study on Understanding Energy Consumption through Prediction and Visualization (VIMOEN). J. Build. Eng. 2020, 30, 101315. [Google Scholar] [CrossRef]
- Meshalkin, V.P. Current Theoretical and Applied Research on Energy- and Resource-Saving Highly Reliable Chemical Process Systems Engineering. Theor. Found. Chem. Eng. 2021, 55, 563–587. [Google Scholar] [CrossRef]
- Xu, Y.; Ahokangas, P.; Turunen, M.; Mäntymäki, M.; Heikkilä, J. Platform-Based Business Models: Insights from an Emerging Ai-Enabled Smart Building Ecosystem. Electronics 2019, 8, 1150. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Shen, Y.; Song, Z.; Zhou, D.; Zhang, Z.; Kusiak, A. Data-Driven Building Load Profiling and Energy Management. Sustain. Cities Soc. 2019, 49, 101587. [Google Scholar] [CrossRef]
- Ghahramani, A.; Pantelic, J.; Lindberg, C.; Mehl, M.; Srinivasan, K.; Gilligan, B.; Arens, E. Learning Occupants’ Workplace Interactions from Wearable and Stationary Ambient Sensing Systems. Appl. Energy 2018, 230, 42–51. [Google Scholar] [CrossRef]
- Kontes, G.D.; Giannakis, G.I.; Sánchez, V.; de Agustin-Camacho, P.; Romero-Amorrortu, A.; Panagiotidou, N.; Rovas, D.V.; Steiger, S.; Mutschler, C.; Gruen, G. Simulation-Based Evaluation and Optimization of Control Strategies in Buildings. Energies 2018, 11, 3376. [Google Scholar] [CrossRef] [Green Version]
- Mokhtar, M.; Liu, X.; Howe, J. Multi-Agent Gaussian Adaptive Resonance Theory Map for Building Energy Control and Thermal Comfort Management of UCLan’s WestLakes Samuel Lindow Building. Energy Build. 2014, 80, 504–516. [Google Scholar] [CrossRef]
- Kang, T.W.; Choi, H.S. BIM-Based Data Mining Method Considering Data Integration and Function Extension. KSCE J. Civ. Eng. 2018, 22, 1523–1534. [Google Scholar] [CrossRef]
- Andriamamonjy, A.; Klein, R.; Saelens, D. Automated Grey Box Model Implementation Using BIM and Modelica. Energy Build. 2019, 188–189, 209–225. [Google Scholar] [CrossRef]
- O’Dwyer, E.; Pan, I.; Charlesworth, R.; Butler, S.; Shah, N. Integration of an Energy Management Tool and Digital Twin for Coordination and Control of Multi-Vector Smart Energy Systems. Sustain. Cities Soc. 2020, 62, 102412. [Google Scholar] [CrossRef]
- Abdelalim, A.; O’Brien, W.; Shi, Z. Data Visualization and Analysis of Energy Flow on a Multi-Zone Building Scale. Autom. Constr. 2017, 84, 258–273. [Google Scholar] [CrossRef]
- Francisco, A.; Truong, H.; Khosrowpour, A.; Taylor, J.E.; Mohammadi, N. Occupant Perceptions of Building Information Model-Based Energy Visualizations in Eco-Feedback Systems. Appl. Energy 2018, 221, 220–228. [Google Scholar] [CrossRef]
- McGlinn, K.; Yuce, B.; Wicaksono, H.; Howell, S.; Rezgui, Y. Usability Evaluation of a Web-Based Tool for Supporting Holistic Building Energy Management. Autom. Constr. 2017, 84, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.; Zhang, X.; Lu, Y.; Wang, C.; Jin, X.; Zhou, X.; Shi, X. A Performance Data Integrated BIM Framework for Building Life-Cycle Energy Efficiency and Environmental Optimization Design. Autom. Constr. 2021, 127, 103712. [Google Scholar] [CrossRef]
- Charissis, V.; Falah, J.; Lagoo, R.; Alfalah, S.F.M.; Khan, S.; Wang, S.; Altarteer, S.; Larbi, K.B.; Drikakis, D. Employing Emerging Technologies to Develop and Evaluate In-Vehicle Intelligent Systems for Driver Support: Infotainment AR Hud Case Study. Appl. Sci. 2021, 11, 1397. [Google Scholar] [CrossRef]
- Ventura, S.M.; Castronovo, F.; Ciribini, A.L.C. A Design Review Session Protocol for the Implementation of Immersive Virtual Reality in Usability-Focused Analysis. J. Inf. Technol. Constr. 2020, 25, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Lu, Q.; Rodenas-Herraiz, D.; Parlikad, A.K.; Schooling, J.M. Visualised Inspection System for Monitoring Environmental Anomalies during Daily Operation and Maintenance. Eng. Constr. Archit. Manag. 2020, 27, 1835–1852. [Google Scholar] [CrossRef]
- Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero Latency: Real-Time Synchronization of BIM Data in Virtual Reality for Collaborative Decision-Making. Autom. Constr. 2018, 85, 51–64. [Google Scholar] [CrossRef]
