The Microstructures and Properties of Cu-Ni-Co-Si Alloys: A Critical Review
Abstract
1. Introduction
2. Diverse Manufacturing Approaches of Cu-Ni-Co-Si Alloys
2.1. Casting
2.2. Additive Manufacturing
2.3. Vacuum Melting
3. Microstructure of Cu-Ni-Co-Si Alloys
3.1. Precipitation Behavior
3.2. Dislocation Structure
3.3. Twinning
4. Effect of Elements on Properties and Microstructure of Alloys
Composition/wt.% | Aging Process | Tested Properties | ||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Co | Si | Temperature/°C | Time/h | MH/HV | EC/% IACS | |
Bal. | 0.32 | 0.59 | 0.62 | 450 | 1 | 291 | 33.4 | [65] |
Bal. | 0.32 | 0.61 | 1.09 | 450 | 1 | 262 | 42 | [54] |
Bal. | 2.31 | 1.18 | 0.82 | 500 | 1 | 280 | 41 | [66] |
Bal. | 0.85 | 2.67 | 0.82 | 500 | 1 | 250 | 46 | [66] |
Bal. | 0.17 | 3.36 | 0.84 | 500 | 1 | 240 | 47.5 | [55] |
Bal. | 1.16 | 2.30 | 0.82 | 500 | 1 | 258 | 44.5 | [55] |
Bal. | 2.5 | 0.5 | 0.7 | 450 | 1 | 230 | 44.8 | [67] |
Bal. | 2.5 | 0.5 | 0.7 | 450 | 2 | 220 | 46.7 | [56] |
Bal. | 2.3 | 0.7 | 0.7 | 450 | 1 | 232 | 31.7 | [56] |
Bal. | 2.3 | 0.7 | 0.7 | 450 | 2 | 248 | 38.3 | [56] |
Bal. | 2.0 | 1.0 | 0.7 | 450 | 1 | 267 | 43.9 | [56] |
Bal. | 2.0 | 1.0 | 0.7 | 450 | 2 | 248 | 44.6 | [56] |
Bal. | 2.5 | 0.5 | 1.0 | 450 | 4 | 248 | 37.0 | [50] |
Bal. | 2.5 | 0.5 | 1.0 | 450 | 3 | 249 | 38.0 | [39] |
Bal. | 2.3 | 1.2 | 0.8 | 450 | 1 | 275 | 40.2 | [39] |
Bal. | 4.5 | 1.0 | 1.0 | 400 | 2 | 329 | 30 | [39] |
Bal. | 1.5 | 1.0 | 1.5 | 450 | 1 | 200 | 43 | [68] |
Bal. | 2.0 | 1.5 | 0.9 | 450 | 3 | 233 | 37.3 | [57] |
Bal. | 1.0 | 2.5 | 1.8 | 450 | 2 | 233 | 52.5 | [69] |
Bal. | 8 | 0.5 | 1.2 | 450 | 2 | 268 | 30.3 | [58] |
Bal. | 7.0 | 0.1 | 1.6 | 450 | 2 | 316 | 15.9 | [58] |
Bal. | 4.5 | 1.2 | 1.0 | 400 | 1 | 263 | 24.9 | [22] |
Bal. | 4.5 | 1.2 | 1.0 | 450 | 0.5 | 280 | 26.7 | [17] |
Bal. | 4.5 | 1.2 | 1.0 | 450 | 1 | 329 | 30.1 | [17] |
Bal. | 63.2 | 0 | 25.76 | 450 | 4 | 273 | 30 | [70] |
Bal. | 51.43 | 0 | 27.55 | 450 | 4 | 248 | 16 | [59] |
Bal. | 1.82 | 0.62 | 0.86 | 450 | 1 | 265 | 42.5 | [71] |
Bal. | 1.82 | 0.62 | 0.86 | 450 | 2 | 258 | 44 | [60] |
Bal. | 1.28 | 0.84 | 0.46 | 450 | 1 | 300 | 35 | [72] |
Bal. | 1.5 | 0.7 | 0.7 | 450 | 2 | 260 | 40.5 | [73] |
4.1. Ni and Si
4.2. Co
4.3. Ce (Cerium)
4.4. Mg, Cr and Zr
5. Strengthening Mechanisms
5.1. Grain Refinement Strengthening
5.2. Solid Solution Strengthening
5.3. Precipitation Strengthening
5.4. Dislocation Strengthening
6. Future Works
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.J.; Zhang, P.; Zhang, Z.F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys. Acta Mater. 2016, 121, 331–342. [Google Scholar] [CrossRef]
- Semboshi, S.; Sato, S.; Iwase, A.; Takasugi, T. Discontinuous precipitates in age-hardening CuNiSi alloys. Mater. Charact. 2016, 115, 39–45. [Google Scholar] [CrossRef]
- Chalon, J.; Guérin, J.D.; Dubar, L.; Dubois, A.; Puchi-Cabrera, E.S. Characterization of the hot-working behavior of a Cu-Ni-Si alloy. Mater. Sci. Eng. A 2016, 667, 77–86. [Google Scholar] [CrossRef]
- Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the maximum strength in nanotwinned copper. Science 2009, 323, 607–610. [Google Scholar] [CrossRef]
- Guoliang, X.; Qiangsong, W.; Xujun, M.; Baiqing, X.; Lijun, P. The precipitation behavior and strengthening of a Cu–2.0wt% Be alloy. Mater. Sci. Eng. A 2012, 558, 326–330. [Google Scholar] [CrossRef]
- Pang, J.C.; Duan, Q.Q.; Wu, S.D.; Li, S.X.; Zhang, Z.F. Fatigue strengths of Cu–Be alloy with high tensile strengths. Scr. Mater. 2010, 63, 1085–1088. [Google Scholar] [CrossRef]
