Assessing the Moisture Load in a Vinyl-Clad Wall Assembly through Watertightness Tests
Abstract
:1. Introduction
2. Methods
2.1. Configuration of Wall Specimen
2.2. Watertightness Test Protocol
2.3. Experimental Facilities
3. Experimental Results and Discussion
3.1. Water Entry Results and Water Entry Equations
3.1.1. Static Results
3.1.2. Dynamic Pressure Results
3.1.3. Water Entry Function
3.2. Air-Leakage Rate and Water Entry Rate
3.3. Pressure Equalization of the Wall Assembly
3.4. Observed Water Penetration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacasse, M.A.; Vanier, D.J. (Eds.) Durability of Building Materials and Components 8: Service Life and Asset Management, Service Life and Durability of Materials and Components; NRC Research Press: Ottawa, ON, Canada, 1999; Volume 1. [Google Scholar]
- Lacasse, M.A.; Vanier, D.J. (Eds.) Durability of Building Materials and Components 8: Service Life and Asset Management, Durability of Building Assemblies and Methods of Service Life Prediction; NRC Research Press: Ottawa, ON, Canada, 1999; Volume 2. [Google Scholar]
- Kumaran, M.K.; Mukhopadhyaya, P.; Cornick, S.M.; Lacasse, M.A.; Rousseau, M.Z.; Maref, W.; Nofal, M.; Quirt, J.D.; Dalgliesh, W.A. An Integrated Methodology to Develop Moisture Management Strategies for Exterior Wall Systems. In Proceedings of the 9th Canadian Conference on Building Science and Technology, Vancouver, BC, USA, 27–28 February 2003. [Google Scholar]
- TenWolde, A. ASHRAE Standard 160P-Criteria for Moisture Control Design Analysis in Buildings; ASHRAE Transactions: Atlanta, GA, USA, 2008; Volume 114, pp. 167–169. [Google Scholar]
- Van Balen, K. Expert System for Evaluation of Deterioration of Ancient Brick Masonry Structures. Sci. Total Environ. 1996. [Google Scholar] [CrossRef]
- Charola, A.E.; Lazzarini, L. Deterioration of Brick Masonry Caused by Acid Rain. ACS Symp. Ser. 1986. [Google Scholar] [CrossRef]
- Franke, L.; Schumann, I.; van Hees, R.; van der Klugt, L.; Naldini, S.; Binda, L.; van Balen, K.; Baronio, G.; Mateus, J. Damage Atlas: Classification and Analyses of Damage Patterns Found in Brick Masonry; Fraunhofer IRB Verlag: Stuttgart, Germany, 1998. [Google Scholar]
- Abuku, M.; Janssen, H.; Roels, S. Impact of Wind-Driven Rain on Historic Brick Wall Buildings in a Moderately Cold and Humid Climate: Numerical Analyses of Mould Growth Risk, Indoor Climate and Energy Consumption. Energy Build. 2009, 41, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Chouinard, K.L.; Lawton, M.D. Rotting Wood Framed Apartments-Not Just a Vancouver Problem. In Proceedings of the 8th Canadian Conference on Building Science and Technology, Toronto, ON, Canada, 5–8 March 2001; pp. 304–318. [Google Scholar]
- AS 2047. Windows in Buildings—Selection and Installation; Standards Australia International: Sydney, Australia, 1999.
- CSA 440-08. North American Fenestration Standard/Specification for Windows, Doors, and Skylights; Canadian Standards Association: Mississauga, ON, Canada, 2008.
- BS 6375. Performance of Windows and Doors; British Standards Institution: London, UK, 2009.
- NBN B 25-002-1. External Window Work; BIN: Brussels, Belgium, 2009.