- el Ammari, K.; Hammad, A. Remote Interactive Collaboration in Facilities Management Using BIM-Based Mixed Reality. Autom. Constr. 2019, 107, 102940. [Google Scholar] [CrossRef]
- Edwards, G.; Li, H.; Wang, B. BIM Based Collaborative and Interactive Design Process Using Computer Game Engine for General End-Users. Vis. Eng. 2015, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Seipel, S. Precision Study on Augmented Reality-Based Visual Guidance for Facility Management Tasks. Autom. Constr. 2018, 90, 79–90. [Google Scholar] [CrossRef]
- Carreira, P.; Castelo, T.; Gomes, C.C.; Ferreira, A.; Ribeiro, C.; Costa, A.A. Virtual Reality as Integration Environments for Facilities Management: Application and Users Perception. Eng. Constr. Archit. Manag. 2018, 25, 90–112. [Google Scholar] [CrossRef]
- Baek, F.; Ha, I.; Kim, H. Augmented Reality System for Facility Management Using Image-Based Indoor Localization. Autom. Constr. 2019, 99, 18–26. [Google Scholar] [CrossRef]
- Ozturk, G.B. Interoperability in Building Information Modeling for AECO/FM Industry. Autom. Constr. 2020, 113, 103122. [Google Scholar] [CrossRef]
- Kula, B.; Ergen, E. Implementation of a BIM-FM Platform at an International Airport Project: Case Study. J. Constr. Eng. Manag. 2021, 147, 05021002. [Google Scholar] [CrossRef]
- Pishdad-Bozorgi, P.; Gao, X.; Eastman, C.; Self, A.P. Planning and Developing Facility Management-Enabled Building Information Model (FM-Enabled BIM). Autom. Constr. 2018, 87, 22–38. [Google Scholar] [CrossRef]
- Alnaggar, A.; Pitt, M. Towards a Conceptual Framework to Manage BIM/COBie Asset Data Using a Standard Project Management Methodology. J. Facil. Manag. 2019, 17, 175–187. [Google Scholar] [CrossRef]
- Vanlande, R.; Nicolle, C.; Cruz, C. IFC and Building Lifecycle Management. Autom. Constr. 2008, 18, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Abdirad, H.; Dossick, C.S. Rebaselining Asset Data for Existing Facilities and Infrastructure. J. Comput. Civ. Eng. 2020, 34, 05019004. [Google Scholar] [CrossRef]
- Thabet, W.; Lucas, J. Asset Data Handover for a Large Educational Institution: Case-Study Approach. J. Constr. Eng. Manag. 2017, 143, 05017017. [Google Scholar] [CrossRef]
- Pavón, R.M.; Alberti, M.G.; Álvarez, A.A.A.; del Rosario Chiyón Carrasco, I. Use of Bim-Fm to Transform Large Conventional Public Buildings into Efficient and Smart Sustainable Buildings. Energies 2021, 14, 3127. [Google Scholar] [CrossRef]
- Faria, M.; Roxin, A.; Nicolle, C. COBieOWL, an OWL Ontology Based on COBie; Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9415, ISBN 978-3-319-26147-8. [Google Scholar]
- Barrelas, J.; Dias, I.S.; Silva, A.; de Brito, J.; Flores-Colen, I.; Tadeu, A. Impact of Environmental Exposure on the Service Life of Façade Claddings—A Statistical Analysis. Buildings 2021, 11, 615. [Google Scholar] [CrossRef]
- Thomas, D.S. The Costs and Benefits of Advanced Maintenance in Manufacturing; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Madureira, S.; Flores-Colen, I.; de Brito, J.; Pereira, C. Maintenance Planning of Facades in Current Buildings. Constr. Build. Mater. 2017, 147, 790–802. [Google Scholar] [CrossRef]
- Sousa, V.; Matos, J.P.; Matias, N. Evaluation of Artificial Intelligence Tool Performance and Uncertainty for Predicting Sewer Structural Condition. Autom. Constr. 2014, 44, 84–91. [Google Scholar] [CrossRef]
- Sanhudo, L.; Ramos, N.M.M.; Martins, J.P.; Almeida, R.M.S.F.; Barreira, E.; Simões, M.L.; Cardoso, V. A Framework for In-Situ Geometric Data Acquisition Using Laser Scanning for BIM Modelling. J. Build. Eng. 2020, 28. [Google Scholar] [CrossRef]
- Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of Things. Int. J. Commun. Syst. 2012, 25, 1101–1102. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A Review of Building Information Modeling (BIM) and the Internet of Things (IoT) Devices Integration: Present Status and Future Trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Motamedi, A.; Saini, R.; Hammad, A.; Zhu, B. Role-Based Access to Facilities Lifecycle Information on RFID Tags. Adv. Eng. Inform. 2011, 25, 559–568. [Google Scholar] [CrossRef]
- EUROSTAT. Energy, Transport and Environment Statistics: 2020 Edition; European Union: Brussels, Belgium, 2020. [Google Scholar]