- Jacobs, L.; Taghavi, M.; Fallas, J.; Geers, C.; Libertalis, M.; Smet, J.; Nortier, J.; Mesquita, M. Multisystemic Beryllium Disease: An Exceptional Case Revealed by a Urinary Tract Granulomatosis. Int. J. Mol. Sci. 2024, 25, 8166. [Google Scholar] [CrossRef]
- Li, Z.M.; Li, X.N.; Hu, Y.L.; Zheng, Y.H.; Yang, M.; Li, N.J.; Bi, L.X.; Liu, R.W.; Wang, Q.; Dong, C.; et al. Cuboidal γ′ phase coherent precipitation-strengthened Cu–Ni–Al alloys with high softening temperature. Acta Mater. 2021, 203, 116458. [Google Scholar] [CrossRef]
- Si, L.; Zhou, L.; Zhu, X.; Sanhua, L.; Leinuo, S.; Qiyi, D. Microstructure and property of Cu–2.7Ti–0.15Mg–0.1Ce–0.1Zr alloy treated with a combined aging process. Mater. Sci. Eng. A 2016, 650, 345–353. [Google Scholar] [CrossRef]
- Soffa, W.A.; Laughlin, D.E. High-strength age hardening copper–titanium alloys: Redivivus. Prog. Mater. Sci. 2004, 49, 347–366. [Google Scholar] [CrossRef]
- Lei, Q.; Li, Z.; Gao, Y.; Peng, X.; Derby, B. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes. J. Alloys Compd. 2017, 695, 2413–2423. [Google Scholar] [CrossRef]
- Lei, Q.; Li, Z.; Wang, J.; Xie, J.M.; Chen, X.; Li, S.; Gao, Y.; Li, L. Hot working behavior of a super high strength Cu–Ni–Si alloy. Mater. Des. 2013, 51, 1104–1109. [Google Scholar] [CrossRef]
- Watanabe, C.; Monzen, R.; Tazaki, K. Mechanical properties of Cu–Cr system alloys with and without Zr and Ag. J. Mater. Sci. 2007, 43, 813–819. [Google Scholar] [CrossRef]
- Dong, Q.; Shen, L.; Cao, F.; Jia, Y.; Liao, K.; Wang, M. Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy. J. Mater. Eng. Perform. 2015, 24, 1531–1539. [Google Scholar] [CrossRef]
- Chen, T.A.; Chuu, C.P.; Tseng, C.C.; Wen, C.K.; Wong, H.P.; Pan, S.; Li, R.; Chao, T.A.; Chueh, W.C.; Zhang, Y.; et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223. [Google Scholar] [CrossRef]
- Jiang, L.; Fu, H.; Wang, C.; Li, W.; Xie, J. Enhanced Mechanical and Electrical Properties of a Cu-Ni-Si Alloy by Thermo-mechanical Processing. Metall. Mater. Trans. A 2019, 51, 331–341. [Google Scholar] [CrossRef]
- Yan, H.; Hu, H.; Li, L.; Huang, W.; Li, C. Research Progress of Cu-Ni-Si Series Alloys for Lead Frames. Coatings 2025, 15, 91. [Google Scholar] [CrossRef]
- Wang, W.; Kang, H.; Chen, Z.; Chen, Z.; Zou, C.; Li, R.; Yin, G.; Wang, T. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A 2016, 673, 378–390. [Google Scholar] [CrossRef]
- Han, S.Z.; Gu, J.H.; Lee, J.H.; Que, Z.P.; Shin, J.H.; Lim, S.H.; Kim, S.S. Effect of V addition on hardness and electrical conductivity in Cu-Ni-Si alloys. Met. Mater. Int. 2013, 19, 637–641. [Google Scholar] [CrossRef]
- Ban, Y.; Geng, Y.; Hou, J.; Zhang, Y.; Zhou, M.; Jia, Y.; Tian, B.; Liu, Y.; Li, X.; Volinsky, A.A. Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy. J. Mater. Sci. Technol. 2021, 93, 1–6. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, Y.; Tian, B.; Song, K.; Zhou, M.; Zhang, X.; Jia, Y.; Li, X.; Geng, Y.; Liu, Y.; et al. EBSD analysis of hot deformation behavior of Cu-Ni-Co-Si-Cr alloy. Mater. Charact. 2020, 169, 110656. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, Z.; Dai, J.; Li, Z.; Jiang, H.; Wang, W.; Zhang, X. Microstructure and Properties of a Novel Cu–Ni–Co–Si–Mg Alloy with Super-high Strength and Conductivity. Mater. Sci. Eng. A 2019, 744, 754–763. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Mi, X.; Peng, L.; Xie, H.; Kang, Y. Microstructure evolution and properties of a quaternary Cu–Ni–Co–Si alloy with high strength and conductivity. Mater. Sci. Eng. A 2019, 766, 138390. [Google Scholar] [CrossRef]
