The Influence of Manufacturing Parameters and Heat Treatments on the Properties of AlSi10Mg Alloy Produced Using L-PBF
Abstract
1. Introduction
2. Materials and Methods
2.1. Optimization of Manufacturing Parameters
2.2. Heat Treatment
2.3. Mechanical Tests
3. Results and Discussion
3.1. Feedstock Characterization
3.2. Optimization of Manufacturing Parameters
3.3. Heat Treatment
3.4. Mechanical Tests
4. Conclusions
- (1)
- In the optimization of the parameters in Step 1, the hatch space that provided the lowest volumetric porosity (0.29%) was 100 µm. Step 2 was designed to optimize power and scanning speed using the hatch space defined in the previous step. The best manufacturing conditions to minimize volumetric porosity (0.23%) were determined to be 300 W of power, a scanning speed of 800 mm/s, a layer thickness of 30 µm, and a beam diameter of 90 µm.
- (2)
- The initial microstructure of the as-built samples had a fine cellular structure, typical of the L-PBF manufacturing process, composed of a network of α-Al cells surrounded by a eutectic silicon network, as well as silicon nanoparticles dispersed within the α-Al cells. The direct aging heat treatment preserved this microstructure, increasing the number of nanoparticles inside the cells. Furthermore, the silicon eutectic network fragmented under prolonged conditions, leading to the formation of coalesced particles and the breaking of the network, which compromises the mechanical strength of the material.
- (3)
- The direct aging treatment at 170 °C, for 6 h, promoted the highest hardness, reaching a peak of approximately 195 HV, which represents an increase of about 14.7% over the as-built state. This result suggests that this procedure optimizes mechanical strength by promoting a microstructure with fine silicon particles. The T6 treatments, both at 150 °C and 170 °C, resulted in lower hardness values than those observed in direct aging, due to the loss of fine cell microstructure and the growth of silicon particles.
- (4)
- For the direct aged samples, the tensile strength limit was significantly affected by the heat treatments, increasing by approximately 14.7% of the maximum value when passing from the as-built condition (376.51 MPa) to being aged at 170 °C for 6 h (430.84 MPa). In addition to the increased resistance, ductility was reduced in the samples submitted to direct aging, evidenced by the lower total elongation before the fracture. The direct aging condition at 170 °C for 6h offered the best balance between strength and ductility compared to the others studied, maintaining high strength without a pronounced decrease in deformation capacity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
L-PBF | Laser powder bed fusion |
DA | Direct aging heat treatment |
T6 | Solution + aging heat treatment |
References
- André, M.; Carlos, C.; Carlos, A.; Jonas, C.; Jorge, S.; José, F.; Milton, L.; Volpato, N. Manufatura Aditiva—Tecnologias e Aplicações Da Impressão 3D, 1st ed.; Editora Blucher: São Paulo, Brazil, 2017; ISBN 9788521211501. [Google Scholar]
- Jawade, S.A.; Joshi, R.S.; Desai, S.B. Comparative Study of Mechanical Properties of Additively Manufactured Aluminum Alloy. Mater. Today Proc. 2020, 46, 9270–9274. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Gibbons, G.; Das, A.; Howes, P.D. A Review of Laser Powder Bed Fusion Additive Manufacturing of Aluminium Alloys: Microstructure and Properties. Addit. Manuf. 2021, 46, 102155. [Google Scholar] [CrossRef]
