Fatigue Crack Initiation and Small Crack Propagation Behaviors of Simulated Specimens in a Ni-Based Superalloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
3. Results
3.1. Fatigue Life
3.2. Crack Initiation in Simulated Specimens
3.3. Small Crack Growth Behavior
4. Discussion
5. Conclusions
- (1)
- Fatigue cracks in both groove and bolt hole simulated specimens initiated at the notch root, exhibiting a multi-site crack initiation mode.
- (2)
- Stress level had a greater influence on fatigue crack initiation than notch geometry. At high applied stress, the surface crack initiation induced by a surface slip band is dominant. At lower stresses, the fatal cracks predominantly initiated in internal regions near crystallographic facets or nonmetallic inclusions.
- (3)
- The ratio of the incubation period ranged from approximately 35% to 75% and increased with σmax in both types of simulated specimen tests at 500 °C.
- (4)
- The influence of the notch geometry on the fatigue crack propagation life is larger than Nini, particularly at high applied stresses. A smaller notch root radius could accelerate the occurrence of crack coalescence and consequently reduce the fatigue crack propagation life.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Hu, D.Y.; Wang, T.; Ma, Q.H.; Liu, X.; Shang, L.H.; Li, D.; Pan, J.C.; Wang, R.Q. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96. Int. J. Fatigue 2019, 118, 237–248. [Google Scholar] [CrossRef]
- Liu, L.; Gao, H.S.; Wang, J.D.; Zhang, C.J.; Wen, Z.X.; Yue, Z.F. Combined high and low cycle fatigue analysis of FGH96 alloy under high temperature conditions. Mater. Today Commun. 2024, 38, 108053. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wei, D.S.; Wang, J.L.; Wang, Y.R.; Jiang, X.H. Experimental and modeling investigation of the creep-fatigue interactive deformation behavior of PM super alloy FGH96 at evaluated temperature. Mater. Sci. Eng. A 2019, 749, 106–117. [Google Scholar] [CrossRef]
- Miao, G.L.; Yang, X.G.; Shi, D.Q. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature. Mater. Sci. Eng. A 2016, 668, 66–72. [Google Scholar] [CrossRef]
- Owolabi, G.; Okeyoyin, O.; Bamiduro, O.; Olasumboye, A.; Whitworth, H. The effects of notch size and material microstructure on the notch sensitivity factor for notched components. Eng. Fract. Mech. 2015, 145, 181–196. [Google Scholar] [CrossRef]
- Li, Z.L.; He, Y.S.; Xu, G.Q.; Shi, D.Q.; Yang, X.G. A fatigue life estimation approach considering the effect of geometry and stress sensitivity. Theor. Appl. Fract. Mech. 2021, 112, 102915. [Google Scholar] [CrossRef]
- Zhu, X.M.; Gong, C.Y.; Jia, Y.F.; Wang, R.Z.; Zhang, C.C.; Fu, Y.; Tu, S.T.; Zhang, X.C. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C. J. Mater. Sci. Technol. 2019, 35, 1607–1617. [Google Scholar] [CrossRef]
- Qin, C.H.; Zhang, X.C.; Ye, S.; Tu, S.T. Grain size effect on multi-scale fatigue crack growth mechanism of Nickel-based alloy GH4169. Eng. Fract. Mech. 2015, 142, 140–153. [Google Scholar] [CrossRef]
- Connolley, T.; Reed, P.; Starink, J.M. Short crack initiation and growth at 600 °C in notched specimens of Inconel 718. Mater. Sci. Eng. A 2003, 340, 139–154. [Google Scholar] [CrossRef]
- Deng, G.J.; Tu, S.T.; Zhang, X.C.; Wang, Q.Q.; Qin, C.H. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169. Eng. Fract. Mech. 2015, 134, 433–450. [Google Scholar] [CrossRef]
- Deng, G.J.; Tu, S.T.; Zhang, X.C.; Wang, J.; Zhang, C.C.; Qian, X.Y.; Wang, Y.N. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 °C in air. Eng. Fract. Mech. 2016, 153, 35–49. [Google Scholar] [CrossRef]
- Kevinsanny; Okazaki, S.; Takakuwa, O.; Ogawa, Y.; Okita, K.; Funakoshi, Y.; Yamabe, J.; Matsuoka, S.; Matsunaga, H. Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes. Fatigue Fract. Eng. Mater. Struct. 2019, 19, 312–319. [Google Scholar] [CrossRef]
- Maenosono, A.; Koyama, M.; Tanaka, Y.; Rid, S.; Wang, Q.H. Crystallographic selection rule for the propagation mode of microstructurally small fatigue crack in a laminated Ti-6Al-4V alloy: Roles of basal and pyramidal slips. Int. J. Fatigue 2019, 128, 105200. [Google Scholar] [CrossRef]
