Modeling the Impact of Hydrogen Embrittlement on the Fracture Toughness of Low-Carbon Steel Using a Machine Learning Approach
Abstract
1. Introduction
1.1. Overview
1.2. Problem Statements and Mitigation Strategies
1.3. ML Model Capability and Applicability
1.4. Advances in ML Modeling for HE Analysis
2. Modeling Approach
2.1. Database Creation and Exploratory Data Analysis
2.2. Data Cleaning and Outlier Handling.
2.3. Feature Selection
2.4. Feature Scaling
2.5. Model Screening and FI Analysis
2.6. Model Cross-Validation
2.7. Model Performance
2.8. Model Comparison and Selection
2.9. Model Applicability and Limitations
3. KNN Modeling and Evaluation
3.1. Model Development
3.2. Model Performance and Feature Importance
3.3. Sensitivity Analysis
3.3.1. Effect of Hydrogen Pressure
3.3.2. Effect of Yield Strength
3.3.3. Effect of Oxygen Content
3.3.4. Effect of Displacement Rate
3.4. Model Validation with Unseen Data
4. Conclusions and Recommendations
- The KNN model predicts FT with reasonable accuracy, as demonstrated by high R-squared values, minimal mean absolute error (MAE), and root mean square error (RMSE).
- Pressure and yield strength are the two most important factors influencing the HE susceptibility of carbon steel, with hydrogen pressure being the most significant factor, impacting FT prediction by 32%.
- FT in carbon steels declines notably with hydrogen pressure at lower pressures (between 0 and 6.9 MPa) and stabilizes at higher pressures (more than 8 MPa). This pattern suggests a crucial saturation point at which FT becomes independent of hydrogen pressure, aligning with published research.
- The main alloying elements, carbon and phosphorus, emerged as significant factors in the model’s predictions of fracture toughness, contributing 5.24% and 6.29% toward FT prediction, respectively.
- Oxygen effectively mitigates hydrogen embrittlement in X70 steel at low concentrations (<200 ppm), as evidenced by the model’s sensitivity to oxygen-induced increases in fracture toughness, likely due to reduced hydrogen uptake.
- FT predictions increase with displacement rate, particularly above 0.1 mm/min, indicating that lower displacement rate (<0.1 mm/min) experiments provide more stable and reliable data for accurate ML modeling despite longer testing times.
- The evaluation of the model with unseen data confirms the model’s robustness and generalizability, while highlighting the importance of comprehensive input data in improving predictive accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
HE | Hydrogen Embrittlement |
ML | Machine Learning |
RF | Random Forest |
DT | Decision Tree |
GB | Gradient Boosting |
Catboost | Categorical Boosting |
ANN | Artificial Neural Network |
SVM | Support Vector Machine |
KNN | K-Nearest Neighbors |
MAE | Mean Absolute Error |
RMSE | Mean Square Error |
R2 | coefficient of determination |
FT | Fracture Toughness |
YS | Yield Strength |
PH | Hydrogen Pressure |
RF | Random Forest |
UTS | Ultimate Tensile Strength |
Appendix A
Appendix A.1. Comparative Analysis of Hyperparameter Optimization for Four ML Models
Algorithm | Hyperparameters | Range | Best Hyperparameter |
---|---|---|---|
RF | Criterion | Squared error, Poisson | Squared error |