- Sahal, N.; Lacasse, M.A. Water Entry Function of a Hardboard Siding-Clad Wood Stud Wall. Build. Environ. 2005. [Google Scholar] [CrossRef]
- Lacasse, M.A.; O’Connor, T.; Nunes, S.C.; Beaulieu, P. Report from Task 6 of MEWS Project: Experimental Assessment of Water Penetration and Entry into Wood-Frame Wall Specimens—Final Report; Research Report no. RR-133; National Research Council of Canada. Institute for Research in Construction: Ottawa, ON, Canada, 2003. [Google Scholar] [CrossRef]
- Sahal, N.; Lacasse, M.A. Experimental Assessment of Water Penetration and Entry into Siding-Clad Wall Specimen; NRC Publications Archive: Ottawa, Canada, 2004. [Google Scholar] [CrossRef]
- Norwegian Standard. ROOF, ROFFINGS: Test Method for Watertightness under Pulsating Air Pressure; Nordtest—NT Build: Oslo, Norway, 1993; p. 116. [Google Scholar]
- Mayo, A. To Develop a European Standard Dynamic Water Tightness Test for Curtain Walling. Task 4: Compare the Conditions Produced by Existing Test Methods with the Standard Test Conditions; SN Norway: Oslo, Norway, 1998. [Google Scholar]
- Van Den Bossche, N. Watertightness of Building Components: Principles, Testing and Design Guidelines. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2011. [Google Scholar]
- ISO. ISO 15927-3, Hygrothermal Performance of Buildings Calculation and Presentation of Climatic Data Part 3: Calculation of a Driving Rain Index for Vertical Surfaces from Hourly Wind and Rain Data; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Straube, J. Simplified Prediction of Driving Rain on Buildings: ASHRAE 160P and WUFI 4.0; Building Science Digests: Westford, MA, USA, 2010. [Google Scholar]
- Van Den Bossche, N.; Lacasse, M.; Moore, T.; Janssens, A. Water Infiltration through Openings in a Vertical Plane under Static Boundary Conditions. In Proceedings of the 5th International Building Physics Conference, Kyoto, Japan, 28–31 May 2012. [Google Scholar]
- St-Hilaire, A.; Derome, D.; Fazio, P. Approach for the Simulation of Wetting Due to Rain Infiltration for Building Envelope Testing. In Proceedings of the 9th Canadian Conference on Building Science and Technology, Vancouver, BC, Canada, 26 February–1 March 2003; pp. 459–474. [Google Scholar]
- Moore, T.V.; Lacasse, M.A.; Defo, M. Determining Moisture Source Due to Wind Driven Rain for Input to Hygrothermal Simulations Using Experimental Methods; ASHRAE: Atlanta, GE, USA, 2019. [Google Scholar]
- Brown, W.; Ullett, J.; Karagiozis, A.; Tonyan, T. Barrier EIFS Clad Walls: Results from a Moisture Engineering Study. J. Therm. Envel. Build. Sci. 1997. [Google Scholar] [CrossRef]
- Xiao, Z.; Lacasse, M.A.; Gaur, A.; Dragomirescu, E. Climate Data Analysis to Assess Resilience of Wall Assemblies to Moisture Loads Arising from the Effects of Wind-Driven Rain. E3S Web Conf. 2020, 172. [Google Scholar] [CrossRef]
- Canadian Commission on Building and Fire Codes. National Building Code of Canada; National Research Council Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- Rousseau, M.Z.; Poirier, G.F.; Brown, W.C. Pressure Equalization in Rainscreen Wall Systems; Construction Technology Updates No. 17; National Research Council Canada: Ottawa, ON, Canada, 1998. [Google Scholar]
- Teunissen, H.W. Characteristics of the Mean Wind and Turbulence in the Planetary Boundary Layer; Institute for Aerospace Studies, University of Toronto: Toronto, ON, Canada, 1971. [Google Scholar]
- Xiao, Z.; Lacasse, M.A.; Dragomirescu, E. An Analysis of Historical Wind-Driven Rain Loads for Selected Canadian Cities. J. Wind Eng. Ind. Aerodyn. under review.