- Ventura, A.P.; Marvel, C.J.; Pawlikowski, G.; Bayes, M.; Watanabe, M.; Vinci, R.P.; Misiolek, W.Z. The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si. Metall. Mater. Trans. A 2017, 48, 6070–6082. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Jiang, B.; Li, X.; Zhou, W.; Dong, C.; Wang, H.; Chen, Q. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach. Prog. Nat. Sci. Mater. Int. 2017, 27, 467–473. [Google Scholar] [CrossRef]
- Azizi, N.; Asgari, H.; Hasanabadi, M.; Odeshi, A.; Toyserkani, E. On the microstructure and dynamic mechanical behavior of Cu–Cr–Zr alloy manufactured by high-power laser powder bed fusion. Mater. Des. 2025, 253, 113826. [Google Scholar] [CrossRef]
- Wei, H.; Wei, H.-l.; Du, H.-y.; Wang, Q.; Zhou, C.-z.; Wei, Y.-h.; Hou, L.-f. Mechanism of property enhancement of Cu−Ti alloys via microalloying with Cr and Mg elements. Trans. Nonferrous Met. Soc. China 2025, 35, 1233–1248. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Zhang, D.; Liu, H.; Ma, J. Effect of laser shock peening and age-hardening treatment on hydrogen embrittlement of ultra-strength Cu-Ti-Fe alloy. Vacuum 2025, 239, 114371. [Google Scholar] [CrossRef]
- Yagmur, L. Effect of microstructure on internal friction and Young’s modulus of aged Cu–Be alloy. Mater. Sci. Eng. A 2009, 523, 65–69. [Google Scholar] [CrossRef]
- Plewes, J.T. High-strength Cu-Ni-Sn alloys by thermomechanical processing. Metall. Trans. A 1975, 6, 537. [Google Scholar] [CrossRef]
- Du, S.; Wang, X.; Li, Z.; Yang, Z.; Wang, J. Effect of Ni Content on Microstructure and Characterization of Cu-Ni-Sn Alloys. Materials 2018, 11, 1108. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Li, Z.; Xiao, T.; Pang, Y.; Xiang, Z.Q.; Qiu, W.T.; Xiao, Z. A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics 2013, 42, 77–84. [Google Scholar] [CrossRef]
- Sun, Z.; Laitem, C.; Vincent, A. Dynamic embrittlement at intermediate temperature in a Cu–Ni–Si alloy. Mater. Sci. Eng. A 2008, 477, 145–152. [Google Scholar] [CrossRef]
- Peng, L.-J.; Xiong, B.-Q.; Xie, G.-L.; Wang, Q.-S.; Hong, S.-B. Precipitation process and its effects on properties of aging Cu–Ni–Be alloy. Rare Met. 2013, 32, 332–337. [Google Scholar] [CrossRef]
- Xiao, X.; Yi, Z.; Chen, T.; Liu, R.; Wang, H. Suppressing spinodal decomposition by adding Co into Cu–Ni–Si alloy. J. Alloys Compd. 2016, 660, 178–183. [Google Scholar] [CrossRef]
- Hu, T.; Chen, J.H.; Liu, J.Z.; Liu, Z.R.; Wu, C.L. The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys. Acta Mater. 2013, 61, 1210–1219. [Google Scholar] [CrossRef]
- Gholami, M.; Vesely, J.; Altenberger, I.; Kuhn, H.A.; Janecek, M.; Wollmann, M.; Wagner, L. Effects of microstructure on mechanical properties of CuNiSi alloys. J. Alloys Compd. 2017, 696, 201–212. [Google Scholar] [CrossRef]
- Ge, S.; Isac, M.; Guthrie, R.I.L. Progress in Strip Casting Technologies for Steel: Technical Developments. ISIJ Int. 2013, 53, 729–742. [Google Scholar] [CrossRef]
- Liu, F.; Ma, J.; Peng, L.; Huang, G.; Zhang, W.; Xie, H.; Mi, X. Hot Deformation Behavior and Microstructure Evolution of Cu–Ni–Co–Si Alloys. Materials 2020, 13, 2042. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, H.; Hu, Y.; Zhang, Z. Hot deformation behavior and dynamic recrystallization mechanism of Cu-Ni-Co-Si alloy. Mater. Today Commun. 2025, 42, 111348. [Google Scholar] [CrossRef]
- Shi, Z.; Yan, P.; Yan, B. Solidification Mechanism of Microstructure of Al-Si-Cu-Ni Alloy Manufactured by Laser Powder Bed Fusion and Mechanical Properties Effect. Metals 2024, 14, 586. [Google Scholar] [CrossRef]