Maximum depth | 5, 10, 15, 20, None | 15 | |
Maximum features | 0.5, 1.0, sqrt, log2 | 1.0 | |
Minimum samples leaf | 2, 4, 6 | 2 | |
Minimum samples split | 10, 20, 30 | 10 | |
No of estimators | 100, 200, 300 | 200 | |
Bootstrap | True, False | True | |
DT | Maximum depth | 5, 10, 15, None | 10 |
Minimum samples split | 2, 5, 10, 20 | 5 | |
Minimum samples leaf | 1, 2, 4, 5, 8, 10 | 1 | |
Maximum features | auto, sqrt, log2 | sqrt | |
GB | Maximum depth | 2, 3, 5, 10 | 5 |
No estimators | 100, 200, 500, 1000 | 200 | |
Learning rate | 0.01, 0.05, 0.1, 0.2 | 0.1 | |
Subsample | 0.5, 0.7, 0.9, 1.0 | 0.5 | |
Minimum samples split | 2, 10, 20, 30 | 10 | |
Minimum samples leaf | 1, 5, 10, 20 | 5 | |
Maximum features | sqrt, log2, None | None | |
Loss | ls, lad, Huber, quantile | ls | |
KNN | Number of neighbors | 1–20 | 4 |
Metric | Euclidean, Manhattan, Minkowski | Euclidean | |
Weight | Distance, uniform | Distance | |
Algorithm | auto, ball_tree, kd_tree, brute | auto |
Appendix A.2. Model Predictions Comparison
Source | C | P | Fe | Al | Mn | Si | Cu | S | Cr | Ni | YS (MPa) | P (MPa) | Measured (MPa√m) | Material | Model (MPa√m) | Error (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R & S [69] | 0.21 | 0.012 | 98.5 | NR | 1.04 | 0.21 | NR | 0.02 | NR | NR | 375 | 0 | 150 | A516 | 152 | 1 |
R & S [69] | 0.210 | 0.01 | 98.5 | NR | 1.04 | 0.21 | NR | 0.02 | NR | NR | 375 | 3.5 | 119 | A516 | 144 | 21 |
R & S [69] | 0.210 | 0.01 | 98.5 | NR | 1.04 | 0.21 | NR | 0.02 | NR | NR | 375 | 6.9 | 102 | A516 | 129 | 27 |
R & S [69] | 0.210 | 0.01 | 98.5 | NR | 1.04 | 0.21 | NR | 0.02 | NR | NR | 375 | 20.7 | 89 | A516 | 121 | 36 |
R & S [69] | 0.210 | 0.01 | 98.5 | NR | 1.04 | 0.21 | NR | 0.02 | NR | NR | 375 | 34.5 | 82 | A516 | 108 | 32 |
S. et al. [70] | 0.060 | 0.00 | 97.5 | NR | 1.77 | 0.21 | NR | NR | 0.26 | NR | 660 | 0 | 258.5 | X80 | 157 | −39 |
S. et al. [70] | 0.060 | 0.00 | 97.5 | NR | 1.77 | 0.21 | NR | NR | 0.26 | NR | 660 | 3 | 135.4 | X80 | 151 | 11 |
S. et al. [70] | 0.060 | 0.00 | 97.5 | NR | 1.77 | 0.21 | NR | NR | 0.26 | NR | 660 | 10 | 78.7 | X80 | 159 | 102 |
Xu [71] | 0.140 | 0.02 | 98.3 | 0.01 | 0.98 | 0.29 | 0.00 | 0.01 | NR | NR | 469 | 6.9 | 102 | X52 | 139 | 36 |
Xu [71] | 0.120 | 0.01 | 98.3 | 0.00 | 1.29 | 0.25 | 0.03 | 0.02 | 0.02 | 0.01 | 473 | 6.9 | 104 | X60 | 128 | 23 |
Xu [71] | 0.090 | 0.01 | 97.0 | 0.42 | 1.50 | 0.31 | 0.31 | 0.01 | 0.13 | 0.08 | 584 | 6.9 | 95 | X70 | 81 | −15 |
Xu [71] | 0.050 | 0.01 | 97.5 | 0.04 | 1.52 | 0.12 | NR | NR | 0.25 | 0.14 | 676 | 6.9 | 111 | X80 | 99 | −11 |
Xu [71] | 0.260 | 0.01 | 98.4 | NR | 1.06 | 0.23 | NR | 0.02 | NR | NR | 297 | 6.9 | 81 | A106 | 108 | 33 |
Xu [71] | 0.210 | 0.01 | 98.5 | NR | 1.04 | 0.21 | NR | 0.02 | NR | NR | 375 | 6.9 | 113 | A516 | 129 | 14 |
Xu [71] | 0.260 | 0.01 | 98.1 | NR | 1.50 | 0.01 | 0.02 | 0.03 | 0.04 | 0.02 | 366 | 6.9 | 107 | X42 | 105 | −1 |
N. et al. [72] | 0.070 | 0.01 | 97.9 | NR | 1.68 | NR | 0.10 | 0.01 | 0.07 | 0.14 | 584 | 0 | 205 | X70 | 191 | −7 |
N. et al. [72] | 0.070 | 0.01 | 97.9 | NR | 1.68 | NR | 0.10 | 0.01 | 0.07 | 0.14 | 584 | 0.1 | 144 | X70 | 191 | 33 |
N. et al. [72] | 0.070 | 0.01 | 97.9 | NR | 1.68 | NR | 0.10 | 0.01 | 0.07 | 0.14 | 584 | 10 | 104 | X70 | 97 | −7 |
