Study on Hydrogen Embrittlement Behavior in Heat-Affected Zone of X80 Welded Pipe
Abstract
1. Introduction
2. Research Methods
2.1. Experimental Materials
2.2. Thermal Simulation Tests
2.3. Tensile Property Tests
2.4. Microstructure Analysis Test
3. Results
3.1. Microstructure of the HAZ in the X80 Welded Pipe
3.2. Tensile Properties of Each Sub-HAZ
3.3. Tensile Fractography in Each Sub-HAZ
4. Discussion
5. Conclusions
- When deformed at a low strain rate of less than 1 × 10−3 s−1, the CGHAZ of the X80 welded pipes shows the highest hydrogen embrittlement sensitivity, followed by the ICHAZ, and the FGHAZ has the lowest sensitivity. When deformed at a strain rate of 1 × 10−4 s−1, the hydrogen embrittlement sensitivity of the ICHAZ in the HAZ becomes the highest, followed by the CGHAZ, while the FGHAZ is almost unaffected. Therefore, when designing and using X80 welded pipes for hydrogen transportation, while paying attention to the hydrogen damage behavior in the CGHAZ, the hydrogen damage behavior in the ICHAZ should not be ignored.
- The granular bainite structure in the CGHAZ has a higher hydrogen embrittlement sensitivity. After being affected by hydrogen, the granular bainite grains have the most low-angle boundaries and high-strain regions during deformation. Next is the acicular ferrite in the ICHAZ. The polygonal ferrite in the FGHAZ is least affected by hydrogen.
- At high strain rates, the efficiency of hydrogen loading on dislocations decreases, and hydrogen atoms are more likely to be captured by grain boundaries, leading to the formation of high-strain regions. The ICHAZ, composed of fine grains, has the most high-angle boundaries and thus has the greatest ability to capture hydrogen. This is the main reason for the high hydrogen embrittlement sensitivity in the ICHAZ at high strain rates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and Future Role of Haber–Bosch Ammonia in a Carbon-Free Energy Landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage. 2020, 27, 101047. [Google Scholar] [CrossRef]
- Herib, B.; André, F. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Jaworski, J.; Kułaga, P.; Blacharski, T. Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters. Energies 2020, 13, 3006. [Google Scholar] [CrossRef]
- Omar, B.; Zahreddine, H.; Milos, B.D.; Elaoud, S. The synergistic effects of hydrogen embrittlement and transient gas flow conditions on integrity assessment of a precracked steel pipeline. Int. J. Hydrogen Energy 2020, 45, 18010–18020. [Google Scholar]
- Nazir, H.; Muthuswamy, N.; Louis, C.; Jose, S.; Prakash, J.; Buan, M.E.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. Int. J. Hydrogen Energy 2020, 45, 20693–20708. [Google Scholar] [CrossRef]
- Yu, Q.; Hao, Y.; Ali, K.; Hua, Q.; Sun, L. Techno-economic analysis of hydrogen pipeline network in China based on levelized cost of transportation. Energy Convers. Manag. 2024, 301, 118025. [Google Scholar] [CrossRef]
- Battersby, P.N.; Averill, A.F.; Ingram, J.M.; Holborn, P.G.; Nolan, P.F. Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 2. Mitigation of vented deflagrations. Int. J. Hydrogen Energy 2012, 37, 19258–19267. [Google Scholar] [CrossRef]