- Li, J.; Cheng, T.; Liu, Y.; Yang, Y.; Li, W.; Wei, Q. Simultaneously enhanced strength and ductility of Cu-15Ni-8Sn alloy with periodic heterogeneous microstructures fabricated by laser powder bed fusion. Addit. Manuf. 2022, 54, 102726. [Google Scholar] [CrossRef]
- Jóźwik, B.; Radoń, A.; Topolska, S.; Kalabis, J.; Karpiński, M.; Burian, W.; Kołacz, D.; Polak, M.; Brudny, A.; Łoński, W.; et al. Influence of SLM printing parameters and hot isostatic pressure treatment on the structure and properties of CuNi3Si1 alloy. J. Alloys Compd. 2023, 947, 169531. [Google Scholar] [CrossRef]
- Perez-Cerrato, M.; Fraile, I.; Gomez-Cortes, J.F.; Urionabarrenetxea, E.; Ruiz-Larrea, I.; Gonzalez, I.; No, M.L.; Burgos, N.; San Juan, J.M. Designing for Shape Memory in Additive Manufacturing of Cu-Al-Ni Shape Memory Alloy Processed by Laser Powder Bed Fusion. Materials 2022, 15, 6284. [Google Scholar] [CrossRef]
- Batraev, I.S.; Ulianitsky, V.Y.; Shtertser, A.A.; Dudina, D.V.; Ivanyuk, K.V.; Kvashnin, V.I.; Lukyanov, Y.L.; Samodurova, M.N.; Trofimov, E.A. Fabrication of High-Entropy Alloys Using a Combination of Detonation Spraying and Spark Plasma Sintering: A Case Study Using the Al-Fe-Co-Ni-Cu System. Metals 2023, 13, 1519. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, L.; Peng, C.; Jia, Y.; Wang, G.; Wang, H.; An, X. Fabrication of Ni-Cu-W Graded Coatings by Plasma Spray Deposition and Laser Remelting. Materials 2022, 15, 2911. [Google Scholar] [CrossRef]
- Wang, C.; Fu, H.; Zhang, H.; He, X.; Xie, J. Simultaneous enhancement of mechanical and electrical properties of Cu–Ni–Si alloys via thermo-mechanical process. Mater. Sci. Eng. A 2022, 838, 142815. [Google Scholar] [CrossRef]
- Jia, L.; Yang, M.-f.; Tao, S.-p.; Xie, H.; Lu, Z.-l.; Kondoh, K.; Xing, Z.-g. Microstructure evolution and reaction behavior of Cu–Ni–Si powder system under solid-state sintering. Mater. Chem. Phys. 2021, 271, 124942. [Google Scholar] [CrossRef]
- Geng, G.; Wang, D.; Zhang, W.; Liu, L.; Laptev, A.M. Fabrication of Cu–Ni–Si alloy by melt spinning and its mechanical and electrical properties. Mater. Sci. Eng. A 2020, 776, 138979. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, Y.; Tian, B.; Jia, Y.; Song, K.; Li, X.; Zhou, M.; Liu, Y.; Volinsky, A.A. Microstructure Evolution in Cu-Ni-Co-Si-Cr Alloy During Hot Compression by Ce Addition. Materials 2020, 13, 3186. [Google Scholar] [CrossRef]
- Raj, S.V. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity. J. Mater. Eng. Perform. 2017, 26, 5456–5471. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Li, S.-Y.; Cui, Z.-S.; Li, Z.; Li, Y.-P.; Lei, Q. Microstructure and properties of high-strength Cu–Ni–Si–(Ti) alloys. Rare Met. 2021, 40, 3251–3260. [Google Scholar] [CrossRef]
- Lei, Q.; Xiao, Z.; Hu, W.; Derby, B.; Li, Z. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater. Sci. Eng. A 2017, 697, 37–47. [Google Scholar] [CrossRef]
- Han, S.Z.; Jeong, I.-S.; Ryu, B.; Lee, S.J.; Ahn, J.H.; Choi, E.-A. Enhanced strength of Cu-Ni-Si alloy via heterogeneous nucleation at grain boundaries during homogenization. Mater. Charact. 2024, 215, 114198. [Google Scholar] [CrossRef]
- Li, Y.-H.; Chen, S.-F.; Wang, S.-W.; Song, H.-W.; Zhang, S.-H. Coarsening mechanism of over-aged δ-Ni2Si nanoscale precipitates in Cu-Ni-Si-Cr-Mg alloy. Mater. Charact. 2024, 209, 113693. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, H.; Liu, S.; Li, X.; Gan, W.; Hu, X.; Fan, G.; Wang, X. Effect of aging temperature on microstructure and properties of cold-rolled Cu-Ni-Si alloy. Mater. Today Commun. 2024, 40, 109438. [Google Scholar] [CrossRef]