S. et al. [73] | 0.170 | 0.01 | 98.9 | NR | 0.65 | 0.24 | NR | 0.04 | NR | NR | 289 | 10 | 89 | X42 | 116 | 30 |
S. et al. [73] | 0.230 | 0.02 | 98.3 | NR | 0.94 | 0.23 | 0.18 | 0.04 | 0.04 | 0.05 | 320 | 1 | 91 | X46 | 113 | 24 |
S. et al. [73] | 0.230 | 0.02 | 98.3 | NR | 0.94 | 0.23 | 0.18 | 0.04 | 0.04 | 0.05 | 320 | 10 | 85 | X46 | 83 | −2 |
S. et al. [73] | 0.120 | 0.02 | 97.9 | NR | 1.56 | 0.25 | NR | 0.01 | NR | NR | 491 | 10 | 94.9 | X70 | 141 | 48 |
References
- Nanninga, N.E.; Levy, Y.; Drexler, E.; Condon, R.; Stevenson, A.; Slifka, A. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros. Sci. 2012, 59, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Niu, R.; Li, W.; Lu, H.; Cairney, J.; Chen, Y.-S. Hydrogen in pipeline steels: Recent advances in characterization and embrittlement mitigation. J. Nat. Gas Sci. Eng. 2022, 105, 104709. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, T.; Wang, Y.; Qiao, J.; Wang, Z. Corrosion Failure Mechanism of Associated Gas Transmission Pipeline. Materials 2018, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Kim, G.-I.; Kim, K.-M.; Ko, S.-J.; Kim, W.-C.; Kim, J.-G. Localized Corrosion Occurrence in Low-Carbon Steel Pipe Caused by Microstructural Inhomogeneity. Materials 2022, 15, 1870. [Google Scholar] [CrossRef]
- Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Marchi, C.S.; Somerday, B.P. Effects of High-Pressure Gaseous Hydrogen on Structural Metals. SAE Trans. 2007, 116, 94–109. [Google Scholar]
- Jemblie, L.; Bjaaland, H.; Nyhus, B.; Olden, V.; Akselsen, O. Fracture Toughness and Hydrogen Embrittlement Susceptibility on the Interface of Clad Steel Pipes With and Without a Ni-Interlayer. Mater. Sci. Eng. A 2017, 685, 87–94. [Google Scholar] [CrossRef]
- Peral, L.B.; Zafra, A.; Belzunce, J.; Rodríguez, C. Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures. Int. J. Hydrogen Energy 2019, 44, 3953–3965. [Google Scholar] [CrossRef]
- Hoyos, J.J.; Masoumi, M.; Pereira, V.; Tschiptschin, A.; Paes, M.; Avila, J. Influence of Hydrogen on the Microstructure and Fracture Toughness of Friction Stir Welded Plates of API 5L X80 Pipeline Steel. Int. J. Hydrogen Energy 2019, 44, 23458–23471. [Google Scholar] [CrossRef]
- Giarola, J.M.; Avila, J.A.; Cintho, O.M.; Pinto, H.C.; de Oliveira, M.F.; Filho, W.W.B. The effect of hydrogen on the fracture toughness of friction-stir welded API 5L X70 pipeline steels. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 3009–3024. [Google Scholar] [CrossRef]
- Dong, C.F.; Liu, Z.; Li, X.; Cheng, Y. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Int. J. Hydrogen Energy 2009, 34, 9879–9884. [Google Scholar] [CrossRef]
- Mustapha, A.; Charles, E.A.; Hardie, D.W.F. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros. Sci. 2012, 54, 5–9. [Google Scholar] [CrossRef]
- Becker, W.T.; Shipley, R.J. (Eds.) Hydrogen damage and embrittlement. In Failure Analysis and Prevention; ASM International: Materials Park, OH, USA, 2002; pp. 809–822. [Google Scholar]
- Weforum. Which Countries Could Become the World’s Hydrogen Superpowers? Available at: World Economic Forum. 2020. Available online: https://www.weforum.org/agenda/2022/02/clean-hydrogen-energy-low-carbon-superpowers/ (accessed on 21 October 2023).