- Meng, B.; Gu, C.H.; Lin, Z.; Zhou, C.; Li, X.; Zhao, Y.; Zheng, J.; Chen, X.; Han, Y. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrogen Energy 2017, 42, 7404–7412. [Google Scholar] [CrossRef]
- Chi, M.; Zeng, X.; Gao, Y.; Jiangg, H.; Xu, T.; Xiong, F. Experimental and numerical studies on ductile fracture behavior of X80 pipeline steel: Phase ratio and grain size. J. Mater. Res. Technol. 2025, 35, 7018–7036. [Google Scholar] [CrossRef]
- Wiskel, J.B.; Li, X.; Ivey, D.G.; Henein, H. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction. Metall. Mater. Trans. B 2018, 49, 1597–1611. [Google Scholar] [CrossRef]
- Ohaeri, E.G.; Qin, W.; Szpunar, J. A critical perspective on pipeline processing and failure risks in hydrogen service conditions. J. Alloys Compd. 2021, 857, 158240. [Google Scholar] [CrossRef]
- Yang, G.; Guo, Z.; Li, Z.; Liang, L.; Zhang, Y.; Guo, H.; Wang, C.; Xu, K.; Li, L. Effect of hydrogen on low-cycle fatigue properties and the mechanism of hysteresis energy method lifetime prediction of X80 pipeline steel. Corros. Sci. 2025, 243, 112599. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Ma, H.; Tong, Z.; Huang, Y.; Jin, Y.; Su, C.; Zheng, W. Assessing the effects of loading rate on fracture toughness of AISI 1020 and API 5L X80 steels with hydrogen charging: Experimental and numeric simulation study. Eng. Fract. Mech. 2025, 314, 110771. [Google Scholar] [CrossRef]
- Olden, V.; Alvaro, A.; Akselsen, O.M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint e experiments and FE simulations. Int. J. Hydrogen Energy 2012, 37, 11474–11486. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, T.; Zhao, Y.; Sun, J.; Wang, Y. Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint under High-Pressure Coal Gas Environment. Corros. Sci. 2016, 111, 84–97. [Google Scholar] [CrossRef]
- Kang, X. Hydrogen embrittlement of carbon steels and their welds. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Woodhead Publishing: Sawston, UK, 2012; pp. 526–561. [Google Scholar] [CrossRef]
- Duan, R.H.; Wang, Y.Q.; Luo, Z.A.; Wang, G.D.; Xie, G.M. Hydrogen Embrittlement Behavior in the Nugget Zone of Friction Stir Welded X100 Pipeline Steel. Int. J. Hydrogen Energy 2023, 48, 8296–8309. [Google Scholar] [CrossRef]
- Sun, Y.; Fujii, H.; Imai, H.; Kondoh, K. Suppression of Hydrogen-Induced Damage in Friction Stir Welded Low Carbon Steel Joints. Corros. Sci. 2015, 94, 88–98. [Google Scholar] [CrossRef]
- Li, Q.; Deng, C.; Wu, S.; Zhao, H.; Xu, X.; Liu, Y.; Gong, B. Coupled effect of microstructure heterogeneity and hydrogen on local embrittlement of CGHAZ and IC-CGHAZ in X65 pipeline steel. Mater. Sci. Eng. A 2024, 917, 147391. [Google Scholar] [CrossRef]
- Ngyen, T.T.; Beak, U.B.; Park, J.; Nahm, S.H.; Tak, N. Hydrogen environment assisted cracking in X70 welding heat-affected zone under a high-pressure hydrogen gas. Theor. Appl. Fract. Mech. 2020, 109, 102746. [Google Scholar] [CrossRef]