- Ling, H.; Tang, Y.; Zhong, J.; Meng, X.; Zhang, M.; Zhang, L. Thermodynamic, diffusion and precipitation behaviors in Cu–Ni–Si–Co alloys: Modeling and experimental validation. J. Mater. Res. Technol. 2025, 35, 3257–3269. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Liu, Y.; Du, C.; Min, Q.; Zheng, Z.; Du, Y. Interdiffusivity matrices and atomic mobilities in fcc Co–Ni–Si and Cu–Co–Ni–Si alloys: Experiment and modeling. Calphad 2023, 80, 102501. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Liu, Y.; Du, C.; Min, Q.; Chen, Z.; Du, Y. Diffusion kinetics for fcc quinary Cu–Co–Mn–Ni–Si system and its application to precipitation simulations. J. Mater. Res. Technol. 2023, 24, 675–688. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, H.; Hu, Y.; Zhang, Z. Coupling strengthening mechanism of precipitate phases and sub-grain boundaries in the aging heat treatment of deformed Cu-Ni-Co-Si alloy. J. Alloys Compd. 2025, 1020, 179292. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Y.; Li, Z.; Shan, Q.; Yu, W.; Tang, D. Microstructure evolution and dislocation strengthening mechanism of Cu–Ni–Co–Si alloy. Mater. Sci. Eng. A 2021, 826, 142023. [Google Scholar] [CrossRef]
- Qi, F.; Fu, H.; Song, Y.; Yun, X. Regulation of dislocation density and precipitates to maximize the mechanical strength and electrical conductivity in continuously extruded Cu–Ni–Si alloys. J. Mater. Res. Technol. 2024, 30, 8519–8528. [Google Scholar] [CrossRef]
- Youssef, K.; Sakaliyska, M.; Bahmanpour, H.; Scattergood, R.; Koch, C. Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys. Acta Mater. 2011, 59, 5758–5764. [Google Scholar] [CrossRef]
- Dasharath, S.M.; Mula, S. Improvement of mechanical properties and fracture toughness of low SFE Cu-Al alloy through microstructural modification by multiaxial cryoforging. Mater. Sci. Eng. A 2017, 690, 393–404. [Google Scholar] [CrossRef]
- Ma, M.; Li, Z.; Xiao, Z.; Jia, Y.; Meng, X.; Jiang, Y.; Hu, Y. Microstructure and properties of Cu–Ni–Co–Si–Cr–Mg alloys with different Si contents after multi-step thermo-mechanical treatment. Mater. Sci. Eng. A 2022, 850, 143532. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Mi, X.; Peng, L.; Xie, H.; Kang, Y. Influence of the Ni/Co Mass Ratio on the Microstructure and Properties of Quaternary Cu-Ni-Co-Si Alloys. Materials 2019, 12, 2855. [Google Scholar] [CrossRef]
- Pan, S.; Wang, Y.; Yu, J.; Yang, M.; Zhang, Y.; Wei, H.; Chen, Y.; Wu, J.; Han, J.; Wang, C.; et al. Accelerated discovery of high-performance Cu-Ni-Co-Si alloys through machine learning. Mater. Des. 2021, 209, 143532. [Google Scholar] [CrossRef]
- Xiao, X.-P.; Xu, H.; Chen, J.-S.; Wang, J.-F.; Lu, J.; Zhang, J.-B.; Peng, L.-J. Coarsening behavior of (Ni, Co)2Si particles in Cu–Ni–Co–Si alloy during aging treatment. Rare Met. 2018, 38, 1062–1069. [Google Scholar] [CrossRef]
- Pan, S.; Yu, J.; Han, J.; Zhang, Y.; Peng, Q.; Yang, M.; Chen, Y.; Huang, X.; Shi, R.; Wang, C.; et al. Customized development of promising Cu-Cr-Ni-Co-Si alloys enabled by integrated machine learning and characterization. Acta Mater. 2023, 243, 118484. [Google Scholar] [CrossRef]
- Tao, S.; Lu, Z.; Jia, L.; Xie, H.; Zhang, J. Effect of Ni/Si mass ratio on microstructure and properties of Cu–Ni–Si alloy. Mater. Res. Express 2020, 7, 066520. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.; Peng, L.; Huang, G.; Xie, H.; Ma, J.; Mi, X. Simultaneously enhanced hardness and electrical conductivity in a Cu–Ni–Si alloy by addition of Cobalt. J. Alloys Compd. 2021, 862, 158667. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.; Zhou, Y.; Zhao, S.; Shan, Y.; Yang, Y.; Song, K. The influences of Cr and Mn on the strength, electrical conductivity, and stress relaxation properties of Cu-Ni-Si-Co-Mg alloys. Mater. Today Commun. 2025, 42, 111328. [Google Scholar] [CrossRef]