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ben-Hur, A.; Weston, J. A user’s guide to support vector machines. In Data Mining Techniques for the Life Sciences; Humana Press: Totowa, NJ, USA, 2010; pp. 223–239. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hatwell, J.; Gaber, M.M.; Azad, R.M.A. CHIRPS: Explaining random forest classification. Artif. Intell. Rev. 2020, 53, 5747–5788. [Google Scholar] [CrossRef]
- Hapfelmeier, A.; Hothorn, T.; Ulm, K.; Strobl, C. A new variable importance measure for random forests with missing data. Stat. Comput. 2014, 24, 21–34. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6638–6648. [Google Scholar]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hinton, G.E. Connectionist learning procedures. Artif. Intell. 1990, 40, 555–610. [Google Scholar] [CrossRef]
- Lee, Y.-W.; Gangloff, R.P. Measurement and Modeling of Hydrogen Environment–Assisted Cracking of Ultra-High-Strength Steel. Metall. Mater. Trans. A 2007, 38, 2174–2190. [Google Scholar] [CrossRef]
- Hoar, E.T.; Hitchcock, D.A.; Krentz, T.M.; Roy, L.E. Machine Learning Prediction of Fracture Toughness in Hydrogen-charged Stainless Steels. In Proceedings of the 2023 American Nuclear Society Annual Meeting, Indianapolis, IN, USA, 11–14 June 2023. [Google Scholar]
- Thankachan, T.; Prakash, K.S.; Pleass, C.D.; Rammasamy, D.; Prabakaran, B.; Jothi, S. Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen. Int. J. Hydrogen Energy 2017, 42, 28612–28621. [Google Scholar] [CrossRef]
- Kim, S.-G.; Shin, S.-H.; Hwang, B. Machine learning approach for prediction of hydrogen environment embrittlement in austenitic steels. J. Mater. Res. Technol. 2022, 19, 2794–2798. [Google Scholar] [CrossRef]
- Ahmed, N.; Aldaw, M.; Ahmed, R.; Teodoriu, C. Modeling of necking area reduction of carbon steel in hydrogen environment using machine learning approach. Eng. Fail. Anal. 2024, 156, 107864. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Tu, S.; Xuan, F. Validation and Application of a Two-parameter J-Ad Approach for Fracture Behaviour Prediction. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2998–3011. [Google Scholar] [CrossRef]
- Ronevich, J.A.; Song, E.J.; Somerday, B.P.; Marchi, C.W.S. Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen. Int. J. Hydrogen Energy 2021, 46, 7601–7614. [Google Scholar] [CrossRef]
- Ronevich, J.; Marchi, C.S.; Kolasinski, R.; Thurmer, K.; Bartelt, N.; El Gabaly, F.; Somerday, B. Oxygen Impurity Effects on Hydrogen Assisted Fatigue and Fracture of X100 Pipeline Steel. In Proceedings of the ASME 2018 Pressure Vessels and Piping Conference, Prague, Czech Republic, 15–20 July 2018. [Google Scholar]
- Nibur, K.A.; Somerday, B.P.; Marchi, C.S.; Foulk, J.W.; Dadfarnia, M.; Sofronis, P. The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas. Metall. Mater. Trans. A 2013, 44, 248–269. [Google Scholar] [CrossRef]
- San Marchi, C.; Somerday, B.P.; Nibur, K.A.; Stalheim, D.G.; Boggess, T.; Jansto, S. Fracture Resistance and Fatigue Crack Growth of X80 Pipeline Steel in Gaseous Hydrogen. In Proceedings of the ASME 2011 Pressure Vessels and Piping Conference, Baltimore, MD, USA, 17–21 July 2011. [Google Scholar]