- Puschmann, P.; Horlitz, T.; Wittstock, V.; Schütz, A. Risk Analysis (Assessment) Using Virtual Reality Technology-Effects of Subjective Experience: An Experimental Study. Procedia CIRP 2016, 50, 490–495. [Google Scholar] [CrossRef]
International Journals | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Automation in Construction | 1 | 1 | 1 | 3 | 1 | 4 | 7 | 6 | 9 | 2 | 35 |
Facilities | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 3 | 0 | 1 | 8 |
Advanced Engineering Informatics | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 2 | 6 |
Applied Sciences | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 6 |
Computing in Civil Engineering | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 0 | 0 | 0 | 6 |
Energy and Buildings | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 5 |
Performance of Constructed Facilities | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 4 |
Buildings | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 4 |
Engineering, Construction and Architectural Management | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 4 |
Sustainability | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 |
Building Engineering | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 |
Sustainable Cities and Society | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 3 |
Information Technology in Construction | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 3 |
Visualization in Engineering | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
Construction Innovation | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
Building and Environment | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 |
Applied Energy | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
Advances in Engineering Software | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 |
Construction Engineering and Management | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
Computers in Industry | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Building Research and Information | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
Energies | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Egyptian Informatics Journal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Atmosphere | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
ISPRS International Journal of Geo-Information | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Geoscience Frontiers | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Engineering with Computers | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Graphical Models | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Sensors | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
IEEE Access | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Electronics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Facilities Management | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Architectural Engineering | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Management in Engineering | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Construction Management and Economics | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
KSCE Journal of Civil Engineering | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
At-Automatisierungstechnik | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Mechanical Systems and Signal Processing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Transportation Research Part B: Methodological | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Applied Geophysics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Accident Analysis and Prevention | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Lecture Notes in Computer Science | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Information Systems | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
MIS Quarterly Executive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Information Systems Management | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Production and Operations Management | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