- Qin, L.-x.; Zhou, T.; Wang, X.; Jiang, Y.-b.; Liu, F.; Xiao, Z.; Lei, Q.; Jia, Y.-l.; Luo, Y.; Li, Z. Precipitation behavior of a new Cu-Ni-Co-Si-Fe-Mg alloy designed with low cobalt content. Mater. Des. 2024, 240, 112833. [Google Scholar] [CrossRef]
- Ak, İ.; Adin, H.; Arafat, A.; Okumuş, M. Mechanical properties of Cu-Ni alloys: Comparison of experimental and MD simulation approaches. Phys. B Condens. Matter 2025, 700, 416928. [Google Scholar] [CrossRef]
- Islam, M.R.; Karna, P.; Tomko, J.A.; Hoglund, E.R.; Hirt, D.M.; Hoque, M.S.B.; Zare, S.; Aryana, K.; Pfeifer, T.W.; Jezewski, C.; et al. Evaluating size effects on the thermal conductivity and electron-phonon scattering rates of copper thin films for experimental validation of Matthiessen’s rule. Nat. Commun. 2024, 15, 9167. [Google Scholar] [CrossRef]
- Wang, Q.S.; Xie, G.L.; Mi, X.J.; Xiong, B.Q.; Xiao, X.P. The Precipitation and Strengthening Mechanism of Cu-Ni-Si-Co Alloy. Mater. Sci. Forum 2013, 749, 294–298. [Google Scholar] [CrossRef]
- Lee, E.; Han, S.; Euh, K.; Lim, S.; Kim, S. Effect of Ti addition on tensile properties of Cu-Ni-Si alloys. Met. Mater. Int. 2011, 17, 569–576. [Google Scholar] [CrossRef]
- Chen, W.; Jia, Y.; Yi, J.; Wang, M.; Derby, B.; Lei, Q. Effect of addition of Ni and Si on the microstructure and mechanical properties of Cu–Zn alloys. J. Mater. Res. 2017, 32, 3137–3145. [Google Scholar] [CrossRef]
- Orowan, E. Fracture and strength of solids. Rep. Prog. Phys. 1949, 12, 185. [Google Scholar] [CrossRef]
- Ardell, A.J. Precipitation hardening. Metall. Trans. A 1985, 16, 2131–2165. [Google Scholar] [CrossRef]
- Fleming, R.A.; Zou, M. The effects of confined core volume on the mechanical behavior of Al/a-Si core-shell nanostructures. Acta Mater. 2017, 128, 149–159. [Google Scholar] [CrossRef]
- Qiu, X.; Tariq, N.u.H.; Qi, L.; Zan, Y.-n.; Wang, Y.-j.; Wang, J.-q.; Du, H.; Xiong, T.-y. In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment: Microstructure and mechanical properties. J. Alloys Compd. 2019, 780, 597–606. [Google Scholar] [CrossRef]
- Wiengmoon, A.; Pearce, J.T.H.; Nusen, S.; Chairuangsri, T. Effects of Si on microstructure and phase transformation at elevated temperatures in ferritic white cast irons. Mater. Charact. 2016, 120, 159–167. [Google Scholar] [CrossRef]
- Dong, Q.; Yin, Z.; Li, H.; Zhang, X.; Jiang, D.; Zhong, N. Effects of Ag micro-addition on structure and mechanical properties of Sn-11Sb-6Cu Babbitt. Mater. Sci. Eng. A 2018, 722, 225–230. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Y.; Zhao, Y.; Yu, W.; Su, L.; Tang, D. Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu–Ni–Si–Co alloy. Mater. Sci. Eng. A 2021, 814, 141239. [Google Scholar] [CrossRef]
- Zhao, F.; Lei, C.; Yu, J.; Yang, H.; Ling, G.; Liu, J.; Huang, L.; Wang, H. Effects of Co/Si Atomic Ratio on Hardness and Electrical Conductivity of Cu–Co–Si Alloys. Adv. Eng. Mater. 2023, 25, 2201241. [Google Scholar] [CrossRef]
- Tao, S.; Lu, Z.; Xie, H.; Zhang, J.; Wei, X. Effect of high contents of nickel and silicon on the microstructure and properties of Cu–Ni–Si alloys. Mater. Res. Express 2022, 9, 046516. [Google Scholar] [CrossRef]
- Stavroulakis, P.; Toulfatzis, A.; Vazdirvanidis, A.; Pantazopoulos, G.; Papaefthymiou, S. Mechanical behaviour and microstructure of heat-treated Cu–Ni–Si alloy. Mater. Sci. Technol. 2020, 36, 939–948. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Y.; Zhang, M.; Yun, X. Microstructure evolution, precipitation behavior, and mechanical properties of continuously extruded Cu–Ni–Si alloys at different aging treatments. J. Mater. Process. Technol. 2023, 317, 117986. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Lu, J.; Tan, S.; Jiang, F.; Sun, J. Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy. Mater. Sci. Eng. A 2018, 731, 403–412. [Google Scholar] [CrossRef]