- Stalheim, D.; Boggess, T.; San Marchi, C.; Jansto, S.; Somerday, B.; Muralidharan, G.; Sofronis, P. Microstructure and Mechanical Property Performance of Commercial Grade API Pipeline Steels in High Pressure Gaseous Hydrogen. In Proceedings of the 2010 8th International Pipeline Conference, Calgary, AB, Canada, 27 September–1 October 2010. [Google Scholar]
- Nishihara, Y.; Okano, H. Effect of High Pressure Hydrogen Gas on Fatigue and Fracture Properties of API X65 LinepIpe Steels. In Proceedings of the ASME 2023 Pressure Vessels & Piping Conference, Atlanta, GA, USA, 16–21 July 2023. [Google Scholar]
- San Marchi, C.; Somerday, B.P.; Nibur, K.A.; Stalheim, D.G.; Boggess, T.; Jansto, S. Fracture and Fatigue of Commercial Grade API Pipeline Steels in Gaseous Hydrogen. In Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, Bellevue, WA, USA, 18–22 July 2010. [Google Scholar]
- Hoover, W.R.; Robinson, S.L.; Stoltz, R.E.; Spingarn, J.R. Hydrogen Compatibility of Structural Materials for Energy Storage and Transmission; Final Report; Sandia Labs.: Livermore, CA, USA, 1981.
- Hoover, W.R.I.; Robinson, S.L.; Stoltz, R.E.; Spingarn, J.R. Hydrogen Compatibility of Structural Materials for Energy Storage and Transmission; Annual Report; University of North Texas Libraries, UNT Digital Library: Denton, TX, USA, 1980; Available online: https://digital.library.unt.edu (accessed on 5 May 2025).
- Gutierrez-Solana, F.; Elices, M. High-Pressure Hydrogen Behavior of a Pipeline Steel. In Current Solutions to Hydrogen Problems in Steels; Interrante, C.G., Pressouyre, G.M., Eds.; American Society for Metals: Metals Park, OH, USA, 1982; pp. 181–185. [Google Scholar]
- Álvarez, G.; Peral, L.; Rodríguez, C.; García, T.; Belzunce, F. Hydrogen embrittlement of structural steels: Effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int. J. Hydrogen Energy 2019, 44, 15634–15643. [Google Scholar] [CrossRef]
- Álvarez, G.; Zafra, A.; Belzunce, F.; Rodríguez, C. Hydrogen embrittlement testing procedure for the analysis of structural steels with Small Punch Tests using notched specimens. Eng. Fract. Mech. 2021, 253, 107906. [Google Scholar] [CrossRef]
- Cialone, H.J.; Holbrook, J.H. Sensitivity of Steels to Degradation in Gaseous Hydrogen; ASTM International: West Conshohocken, PA, USA, 1988. [Google Scholar]
- Zawierucha, R.; Kang, X. Hydrogen pipeline steels. Mater. Sci. Technol. 2005, 3, 5. [Google Scholar]
- Duncan, A.; Lam, P.-S.; Adams, T. Tensile Testing of Carbon Steel in High Pressure Hydrogen. In Proceedings of the ASME 2007 Pressure Vessels and Piping Conference, San Antonio, TX, USA, 22–26 July 2007. [Google Scholar]
- ASTM E1820-18; ASTM E1820-18: Standard Test Method for Measurement of Fracture Toughness. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Duncan, A.J.; Adams, T.M.; Lam, P.-S. Fracture Property Testing of Carbon Steel in High Pressure Hydrogen. In Proceedings of the ASME 2009 Pressure Vessels and Piping Conference, Prague, Czech Republic, 26–30 July 2009. [Google Scholar]
- ASTM E399-17; Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Morgan, M.; Tosten, M.H.; Chapman, G.K. The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steel. In Proceedings of the 2012 International Hydrogen Conference, Moran, WM, USA, 9–12 September 2012. [Google Scholar]