- Yan, Y.; Li, L.; Wang, H.; He, N.; Sun, Y.; Xu, L.; Li, L.; Li, H.; Wang, Z.; Zhang, C.; et al. Investigation of hydrogen embrittlement senitivity of X65 pipeline steel with different compositions employing thermal simulation. Int. J. Hydrogen Energy 2024, 84, 118–131. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Qiao, G.Y.; Li, G.P.; Yang, W.W.; Liao, B.; Xiao, F.R. Fatigue properties of ferrite/bainite dual-phase X80 pipeline steel welded joints. Sci. Technol. Weld. Join. 2017, 22, 217–226. [Google Scholar] [CrossRef]
- Xu, K.; Qiao, G.Y.; Wang, J.S.; Zhang, S.Y.; Xiao, F.R. Research on the fatigue properties of sub-heat-affected zones in X80 pipe. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2915–2927. [Google Scholar] [CrossRef]
- Gao, Z.W.; Gong, B.M.; Wang, B.Y.; Wang, D.; Deng, C.; Yu, Y. Effect of fatigue damage on the hydrogen embrittlement sensitivity of X80 steel welded joints. Int. J. Hydrogen Energy 2021, 46, 38535–38550. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, S.; Xiang, T.; Deng, C. Coupling effect of post-weld heat treatment and fatigue damage on the hydrogen embrittlement of X80 steel welded joints. J. Mater. Res. Technol. 2024, 31, 2646–2657. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, W.; Deng, Q.; Jiang, W.; Wang, Y.; Wang, Y.; Jiang, W. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen. Int. J. Hydrogen Energy 2017, 42, 25102–25113. [Google Scholar] [CrossRef]
- Gou, J.; Nie, R.; Xing, X.; Cui, G.; Liu, J.; Deng, X.; Cheng, Y.F. Hydrogen-induced cracking of welded X80 steel studies by experimental testing and molecular dynamics modeling. Corros. Sci. 2023, 214, 111027. [Google Scholar] [CrossRef]
- Gou, J.; Xing, X.; Cui, G.; Li, Z.; Liu, J.; Deng, X.; Cheng, Y.F. Effect of hydrogen on impact fracture of X80 steel weld: Various heat inputs and coarse grain heat-affected zone. Mater. Sci. Eng. A 2023, 886, 145673. [Google Scholar] [CrossRef]
- Gou, J.; Xing, X.; Cui, G.; Li, Z.; Liu, J.; Deng, X. Hydrogen-Induced Cracking in CGHAZ of Welded X80 Steel under Tension Load. Metals 2023, 13, 1325. [Google Scholar] [CrossRef]
- Li, G.; Du, M. Electrochemical corrosion, hydrogen penetration and stress corrosion cracking behavior of X80 steel heat-affected zone in sulfate-reducing bacteria-containing seawater. Corros. Sci. 2025, 243, 112590. [Google Scholar]
- Świerczyńska, A.; Fydrych, D.; Landowski, M.; Rogalski, G.; Łabanowski, J. Hydrogen embrittlement of X2CrNiMoCuN25–6-3 super duplex stainless steel welded joints under cathodic protection. Constr. Build. Mater. 2020, 238, 117697. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Zhao, W.; Tang, X.; Du, T.; Yang, M. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment. Acta Metall. Sin. 2015, 51, 1101–1110. [Google Scholar]
- Masoumi, M.; Herculano, L.F.G.; de Abreu, H.F.G. Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles. Mater. Sci. Eng. A 2015, 639, 550–558. [Google Scholar]
- Kim, S.; Kang, D.; Kim, T.-W.; Lee, J.; Lee, C. Fatigue crack growth behavior of the simulated HAZ of 800MPa grade high-performance steel. Mater. Sci. Eng. A 2011, 528, 2331–2338. [Google Scholar] [CrossRef]
- GB/T 228.1-2010; Metallic materials—Tensile testing—Part 1: Method of test at room temperature. Standards Press of China: Beijing, China, 2010.