- Gadlegaonkar, N.; Bansod, P.J.; Lakshmikanthan, A.; Bhole, K. A Review on Additively Manufactured AlSi10Mg Alloy: Mechanical, Tribological, and Microstructure Properties. J. Mines Met. Fuels 2025, 73, 87–101. [Google Scholar] [CrossRef]
- Wang, P.; Rabori, A.S.; Dong, Q.; Ravkov, L.; Balogh, L.; Fallah, V. The Role of Cellular Structure, Non-Equilibrium Eutectic Phases and Precipitates on Quasi-Static Strengthening Mechanisms of as-Built AlSi10Mg Parts 3D Printed via Laser Powder Bed Fusion. Mater. Charact. 2023, 198, 112730. [Google Scholar] [CrossRef]
- Gebhardt, U.; Gustmann, T.; Giebeler, L.; Hirsch, F.; Hufenbach, J.K.; Kästner, M. Additively Manufactured AlSi10Mg Lattices—Potential and Limits of Modelling as-Designed Structures. Mater. Des. 2022, 220, 110796. [Google Scholar] [CrossRef]
- Fite, J.; Eswarappa Prameela, S.; Slotwinski, J.A.; Weihs, T.P. Evolution of the Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg during Room Temperature Holds and Low Temperature Aging. Addit. Manuf. 2020, 36, 101429. [Google Scholar] [CrossRef]
- Eom, Y.S.; Park, J.M.; Choi, J.-W.; Seong, D.-J.; Joo, H.; Jo, Y.C.; Kim, K.T.; Yu, J.H.; Son, I. Fine-Tuning of Mechanical Properties of Additively Manufactured AlSi10Mg Alloys by Controlling the Microstructural Heterogeneity. J. Alloys Compd. 2023, 956, 170348. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Wang, Z.; Li, D.; Cui, X.; Xu, J. Effect of Cooling Rates and Heat Treatment Time on Si Phase of AlSi10Mg Alloy Manufactured by Selective Laser Melting: Microstructure Evolution and Strengthening Mechanism. J. Alloys Compd. 2024, 1007, 176494. [Google Scholar] [CrossRef]
- Fiocchi, J.; Tuissi, A.; Biffi, C.A. Heat Treatment of Aluminium Alloys Produced by Laser Powder Bed Fusion: A Review. Mater. Des. 2021, 204, 109651. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Escano, L.I.; Hojjatzadeh, S.M.H.; Parab, N.D.; Fezzaa, K.; Everhart, W.; Sun, T.; et al. In-Situ Characterization and Quantification of Melt Pool Variation under Constant Input Energy Density in Laser Powder Bed Fusion Additive Manufacturing Process. Addit. Manuf. 2019, 28, 600–609. [Google Scholar] [CrossRef]
- Poncelet, O.; Marteleur, M.; van der Rest, C.; Rigo, O.; Adrien, J.; Dancette, S.; Jacques, P.J.; Simar, A. Critical Assessment of the Impact of Process Parameters on Vertical Roughness and Hardness of Thin Walls of AlSi10Mg Processed by Laser Powder Bed Fusion. Addit. Manuf. 2021, 38, 101801. [Google Scholar] [CrossRef]
- Gite, R.E.; Wakchaure, V.D. A Review on Process Parameters, Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg Alloy. Mater. Today Proc. 2023, 72, 966–986. [Google Scholar] [CrossRef]
- King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing. J. Mater. Process Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Ferro, P.; Meneghello, R.; Savio, G.; Berto, F. A Modified Volumetric Energy Density-Based Approach for Porosity Assessment in Additive Manufacturing Process Design. Int. J. Adv. Manuf. Technol. 2020, 110, 1911–1921. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I. Hierarchical Design Principles of Selective Laser Melting for High Quality Metallic Objects. Addit. Manuf. 2015, 7, 45–56. [Google Scholar] [CrossRef]