- Li, J.; Jin, L.; Dong, J.; Wang, F.; Dong, S. Effects of microstructure on fracture toughness of wrought Mg-8Gd-3Y-0.5Zr alloy. Mater. Charact. 2019, 157, 109899. [Google Scholar] [CrossRef]
- Alam, M.E.; Wang, J.; Henager, C.; Setyawan, W.; Odette, G. The effect of hot rolling on the strength and fracture toughness of 90W–7Ni3Fe tungsten heavy metal alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 824, 141738. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- El Morr, C.; Jammal, M.; Ali-Hassan, H.; El-Hallak, W. (Eds.) K-Nearest Neighbors. In Machine Learning for Practical Decision Making: A Multidisciplinary Perspective with Applications from Healthcare; Engineering and Business Analytics; Springer International Publishing: Cham, Switzerland, 2022; pp. 301–318. [Google Scholar]
- Lee, J.A. 17—Hydrogen embrittlement of nickel, cobalt and iron-based superalloys. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R.P., Somerday, B.P., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 624–667. [Google Scholar]
- Park, I.-J.; Lee, S.M.; Jeon, H.H.; Lee, Y.K. The advantage of grain refinement in the hydrogen embrittlement of Fe–18Mn–0.6C twinning-induced plasticity steel. Corros. Sci. 2015, 93, 63–69. [Google Scholar] [CrossRef]
- Moustafa, M.A. Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys. J. Mater. Process. Technol. 2009, 209, 605–610. [Google Scholar] [CrossRef]
- Hirsch, P.B. Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry: Proceedings of the 7th Symposium Organised by the Technical Advisory Group on Structural Integrity in the Nuclear Industry; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Krauss, G.; Committee, A.H. Microstructures, Processing, and Properties of Steels. In Properties and Selection: Irons, Steels, and High-Performance Alloys; ASM International: Materials Park, OH, USA, 1990; pp. 126–139. [Google Scholar]
- Effects of Mn, P, S, Si & V on the Mechanical Properties of Steel. Available online: https://leonghuat.com/articles/elements.htm (accessed on 15 January 2025).
- Dong, F.; Venezuela, J.; Li, H.; Shi, Z.; Zhou, Q.; Chen, L.; Chen, J.; Du, L.; Atrens, A. The influence of phosphorus on the temper embrittlement and hydrogen embrittlement of some dual-phase steels. Mater. Sci. Eng. A 2022, 854, 143379. [Google Scholar] [CrossRef]
- Barnoush, A.; Vehoff, H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation. Acta Mater. 2010, 58, 5274–5285. [Google Scholar] [CrossRef]
- Barthélémy, H. Effects of pressure and purity on the hydrogen embrittlement of steels. Int. J. Hydrogen Energy 2011, 36, 2750–2758. [Google Scholar] [CrossRef]
- Zheng, C.; Li, L.; Yang, W.; Sun, Z. Relationship between microstructure and yield strength for plain carbon steel with ultrafine or fine (ferrite+cementite) structure. Mater. Sci. Eng. A 2014, 617, 31–38. [Google Scholar] [CrossRef]
- Turk, A.; Joshi, G.R.; Gintalas, M.; Callisti, M.; Rivera-Díaz-del-Castillo, P.E.J.; Galindo-Nava, E.I. Quantification of hydrogen trapping in multiphase steels: Part I—Point traps in martensite. Acta Mater. 2020, 194, 118–133. [Google Scholar] [CrossRef]