- Li, C.; Wei, H.; Li, Z. First-principles study on the high-strength and high-conductivity modification mechanism of C7035 copper alloy by Ni, Si, and Co solid solution. Vacuum 2024, 222, 112973. [Google Scholar] [CrossRef]
- Cao, Q.; Zhou, M.; Zhang, Y.; Hu, H.; Li, X.; Tian, B.; Jia, Y.; Liu, Y.; Volinsky, A.A. Ce Effects on Dynamic Recrystallization of Cu-Fe-Ti-Mg Alloys Due to Hot Compression. J. Mater. Eng. Perform. 2023, 32, 9698–9710. [Google Scholar] [CrossRef]
- Chang, L.; Jia, B.; Li, S.; Zhu, X.; Feng, R.; Shang, X. Influence of cerium on solidification, recrystallization and strengthening of Cu-Ag alloys. J. Rare Earths 2017, 35, 1029–1034. [Google Scholar] [CrossRef]
- Lu, Q.; Cui, S.; Zhao, Y.; Lei, C.; Li, D.; Li, F.; Luo, Y.; Wang, Q. Effect of Ce on microstructure and corrosion resistance of hot extruded Al-1Mn alloys. J. Alloys Compd. 2025, 1018, 179181. [Google Scholar] [CrossRef]
- Song, C.; Xie, Z.; Zhang, Z.; Wang, H.; Sun, Z.; Yang, Y.; Yu, H.; Cheng, J. Effect of Ce on the microstructure, mechanical properties and dislocation state in low-carbon low-alloy steels. Mater. Sci. Eng. A 2025, 927, 148009. [Google Scholar] [CrossRef]
- Ekaputra, C.N.; Mogonye, J.-E.; Dunand, D.C. Microstructure and mechanical properties of cast, eutectic Al-Ce-Ni-Mn-Sc-Zr alloys with multiple strengthening mechanisms. Acta Mater. 2024, 274, 120006. [Google Scholar] [CrossRef]
- Hantzsche, K.; Bohlen, J.; Wendt, J.; Kainer, K.U.; Yi, S.B.; Letzig, D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater. 2010, 63, 725–730. [Google Scholar] [CrossRef]
- Yu, X.; Dai, H.; Li, Z.; Sun, J.; Zhao, J.; Li, C.; Liu, W. Improved Recrystallization Resistance of Al–Cu–Li–Zr Alloy through Ce Addition. Metals 2018, 8, 1035. [Google Scholar] [CrossRef]
- Cai, H.; Lv, W.; Pan, E.; Xue, Z.; Huang, Y.; Xia, Z.; Yu, X.; Gong, S.; Li, Z. Synergistic effects of trace silicon, calcium and cerium on the microstructure and properties of a novel Cu–Cr–Nb–Si–Ca–Ce alloy. Mater. Sci. Eng. A 2024, 898, 146419. [Google Scholar] [CrossRef]
- Su, C.; Feng, G.; Zhi, J.; Zhao, B.; Wu, W. The Effect of Rare Earth Cerium on Microstructure and Properties of Low Alloy Wear-Resistant Steel. Metals 2022, 12, 1358. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Wang, Y.; Zhang, Z.; Feng, J.; Zhang, C.; Song, K. Study of the stress relaxation resistance and microstructural evolution of a Cu–Ni–Si alloy strip. J. Mater. Res. Technol. 2024, 33, 3264–3274. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, J.; Zhang, Y.; Zhang, C.; Shan, Y.; Huang, B.; Yang, Y.; Jiang, H.; Yang, W.; Song, K. Mechanism of Cr enhancement on stress relaxation resistance in Cu–Ni–Co–Si–Mg alloys. J. Alloys Compd. 2025, 1017, 178978. [Google Scholar] [CrossRef]
- Lu, L.; Ding, Z.; Zhang, M.; Song, H.; Deng, S.; Zhang, S. Effect of continuous extrusion forming on mechanical properties of aged Cu-Ni-Si alloy. Mater. Today Commun. 2024, 39, 108858. [Google Scholar] [CrossRef]
- Xiang, C.; Li, X.; Mo, Y.; Chen, Z.; Wang, H.; Xiao, Z.; Gong, S.; Li, Z.; Lou, H. Effect of combined addition of Zr and Mg on the microstructure and properties of a Cu–Cr–Sn–Zn alloy for etching lead frame. Mater. Sci. Eng. A 2024, 912, 146990. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, R.; Yang, W.; Zhang, C.; Gao, W.; He, J. Effect of Mg on microstructure and properties of Cu-Ni-Fe-P alloy with high strength and high conductivity. Mater. Today Commun. 2024, 41, 110513. [Google Scholar] [CrossRef]