- Yu, S.F.; Qian, B.N.; Guo, X.M. Effect of accelerating cooling on microstructure and toughness of HAZ of X70 pipeline steel. Acta Metall. Sin. 2005, 41, 402–406. [Google Scholar]
- Li, L.; Guo, Z.; Ma, Y.; Tang, L.; Xu, K. Multi-scale hydrogen embrittlement prediction model of low alloy steel based on multi-dimensional defect reconstruction. Eng. Fract. Mech. 2025, 313, 110644. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Gong, P.; Nutter, J.; Rivera-Diaz-Del-Castillo, P.E.J.; Rainforth, W.M. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels. Sci. Adv. 2020, 6, eabb6152. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Sofronis, P. Hydrogen-enhanced localized plasticity–A mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 1994, 176, 191–202. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lu, H.; Liang, J.; Rosenthal, A.; Rosenthal, A.; Liu, H.; Sneddon, G.; McCarroll, I.; Zhao, Z.; Li, W.; et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 2020, 367, 171–175. [Google Scholar] [CrossRef]
- Li, L.; Liang, L.; Wang, Y.; Liu, J.; Sun, M.; Zhao, P.; Hu, J.; Xu, G.; Wang, G.; Xu, K. In situ study on the orientation and strain-rate correlation mechanism of hydrogen embrittlement behavior of ferrite under shear stress. J. Mater. Res. Technol. 2024, 33, 9674–9692. [Google Scholar]
- Venezuela, J.; Liu, Q.; Zhang, M.; Zhou, Q.; Atrens, A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev. 2016, 34, 153–186. [Google Scholar]
- Louthan, M.R., Jr. Strain localization and hydrogen embrittlement. Scr. Metall. 1983, 17, 451–454. [Google Scholar]
- Liu, J.H.; Wang, L.; Wang, X.S. Effect of strain rate on hydrogen embrittlement sensitivity of H2 charged SA508-III steel. Heat Treat. Met. 2018, 43, 227. [Google Scholar]
- Dong, D.Y.; Liu, Y.; Wang, L.; Su, L. Effect of strain rate on dynamic deformation behavior of DP780 steel. Acta Metall. Sin. 2013, 49, 159. [Google Scholar]
- Zhou, X.; Song, J. Effect of local stress on hydrogen segregation at grain boundaries in metals. Mater. Lett. 2017, 196, 123–127. [Google Scholar] [CrossRef]
- Naragani, D.; Sangid, M.D.; Shade, P.A.; Schuren, J.C.; Sharma, H.; Park, J.S.; Kenesei, P.; Bernier, J.V.; Turner, T.J.; Parr, I. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy. Acta Mater. 2017, 137, 71–84. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Mo | Ni | Cr | Cu | Nb | Ti | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 1.75 | 0.24 | 0.011 | 0.002 | 0.005 | 0.018 | 0.224 | 0.022 | 0.070 | 0.016 | 0.041 |
Strain Rate (s−1) | Experiment Condition | Tensile Strength (MPa) | Total Elongation (%) | ||||
---|---|---|---|---|---|---|---|
- | - | CGHAZ | FGHAZ | IGHAZ | CGHAZ | FGHAZ | ICHAZ |
1 × 10−4 | Air | 663 | 658 | 653 | 26.8 | 28.5 | 30.8 |
1 × 10−4 | H2 | 647 | 651 | 650 | 14.8 | 23.9 | 21.5 |
1 × 10−3 | H2 | 653 | 637 | 640 | 19.7 | 25.6 | 26.9 |
1 × 10−2 | H2 | 649 | 643 | 645 | 24.5 | 28.4 | 27.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Liu, W.; Gao, B.-C.; Sha, J.-T.; Bai, R.-X.; Che, B.-H.; Xu, K.; Qiao, G.-Y.; Xiao, F.-R. Study on Hydrogen Embrittlement Behavior in Heat-Affected Zone of X80 Welded Pipe. Metals 2025, 15, 414. https://doi.org/10.3390/met15040414
Tang L, Liu W, Gao B-C, Sha J-T, Bai R-X, Che B-H, Xu K, Qiao G-Y, Xiao F-R. Study on Hydrogen Embrittlement Behavior in Heat-Affected Zone of X80 Welded Pipe. Metals. 2025; 15(4):414. https://doi.org/10.3390/met15040414
Chicago/Turabian StyleTang, Lei, Wang Liu, Bo-Chen Gao, Ji-Tong Sha, Ri-Xin Bai, Bai-Hui Che, Kai Xu, Gui-Ying Qiao, and Fu-Ren Xiao. 2025. "Study on Hydrogen Embrittlement Behavior in Heat-Affected Zone of X80 Welded Pipe" Metals 15, no. 4: 414. https://doi.org/10.3390/met15040414
APA StyleTang, L., Liu, W., Gao, B.-C., Sha, J.-T., Bai, R.-X., Che, B.-H., Xu, K., Qiao, G.-Y., & Xiao, F.-R. (2025). Study on Hydrogen Embrittlement Behavior in Heat-Affected Zone of X80 Welded Pipe. Metals, 15(4), 414. https://doi.org/10.3390/met15040414