- Nanninga, N.; Slifka, A.; Levy, Y.; White, C. A review of fatigue crack growth for pipeline steels exposed to hydrogen. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Röthig, M.; Hoschke, J.; Tapia, C.; Venezuela, J.; Atrens, A. A review of gas phase inhibition of gaseous hydrogen embrittlement in pipeline steels. Int. J. Hydrogen Energy 2024, 60, 1239–1265. [Google Scholar] [CrossRef]
- Robinson, S.L.; Stoltz, R.E. Toughness Losses and Fracture Behavior of Low Strength Carbon-Manganese Steels in Hydrogen. In Hydrogen Effects in Metals; Bernstein, I.M., Thompson, A.W., Eds.; The Metallurgical Society of AIME: Warrendale, PA, USA, 1981; pp. 987–995. [Google Scholar]
- Shang, J.; Wang, J.Z.; Chen, W.F.; Wei, H.T.; Zheng, J.Y.; Hua, Z.L.; Zhang, L.; Gu, C.H. Different effects of pure hydrogen vs. hydrogen/natural gas mixture on fracture toughness degradation of two carbon steels. Mater. Lett. 2021, 296, 129924. [Google Scholar] [CrossRef]
- Xu, K. Hydrogen embrittlement of carbon steels and their welds. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R.P., Somerday, B.P., Eds.; Woodhead Publishing: Sawston, UK, 2012; Volume 2, pp. 526–561. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Heo, H.M.; Park, J.; Nahm, S.H.; Beak, U.B. Fracture properties and fatigue life assessment of API X70 pipeline steel under the effect of an environment containing hydrogen. J. Mech. Sci. Technol. 2021, 35, 1445–1455. [Google Scholar] [CrossRef]
- Steiner, M.; Marewski, U.; Silcher, H. DVGW Project SyWeSt H2: “Investigation of Steel Materials for Gas Pipelines and Plants for Assessment of their Suitability with Hydrogen”; Final Report; DVGW-Hauptgeschäftsstelle: Bonn, Germany, 2023. [Google Scholar]
References | Number of Data Points | Test Parameter Ranges | Specimen Type | Standard Used | |
---|---|---|---|---|---|
Pressure (MPa) | Displacement Rate (mm/min) | ||||
Álvarez et al. [43] | 8 | 19.5 | 0.001–0.1 | DEN | ASTM E1820 [48] Equivalent |
Álvarez et al. [44] | 6 | 19.5 | 0.1–0.001 | SEN | ASTM E1820 [48] |
Cialone and Holbrook [45] | 9 | 4.14–6.9 | 0.012–0.12 | CT | ASTM E1820 [48] |
Duncan et al. [47,49] | 17 | 10.3 | 1.272 | AS | ASTM E399 [50] |
Gutierrez-Solana & Elices [42] | 10 | 45704 | 0.15 | SEN | ASTM E1820 [48] |
Hoover et al. [40,41] | 5 | 3.5–34.5 | 0.51 | DEN | ASTM E1820 [48] Equivalent |
Hoover et al. [40] | 9 | 6.9 | 0.51 | SEN | ASTM E1820 [48] |
Nishihara and Okano [38] | 3 | 25 | 0.12 | CT | ASTM E1820 [48] |
Peral et al. [8] | 36 | 19.5 | 0.01–1 | CT | ASTM E1820 [48] |
Ronevich, et al. [33] | 37 | 100 | 0.005 | CT/AS | ASTM E1820 [48]/E399 [50] |
Ronevich, et al. [34] | 8 | 1.4–21 | 0.005–0.05 | CT | ASTM E1820 [48] |
San Marchi et al. [36] | 4 | 21–103 | 0.005 | CT | ASTM E1820 [48] |
San Marchi et al. [39] | 8 | 5.5–21 | 0.0055 | CT | ASTM E1820 [48] |
Stalheim et al. [37] | 4 | 5.5–20.7 | 0.005 | CT | ASTM E1820 [48] |
Zawierucha & Kang [46] | 11 | 3.5–20.7 | 0.05 | CT | ASTM E1820 [48] |
Categories | Parameters | Range (Min/Max) | Units |
---|---|---|---|
Chemical Properties | Iron (Fe) | 93.86/99.604 | % |
Carbon (C) | 0.03/0.49 | % | |
Manganese (Mn) | 0.04/1.72 | % | |
Phosphorus (P) | 0.0/0.033 | % | |
Sulfur (S) | 0.00/0.035 | % | |
Silicon (Si) | 0.014/1.08 | % | |
Copper (Cu) | 0.00/0.31 | % | |
Aluminum (Al) | 0.00/0.42 | % | |