- Wan, X.; Xie, W.; Chen, H.; Tian, F.; Wang, H.; Yang, B. First-principles study of phase transformations in Cu–Cr alloys. J. Alloys Compd. 2021, 862, 158531. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Zhang, X.; Liu, Q.; Qi, F.; Li, C.; Chen, L.; Ding, H. The effect of Zr element on the microstructure and properties of Cu–Ni–Si alloys. J. Mater. Res. Technol. 2025, 36, 2747–2759. [Google Scholar] [CrossRef]
- Li, L.; Kang, H.; Zhang, S.; Li, R.; Yang, X.; Chen, Z.; Guo, E.; Wang, T. Microstructure and properties of Cu-Cr-Zr (Mg) alloys subjected to cryorolling and aging treatment. J. Alloys Compd. 2023, 938, 168656. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Shen, Q.; Liu, W.; Wang, Z. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel. Acta Mater. 2018, 156, 158–171. [Google Scholar] [CrossRef]
- Dai, P.; Luo, X.; Yang, Y.; Kou, Z.; Huang, B.; Wang, C.; Zang, J.; Ru, J. Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure. Mater. Sci. Eng. A 2018, 729, 411–422. [Google Scholar] [CrossRef]
- Li, Z.; Chai, F.; Yang, L.; Luo, X.; Yang, C. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel. Mater. Des. 2020, 191, 108637. [Google Scholar] [CrossRef]
- Cui, P.; Yu, S.; Zhou, F.; Wang, H.; Bai, Q.; Zhang, Z.; Zheng, H.; Lai, Z.; Liu, Y.; Zhu, J. Unveiling the precipitate evolutions and relationships between the nano-precipitates and mechanical properties in PH13–8Mo stainless steel. Mater. Sci. Eng. A 2022, 856, 143986. [Google Scholar] [CrossRef]
Summary of Major Findings | ||
---|---|---|
Aspect | Key Findings | References |
Processing Methods | -Additive manufacturing (LPBF) achieves finer grains and uniform precipitates. -Vacuum melting reduces impurities, enhancing ductility. -Hot/cold rolling combined with aging optimizes the strength-conductivity balance. | [22,44,46,57] |
Microstructure | -δ-(Ni, Co)2Si precipitates (5–10 nm) dominate strengthening. -Dislocation cells/twins form during thermomechanical processing. -Low stacking fault energy promotes twinning. | [9,35,36,40] |
Alloying Effects | -Co: Increases conductivity by 5–15% IACS vs. Cu-Ni-Si. -Ce: Refines grains, inhibits recrystallization. -Cr/Zr: Raise recrystallization temperature, resist over-aging. | [76,99] |
Strengthening Mechanisms | -Precipitation hardening contributes >70% of yield strength. -Grain refinement (Hall-Petch) and dislocation density are critical for strength. -Twin boundaries impede dislocation slip. | [23,44] |
Future Directions | -Optimize heat treatment protocols (e.g., multi-step aging). -Explore machine learning for texture/property relationships. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Liu, W.; Ding, C.; Wang, S.; Meng, X. The Microstructures and Properties of Cu-Ni-Co-Si Alloys: A Critical Review. Metals 2025, 15, 564. https://doi.org/10.3390/met15050564
Li F, Liu W, Ding C, Wang S, Meng X. The Microstructures and Properties of Cu-Ni-Co-Si Alloys: A Critical Review. Metals. 2025; 15(5):564. https://doi.org/10.3390/met15050564
Chicago/Turabian StyleLi, Fang, Wenteng Liu, Chao Ding, Shujuan Wang, and Xiangpeng Meng. 2025. "The Microstructures and Properties of Cu-Ni-Co-Si Alloys: A Critical Review" Metals 15, no. 5: 564. https://doi.org/10.3390/met15050564
APA StyleLi, F., Liu, W., Ding, C., Wang, S., & Meng, X. (2025). The Microstructures and Properties of Cu-Ni-Co-Si Alloys: A Critical Review. Metals, 15(5), 564. https://doi.org/10.3390/met15050564