Next Article in Journal
Quasi-Symmetric Transfer Behavior in an Asymmetric Two-Strand Tundish with Different Turbulence Inhibitor
Previous Article in Journal
Analysis of Sheet Metal Forming (Stamping Process): A Study of the Variable Friction Coefficient on 5052 Aluminum Alloy
Previous Article in Special Issue
Calculation of the Mixture Flow in a Low-Pressure Carburizing Process
Open AccessArticle

Electropolishing of Stainless Steel in Laboratory and Industrial Scale

1
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24a, 50-365 Wrocław, Poland
2
Division of Electrotechnology and Materials Science, Research Network Łukasiewicz -Electrotechnical Institute, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland
*
Author to whom correspondence should be addressed.
Metals 2019, 9(8), 854; https://doi.org/10.3390/met9080854
Received: 2 July 2019 / Revised: 24 July 2019 / Accepted: 2 August 2019 / Published: 5 August 2019
(This article belongs to the Special Issue Surface Treatment Technology of Metals and Alloys)
  |  
PDF [4216 KB, uploaded 5 August 2019]
  |  

Abstract

Transposing the process scale from laboratory to industrial conditions is a difficult issue that applies to many sectors of the industry. As far as electropolishing of stainless steel is concerned, the limitations connected with a significant increase in the area of electropolished surface should be considered, along with the possibility of defects that may emerge. This paper compares the results of electropolishing of stainless steel in the laboratory and in industrial conditions. For the analyzed conditions, it was determined that the best results, both in laboratory and industrial conditions, were obtained at temperature of 35 °C and current density of 8 A·dm−2. High temperatures resulted in the emergence of defects on the surface, in particular for industrial samples. The defects were visualized by metallographic images with Nomarski contrast and atomic force microscopy. X-ray photoelectron spectroscopy tests were used to analyze the composition of the passive layer on the electropolished surfaces. View Full-Text
Keywords: chromium-nickel steel; electropolishing; scale-up; defects; Nomarski contrast; AFM; XPS chromium-nickel steel; electropolishing; scale-up; defects; Nomarski contrast; AFM; XPS
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lochyński, P.; Charazińska, S.; Łyczkowska-Widłak, E.; Sikora, A. Electropolishing of Stainless Steel in Laboratory and Industrial Scale. Metals 2019, 9, 854.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top