- Motoyashiki, Y.; Brückner-Foit, A.; Englert, L.; Haag, L.; Wollenhaupt, M.; Baumert, T. Use of femtosecond laser technique for studying physically small cracks. Int. J. Fatigue 2006, 139, 561–568. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.Z.; Zhang, X.C.; Ye, Y.J.; Cui, Y.; Miura, H.; Tu, S.T. Multi-stage dwell fatigue crack growth behaviors in a nickel-based superalloy at elevated temperature. Eng. Fract. Mech. 2021, 253, 107859. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Yang, X.G.; Huang, W.Q.; Shi, Y.; Shi, D.Q. Small fatigue crack propagation rate and behaviours in a powder metallurgy superalloy: Role of stress ratio and local microstructure. Int. J. Fatigue 2022, 160, 106861. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Y.T.; Wang, X.S.; Xu, W.; Zhang, Y.; He, Y.H. Evaluation of the influences of the stress ratio, temperatures, and local microstructure on small fatigue crack propagation behavior of the FGH96 superalloy. Int. J. Fatigue 2023, 171, 107573. [Google Scholar] [CrossRef]
- Newman, J.A.; Willard, S.A.; Smith, S.W.; Piascik, R.S. Replica-based crack inspection. Eng. Fract. Mech. 2009, 76, 898–910. [Google Scholar] [CrossRef]
- Jordon, J.B.; Bernard, J.D.; Newman, J.C. Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method. Int. J. Fatigue 2012, 36, 206–210. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, Z.R.; Hu, X.T.; Song, Y.D. Investigation of small fatigue crack initiation and growth behaviour of nickel base superalloy GH4169. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 1150–1160. [Google Scholar] [CrossRef]
- Pang, H.T.; Reed, P.A.S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickelbase superalloy udimet 720Li. Mater. Sci. Eng. A 2007, 448, 67–79. [Google Scholar] [CrossRef]
- Stinville, J.C.; Martin, E.; Karadge, M.; Ismonov, S.; Soare, M.; Hanlon, T.; Sundaram, S.; Echlin, M.P.; Callahan, P.G.; Lenthe, W.C.; et al. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: Competing failure modes. Acta Mater. 2018, 152, 16–33. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X. Multiple fatigue crack initiation, coalescence and growth in blunt notched specimens. Eng. Fract. Mech. 1998, 5, 353–359. [Google Scholar] [CrossRef]
- Yuan, S.H.; Wang, Y.R.; Wei, D.S. Experimental investigation on low cycle fatigue and fracture behavior of a notched Ni-based superalloy at elevated temperature. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 1002–1012. [Google Scholar] [CrossRef]
Cr | Co | W | Mo | Nb | Al | Ti | B | Zr | C | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
16 | 13 | 4 | 4 | 0.7 | 2.1 | 3.7 | 0.015 | 0.05 | 0.05 | ≤0.05 | Bal. |
Specimen ID | Specimen Types | Maximum Stress [MPa] | Cycles to Failure, Nf | Test Conditions |
---|---|---|---|---|
G-1 | Groove simulated specimen | 700 | 10,923 | Non-replica |
G-2 | 700 | 8026 | Replica | |
G-3 | 600 | 24,991 | Replica | |
G-4 | 500 | 77,630 | Non-replica | |
G-5 | 480 | 127,082 | Replica | |
B-1 | Bolt hole simulated specimen | 700 | 16,341 | Replica |
B-2 | 600 | 32,805 | Non-replica | |
B-3 | 600 | 31,220 | Replica | |
B-4 | 500 | 82,503 | Non-replica | |
B-5 | 500 | 75,024 | Replica |
Specimen ID | Maximum Stress [MPa] | Cycles to Failure, Nf | Length of First Crack Observed [μm] | Nini | Nini/Nf |
---|---|---|---|---|---|
G-2 | 700 | 8026 | 67 | 4500 | 56.1% |
G-3 | 600 | 24,991 | 72 | 16,000 | 61.5% |
G-5 | 480 | 127,082 | 42 | 90,000 | 70.8% |
B-1 | 700 | 16,341 | 57 | 6000 | 36.7% |
B-3 | 600 | 31,220 | 62 | 21,000 | 67.2% |
B-5 | 500 | 75,024 | 76 | 58,000 | 73.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Hu, X.; Guo, Z. Fatigue Crack Initiation and Small Crack Propagation Behaviors of Simulated Specimens in a Ni-Based Superalloy. Metals 2025, 15, 933. https://doi.org/10.3390/met15090933
Zhao Z, Hu X, Guo Z. Fatigue Crack Initiation and Small Crack Propagation Behaviors of Simulated Specimens in a Ni-Based Superalloy. Metals. 2025; 15(9):933. https://doi.org/10.3390/met15090933
Chicago/Turabian StyleZhao, Zuopeng, Xuteng Hu, and Zhiwei Guo. 2025. "Fatigue Crack Initiation and Small Crack Propagation Behaviors of Simulated Specimens in a Ni-Based Superalloy" Metals 15, no. 9: 933. https://doi.org/10.3390/met15090933
APA StyleZhao, Z., Hu, X., & Guo, Z. (2025). Fatigue Crack Initiation and Small Crack Propagation Behaviors of Simulated Specimens in a Ni-Based Superalloy. Metals, 15(9), 933. https://doi.org/10.3390/met15090933