International Journal of Building Pathology and Adaptation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Computer-Aided Civil and Infrastructure Engineering | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Disaster Risk Reduction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Theoretical Foundations of Chemical Engineering | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Engineering Business Management | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Artificial Intelligence Tools | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
IEEE Transactions on Intelligent Transportation Systems | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
IFIP Advances in Information and Communication Technology | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Total | 2 | 3 | 8 | 9 | 10 | 14 | 20 | 22 | 23 | 29 | 140 |
International Journals | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Automation in Construction | 50% | 33% | 13% | 33% | 10% | 29% | 35% | 27% | 39% | 7% | 25% |
Facilities | 0% | 0% | 0% | 0% | 10% | 14% | 5% | 14% | 0% | 3% | 6% |
Advanced Engineering Informatics | 0% | 33% | 0% | 11% | 10% | 0% | 5% | 0% | 0% | 7% | 4% |
Applied Sciences | 0% | 0% | 0% | 0% | 0% | 0% | 5% | 5% | 4% | 10% | 4% |
Computing in Civil Engineering | 0% | 0% | 0% | 11% | 30% | 14% | 0% | 0% | 0% | 0% | 4% |
Energy and Buildings | 0% | 0% | 25% | 0% | 0% | 0% | 0% | 5% | 4% | 3% | 4% |
Performance of Constructed Facilities | 0% | 0% | 0% | 0% | 0% | 7% | 5% | 5% | 0% | 3% | 3% |
Buildings | 0% | 0% | 0% | 22% | 0% | 0% | 0% | 5% | 4% | 0% | 3% |
Engineering, Construction and Architectural Management | 0% | 0% | 13% | 0% | 0% | 7% | 5% | 0% | 4% | 0% | 3% |
Total | 50% | 67% | 50% | 78% | 60% | 71% | 60% | 59% | 57% | 34% | 56% |
Topic | Findings of Use AI Applied to FM in the BIM Context | References |
---|---|---|
Data and systems integration | Transformation of data into knowledge via ontological analyses for a decision-supporting and automatic model in facility management | [9,11,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] |
Predictive Models | An alternative used in statistical problems. The prediction result shows very high accuracy and proves the AI model’s real-time capabilities to learn, forecast, and capture risk level values. | [21,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] |
Automatic as-built/Classification | Innovative solutions and classification algorithms are being increasingly investigated to improve the capture, complete the data and filter the unrelated information, and communication of essential information for O&M will also be an emerging topic. | [18,20,22,23,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122] |
Internet of Things | Assisting FM actions and processes | [123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138] |
Energy Management | Development of suitable tools that can connect IoT and ML techniques to achieve economic, environmental, and resilience objectives | [19,139,140,141,142,143,144,145,146,147,148,149,150,151,152] |
Augmented/Virtual Reality | A sophisticated and effective way of rendering spatial information, improving visualization and interaction for FM tasks. | [153,154,155,156,157,158,159,160,161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedral Sampaio, R.; Aguiar Costa, A.; Flores-Colen, I. A Systematic Review of Artificial Intelligence Applied to Facility Management in the Building Information Modeling Context and Future Research Directions. Buildings 2022, 12, 1939. https://doi.org/10.3390/buildings12111939
Pedral Sampaio R, Aguiar Costa A, Flores-Colen I. A Systematic Review of Artificial Intelligence Applied to Facility Management in the Building Information Modeling Context and Future Research Directions. Buildings. 2022; 12(11):1939. https://doi.org/10.3390/buildings12111939
Chicago/Turabian StylePedral Sampaio, Rodrigo, António Aguiar Costa, and Inês Flores-Colen. 2022. "A Systematic Review of Artificial Intelligence Applied to Facility Management in the Building Information Modeling Context and Future Research Directions" Buildings 12, no. 11: 1939. https://doi.org/10.3390/buildings12111939