- Larrosa, N.O.; Wang, W.; Read, N.; Loretto, M.H.; Evans, C.; Carr, J.; Tradowsky, U.; Attallah, M.M.; Withers, P.J. Linking Microstructure and Processing Defects to Mechanical Properties of Selectively Laser Melted AlSi10Mg Alloy. Theor. Appl. Fract. Mech. 2018, 98, 123–133. [Google Scholar] [CrossRef]
- Hastie, J.C.; Kartal, M.E.; Carter, L.N.; Attallah, M.M.; Mulvihill, D.M. Classifying Shape of Internal Pores within AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Using 3D X-ray Micro Computed Tomography: Influence of Processing Parameters and Heat Treatment. Mater. Charact. 2020, 163, 110225. [Google Scholar] [CrossRef]
- Yang, T.; Liu, T.; Liao, W.; MacDonald, E.; Wei, H.; Zhang, C.; Chen, X.; Zhang, K. Laser Powder Bed Fusion of AlSi10Mg: Influence of Energy Intensities on Spatter and Porosity Evolution, Microstructure and Mechanical Properties. J. Alloys Compd. 2020, 849, 156300. [Google Scholar] [CrossRef]
- Lehner, P.; Blinn, B.; Zhu, T.; Al-Zuhairi, A.; Smaga, M.; Teutsch, R.; Beck, T. Influence of the As-Built Surface and a T6 Heat Treatment on the Fatigue Behavior of Additively Manufactured AlSi10Mg. Int. J. Fatigue 2024, 187, 108479. [Google Scholar] [CrossRef]
- Huang, N.; Luo, Q.; Bartles, D.L.; Simpson, T.W.; Beese, A.M. Effect of Heat Treatment on Microstructure and Mechanical Properties of AlSi10Mg Fabricated Using Laser Powder Bed Fusion. Mater. Sci. Eng. A 2024, 895, 146228. [Google Scholar] [CrossRef]
- Di Egidio, G.; Tonelli, L.; Zanni, M.; Carosi, D.; Morri, A.; Ceschini, L. Direct Artificial Aging of the PBF-LB AlSi10Mg Alloy Designed to Enhance the Trade-off between Strength and Residual Stress Relief. J. Alloys Metall. Syst. 2024, 5, 100063. [Google Scholar] [CrossRef]
- Tang, H.; Gao, C.; Zhang, Y.; Zhang, N.; Lei, C.; Bi, Y.; Tang, P.; Rao, J.H. Effects of Direct Aging Treatment on Microstructure, Mechanical Properties and Residual Stress of Selective Laser Melted AlSi10Mg Alloy. J. Mater. Sci. Technol. 2023, 139, 198–209. [Google Scholar] [CrossRef]
- Baek, M.S.; Kreethi, R.; Park, T.H.; Sohn, Y.; Lee, K.A. Influence of Heat Treatment on the High-Cycle Fatigue Properties and Fatigue Damage Mechanism of Selective Laser Melted AlSi10Mg Alloy. Mater. Sci. Eng. A 2021, 819, 141486. [Google Scholar] [CrossRef]
- Limbasiya, N.; Jain, A.; Soni, H.; Wankhede, V.; Krolczyk, G.; Sahlot, P. A Comprehensive Review on the Effect of Process Parameters and Post-Process Treatments on Microstructure and Mechanical Properties of Selective Laser Melting of AlSi10Mg. J. Mater. Res. Technol. 2022, 21, 1141–1176. [Google Scholar] [CrossRef]
- Patel, S.; Chen, H.; Vlasea, M.; Zou, Y. The Influence of Beam Focus during Laser Powder Bed Fusion of a High Reflectivity Aluminium Alloy—AlSi10Mg. Addit. Manuf. 2022, 59, 103112. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Smurov, I. Surface Morphology in Selective Laser Melting of Metal Powders. Phys. Procedia 2011, 12, 264–270. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030561277. [Google Scholar]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive Manufacturing of Metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchik, A.M. Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges. Appl. Phys. Rev. 2015, 2, 041304. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes. Addit. Manuf. 2014, 1, 87–98. [Google Scholar] [CrossRef]