Other * | 0.00/5.36 | % | |
Mechanical Properties and Test Conditions | Yield Strength (Su) | 280/1086 | MPa |
Ultimate Strength (Su) | 415/1198 | MPa | |
Fracture toughness (FT) | 20/393 | MPa√m | |
Hydrogen Partial Pressure | 0.10/97.00 | MPa | |
Displacement Rate | 1.272/0.001 | mm/min | |
Heat Treatment | Different heating treatment | - | |
Product Form | Diverse product + | - | |
Oxygen | 5/100 | ppm | |
Carbon dioxide | 0/0.69 | Mpa |
Model | Level of Importance | ||
---|---|---|---|
1st | 2nd | 3rd | |
KNN | Hydrogen Pressure | Yield strength | Other |
GB | Hydrogen Pressure | Yield strength | Other |
RF | Hydrogen Pressure | Yield strength | Other |
DT | Hydrogen Pressure | Yield strength | Other |
SVM | Si | Mn | P |
ANN | Fe | Mn | Hydrogen |
CatBoost | P | Si | Yield strength |
Model | Coefficient of Determination | RMSE | MAE | ||
---|---|---|---|---|---|
Train R2 | Test R2 | ∆R2 | |||
RF | 0.77 | 0.76 | 0.01 | 41.41 | 29.06 |
DT | 0.78 | 0.73 | 0.05 | 44.43 | 33.99 |
GB | 0.82 | 0.80 | 0.02 | 38.41 | 28.72 |
KNN | 0.85 | 0.84 | 0.01 | 33.57 | 25.95 |
max | 0.85 | 0.84 | 0.05 | 46.73 | 33.99 |
min | 0.77 | 0.70 | 0.01 | 33.57 | 25.95 |
Model | Statistical Metrics Ranking | Cross-Validation Ranking | Feature Important Rating | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Train R2 | Test R2 | ∆R2 | RMSE | MAE | Pressure | YS | Others | DR | ||
RF | 4th | 3rd | 3rd | 3rd | 3rd | 3rd | 1st | 2nd | 3rd | 4th |
DT | 3rd | 4th | 4th | 4th | 4th | 4th | 1st | 2nd | 3rd | 4th |
GB | 2nd | 2nd | 2nd | 2nd | 2nd | 2nd | 1st | 2nd | 3rd | 4th |
KNN | 1st | 1st | 1st | 1st | 1st | 1st | 1st | 2nd | 1st | 4th |
Parameter | X70 | X60 | X52 | |
---|---|---|---|---|
Hydrogen pressure (MPa) | 2 | 2 | 2 | |
DR (mm/min) | 0.02 | 0.02 | 0.02 | |
Oxygen Content (ppm) | 0 | 0 | 0 | |
Yield Strengths (MPa) | 483 | 414 | 359 | |
Material composition (%) | Fe | 97.81 | 98.04 | 98.57 |
C | 0.05 | 0.22 | 0.30 | |
Mn | 0.52 | 1.43 | 1.11 | |
P | 0.016 | 0.013 | 0.013 | |
Si | 0.23 | 0.08 | 0.02 | |
Cu | 0.02 | 0.06 | 0.08 | |
Al | 0.04 | 0.01 | 0.01 | |
Other * | 0.31 | 0.147 | 1.279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyaabeng, M.; Ahmed, R.; Ahmed, N.; Teodoriu, C.; Devegowda, D. Modeling the Impact of Hydrogen Embrittlement on the Fracture Toughness of Low-Carbon Steel Using a Machine Learning Approach. Metals 2025, 15, 588. https://doi.org/10.3390/met15060588
Gyaabeng M, Ahmed R, Ahmed N, Teodoriu C, Devegowda D. Modeling the Impact of Hydrogen Embrittlement on the Fracture Toughness of Low-Carbon Steel Using a Machine Learning Approach. Metals. 2025; 15(6):588. https://doi.org/10.3390/met15060588
Chicago/Turabian StyleGyaabeng, Michael, Ramadan Ahmed, Nayem Ahmed, Catalin Teodoriu, and Deepak Devegowda. 2025. "Modeling the Impact of Hydrogen Embrittlement on the Fracture Toughness of Low-Carbon Steel Using a Machine Learning Approach" Metals 15, no. 6: 588. https://doi.org/10.3390/met15060588
APA StyleGyaabeng, M., Ahmed, R., Ahmed, N., Teodoriu, C., & Devegowda, D. (2025). Modeling the Impact of Hydrogen Embrittlement on the Fracture Toughness of Low-Carbon Steel Using a Machine Learning Approach. Metals, 15(6), 588. https://doi.org/10.3390/met15060588