- Scinocca, J.F.; Kharin, V.V.; Jiao, Y.; Qian, M.W.; Lazare, M.; Solheim, L.; Flato, G.M.; Biner, S.; Desgagne, M.; Dugas, B. Coordinated Global and Regional Climate Modeling. J. Clim. 2016. [Google Scholar] [CrossRef]
Step 1 | α = 1.342, β = 0.671, R2 = 0.851 | |
Step 2 | a = 0.00452, b = 0.763, R2 = 0.839 | |
T-test | T stat = 0.098 < t-two tail = 2.09 |
Pressure | Flow Rate (L/min) | Total Leakage (L/s-m2) | Base Leakage (L/s-m2) | Wall Leakage (L/s-m2) |
---|---|---|---|---|
25 Pa | 22.9 | 0.064 | 0.009 | 0.054 |
50 Pa | 37.5 | 0.105 | 0.015 | 0.090 |
75 Pa | 49.2 | 0.137 | 0.018 | 0.119 |
100 Pa | 59.7 | 0.167 | 0.023 | 0.144 |
150 Pa | 77.3 | 0.216 | 0.032 | 0.184 |
200 Pa | 93.8 | 0.262 | 0.037 | 0.225 |
250 Pa | 109 | 0.305 | 0.045 | 0.261 |
R-Squared | Window | Electrical Box | Ventilation Duct | Sum from All Deficiencies |
---|---|---|---|---|
1.3 L/min-m2 | 0.605 | 0.785 | 0.043 | 0.688 |
2.1 L/min-m2 | 0.182 | N/A | 0.001 | 0.144 |
3.4 L/min-m2 | 0.002 | 0.841 | 0.761 | 0.185 |
Deficiencies | Dynamic Pressure | Ext. Cladding and Drainage Cavity | Ext. Cladding and Stud Cavity | Shifts |
---|---|---|---|---|
Window | 25 + 25 × 0.85 sin (2πft *) | 99.9% | 98.6% | 0.08% |
50 + 50 × 0.85 sin (2πft) | 99.9% | 98.5% | 0.43% | |
75 + 75 × 0.85 sin (2πft) | 99.9% | 98.9% | 0.46% | |
100 + 100 × 0.85 sin (2πft) | 99.6% | 98.1% | 0.56% | |
150 + 150 × 0.85 sin (2πft) | 99.6% | 97.5% | 0.53% | |
200 + 200 × 0.85 sin (2πft) | 99.8% | 97.7% | 0.64% | |
250 + 250 × 0.85 sin (2πft) | 99.9% | 97.9% | 0.57% | |
Electrical Outlet | 25 + 25 × 0.85 sin (2πft) | 99.9% | 95.7% | 0.37% |
50 + 50 × 0.85 sin (2πft) | 99.5% | 95.8% | 0.05% | |
75 + 75 × 0.85 sin (2πft) | 99.9% | 97.2% | 0.25% | |
100 + 100 × 0.85 sin (2πft) | 99.7% | 96.5% | 0.40% | |
150 + 150 × 0.85 sin (2πft) | 99.9% | 96.8% | 0.37% | |
200 + 200 × 0.85 sin (2πft) | 99.9% | 97.2% | 0.46% | |
250 + 250 × 0.85 sin (2πft) | 99.9% | 97.7% | 0.37% | |
Ventilation Duct | 25 + 25 × 0.85 sin (2πft) | 99.9% | 97.1% | 0.35% |
50 + 50 × 0.85 sin (2πft) | 99.9% | 95.9% | 0.38% | |
75 + 75 × 0.85 sin (2πft) | 99.9% | 96.7% | 0.38% | |
100 + 100 × 0.85 sin (2πft) | 99.8% | 95.9% | 0.43% | |
150 + 150 × 0.85 sin (2πft) | 99.8% | 96.3% | 0.49% | |
200 + 200 × 0.85 sin (2πft) | 99.9% | 97.7% | 0.37% | |
250 + 250 × 0.85 sin (2πft) | 99.5% | 97.0% | 0.53% | |
Averaged | 99.8% | 97.2% | 0.41% |
α = 1.342, β = 0.671, R2 = 0.851 | |
a = 0.00452, b = 0.763, R2 = 0.839 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Lacasse, M.A.; Defo, M.; Dragomirescu, E. Assessing the Moisture Load in a Vinyl-Clad Wall Assembly through Watertightness Tests. Buildings 2021, 11, 117. https://doi.org/10.3390/buildings11030117
Xiao Z, Lacasse MA, Defo M, Dragomirescu E. Assessing the Moisture Load in a Vinyl-Clad Wall Assembly through Watertightness Tests. Buildings. 2021; 11(3):117. https://doi.org/10.3390/buildings11030117
Chicago/Turabian StyleXiao, Zhe, Michael A. Lacasse, Maurice Defo, and Elena Dragomirescu. 2021. "Assessing the Moisture Load in a Vinyl-Clad Wall Assembly through Watertightness Tests" Buildings 11, no. 3: 117. https://doi.org/10.3390/buildings11030117
APA StyleXiao, Z., Lacasse, M. A., Defo, M., & Dragomirescu, E. (2021). Assessing the Moisture Load in a Vinyl-Clad Wall Assembly through Watertightness Tests. Buildings, 11(3), 117. https://doi.org/10.3390/buildings11030117