- Emminghaus, N.; Paul, J.; Hoff, C.; Hermsdorf, J.; Kaierle, S. Development of an Empirical Process Model for Adjusted Porosity in Laser-Based Powder Bed Fusion of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2022, 118, 1239–1254. [Google Scholar] [CrossRef]
- Kruth, J.P.; Levy, G.; Klocke, F.; Childs, T.H.C. Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing. CIRP Ann. Manuf. Technol. 2007, 56, 730–759. [Google Scholar] [CrossRef]
- Fernandes, R.F.; Jesus, J.S.; Branco, R.; Borrego, L.P.; Costa, J.D.; Ferreira, J.A.M. Influence of Post-Processing Heat Treatment on the Cyclic Deformation Behaviour of AlSi10Mg Aluminium Alloy Subjected to Laser Powder Bed Fusion. Int. J. Fatigue 2022, 164, 107157. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Z.; Xiong, R.; Ren, G.; Yao, M.; Liu, W.; Zang, L. Effect of Post Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of AlSi10Mg Alloy Fabricated by Selective Laser Melting. Prog. Nat. Sci. Mater. Int. 2024, 34, 89–101. [Google Scholar] [CrossRef]
- Tütük, İ.; Ural, M.M.; Yilmaz, M.S.; Özer, G. Development of an Alternative Heat Treatment to the Traditional T6 Heat Treatment of AlSi10Mg Alloy Produced by Additive Manufacturing. J. Mater. Eng. Perform. 2024, 34, 3112–3122. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Zn | Mn | Ti | Mg | O | Al |
---|---|---|---|---|---|---|---|---|---|
% by wt | 9.9 | 0.12 | <0.01 | 0.02 | <0.01 | <0.01 | 0.35 | 0.05 | balance |
Voltage: 100 kV | Current: 140 µA |
Spot size: 20 µm | Voxel size: 20 µm |
Detector: (1456 × 1840) px | Number of projections: 1000 |
Integration time/Gain: 1000 ms/2.5x | Prefilter: - |
Scan Speed (mm/s) | ||||
---|---|---|---|---|
800 | 1000 | 1200 | ||
Percent by volume of pores | ||||
Power (W) | 200 | A (1.08) | B (2.97) | C (3.80) |
250 | D (1.29) | E (0.42) | F (0.40) | |
300 | G (0.23) | H (0.25) | I (0.43) |
Scan Speed (mm/s) | |||||||
---|---|---|---|---|---|---|---|
800 | 1000 | 1200 | |||||
Roughness (Sa Parameter) | |||||||
Plane | ZY | XY | ZY | XY | ZY | XY | |
Power (W) | 200 | 32.52 | 11.57 | 32.59 | 30.30 | 27.34 | 21.18 |
250 | 23.75 | 17.62 | 24.57 | 15.98 | 27.98 | 16.72 | |
300 | 22.74 | 10.62 | 23.90 | 18.38 | 11.25 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, G.d.L.X.; Reis, L.; de Oliveira, R.; Massi, M.; Gonçalves, R.L.; Couto, A.A. The Influence of Manufacturing Parameters and Heat Treatments on the Properties of AlSi10Mg Alloy Produced Using L-PBF. Metals 2025, 15, 941. https://doi.org/10.3390/met15090941
Ribeiro GdLX, Reis L, de Oliveira R, Massi M, Gonçalves RL, Couto AA. The Influence of Manufacturing Parameters and Heat Treatments on the Properties of AlSi10Mg Alloy Produced Using L-PBF. Metals. 2025; 15(9):941. https://doi.org/10.3390/met15090941
Chicago/Turabian StyleRibeiro, Gleicy de Lima Xavier, Luis Reis, Rene de Oliveira, Marcos Massi, Rodolfo Luiz Gonçalves, and Antônio Augusto Couto. 2025. "The Influence of Manufacturing Parameters and Heat Treatments on the Properties of AlSi10Mg Alloy Produced Using L-PBF" Metals 15, no. 9: 941. https://doi.org/10.3390/met15090941
APA StyleRibeiro, G. d. L. X., Reis, L., de Oliveira, R., Massi, M., Gonçalves, R. L., & Couto, A. A. (2025). The Influence of Manufacturing Parameters and Heat Treatments on the Properties of AlSi10Mg Alloy Produced Using L-PBF. Metals, 15(9), 941. https://doi.org/10.3390/met15090941