Deformation Lenses in a Bonding Zone of High-Alloyed Steel Laminates Manufactured by Cold Roll Bonding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Properties
2.2. Mechanical Testing
2.3. Surface Roughness Measurement
- Pickled;
- Brushed with blunt bristles;
- Brushed with sharpened bristles;
- Delaminated after the peel test.
2.4. Microstructure Investigation
2.5. Lens Shape and Distribution Statistics
3. Results
3.1. Surface Preparation before ARB
3.1.1. Pickling
3.1.2. Brushing
3.2. Mechanical Properties
3.2.1. Quasi-Static Tensile Loading
3.2.2. Delamination Test
3.2.3. Surface Roughness
3.3. Deformation Lenses Properties
3.3.1. Scanning Electron Microscopy Investigation
3.3.2. Transmission Electron Microscopy Investigation
3.3.3. Distribution Statistics of Deformation Lenses
4. Discussion
5. Conclusions
- Brushing of the TWIP steel with sharp bristles gives a thicker and more uniform work-hardened layer (70 µm) with DLs embedded in the surface. In contrary, brushing with blunt bristles gives a thinner work-hardened layer (50 µm), where DLs stick out from the surface. TRIP steel after brushing has a very thin work-hardened layer (20 µm), which is assumed to be the reason for unsuccessful TRIP–TRIP bonding during CRB.
- Both TRIP–TWIP and TWIP–TWIP laminates demonstrate good mechanical properties with UTS up to 900 MPa and elongation up to 45% with the layer’s integrity persisting up to the tensile fracture.
- The TWIP–TWIP interface shows higher maximum peel strength (up to 195 N/cm) than that of a TRIP–TWIP interface (up to 130 N/cm). Regions of full bonding bet-ween laminate layers were found to be located in gaps between the fragments of DLs.
- The bond strength of an interface between high-alloy CrMnNi steels is in direct proportion to the overall area of DLs and fully bonded regions, which appear in the gaps between DLs fragments after breaking up during rolling.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesch, C.; Kwiaton, N.; Klose, F.B. Advanced High Strength Steels (AHSS) for Automotive Applications−Tailored Properties by Smart Microstructural Adjustments. Steel Res. Int. 2017, 88, 1700210. [Google Scholar] [CrossRef]
- De Cooman, B.C.; Estrin, Y.; Kim, S.K. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018, 142, 283–362. [Google Scholar] [CrossRef]
- Soleimani, M.; Kalhor, A.; Mirzadeh, H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Mater. Sci. Eng. A 2020, 795, 140023. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U.; Neumann, P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003, 43, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Krüger, L.; Wolf, S.; Martin, S.; Martin, U.; Jahn, A.; Weiß, A.; Scheller, P.R. Strain rate dependent flow stress and energy absorption behaviour of cast CrMnNi TRIP/TWIP steels. Steel Res. Int. 2011, 82, 1087–1093. [Google Scholar] [CrossRef]
- Tsuji, N.; Saito, Y.; Lee, S.H.; Minamino, Y. ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 2003, 5, 338–344. [Google Scholar] [CrossRef]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Chen, C.X.; Fang, W.; Feng, J.H.; Zhang, X.; Yin, F.X. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees. Appl. Surf. Sci. 2019, 463, 121–131. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Li, J.; Huang, Q.; Ma, L. Experimental analysis of two-layered dissimilar metals by roll bonding. Mater. Res. Express 2018, 5, 026517. [Google Scholar] [CrossRef]
- Li, Y.W.; Wang, Z.J.; Fu, D.G.; Li, G.; Liu, H.T.; Zhang, X.M. Fabrication of high borated austenitic stainless steel thick plates with enhanced ductility and toughness using a hot-roll-bonding method. Mater. Sci. Eng. A 2021, 799, 140212. [Google Scholar] [CrossRef]
- Schmidtchen, M. Mehrskalige Modellierung des Walzplattierens und Walzens von Werkstoffverbunden; Technische Universität Bergakademie Freiberg: Freiberg, Germany, 2017. [Google Scholar]
- Wright, K.P.; Snow, A.D.; Tay, K.C. Interfacial conditions and bond strength in cold pressure welding by rolling. Met. Technol. 1978, 5, 24–31. [Google Scholar] [CrossRef]
- Lin, X.; Koyama, M.; Gao, S.; Tsuji, N.; Tsuzaki, K.; Noguchi, H. Resistance to mechanically small fatigue crack growth in ultrafine grained interstitial-free steel fabricated by accumulative roll-bonding. Int. J. Fatigue 2019, 118, 117–125. [Google Scholar] [CrossRef]
- Li, L.; Nagai, K.; Yin, F. Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 2008, 9, 023001. [Google Scholar] [CrossRef] [PubMed]
- McCabe, R.J.; Nizolek, T.J.; Li, N.; Zhang, Y.; Coughlin, D.R.; Miller, C.; Carpenter, J.S. Evolution of microstructures and properties leading to layer instabilities during accumulative roll bonding of Fe-Cu, Fe-Ag, and Fe-Al. Mater. Des. 2021, 212, 110204. [Google Scholar] [CrossRef]
- Li, B.; He, W.; Chen, Z.; Huang, H.; Peng, L.; Li, J.; Liu, Q. Evolution of interface and collaborative deformation between Ti and steel during hot roll bonding. Mater. Charact. 2020, 164, 110354. [Google Scholar] [CrossRef]
- Vaidyanath, L.R.; Nicholas, M.G.; Milner, D.R. Pressure Welding by Rolling. Br. Weld. J. 1959, 6, 13–28. [Google Scholar]
- Howeyze, M.; Eivani, A.R.; Ghosh, M.; Jafarian, H.R. Effects of annealing temperature on microstructure and mechanical behavior of conventionally and severely deformed Fe–24Ni steel by accumulative roll bonding. J. Mater. Res. Technol. 2021, 14, 2428–2440. [Google Scholar] [CrossRef]
- Nambu, S.; Michiuchi, M.; Inoue, J.; Koseki, T. Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos. Sci. Technol. 2009, 69, 1936–1941. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, K.S.; Kim, D.I.; Suh, J.Y.; Shim, J.H.; Hong, K.T.; Choi, S.H. Heterogeneities in the microstructure and mechanical properties of high-Cr martensitic stainless steel produced by repetitive hot roll bonding. Mater. Sci. Eng. A 2021, 801, 140416. [Google Scholar] [CrossRef]
- Qiu, Y.; Kaden, N.; Schmidtchen, M.; Prahl, U.; Biermann, H.; Weidner, A. Laminated TRIP/TWIP Steel Composites Produced by Roll Bonding. Metals 2019, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Seleznev, M.; Kaden, N.; Renzing, C.; Schmidtchen, M.; Prahl, U.; Biermann, H.; Weidner, A. Microstructural evolution of the bonding zone in TRIP-TWIP laminate produced by accumulative roll bonding. Mater. Sci. Eng. A 2022, 840, 142866. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Liu, B.X.; He, J.N.; Fang, W.; Zhang, F.Y.; Zhang, X.; Chen, C.X.; Yin, F.X. Microstructure and mechanical properties of SUS304/Q235 multilayer steels fabricated by roll bonding and annealing. Mater. Sci. Eng. A 2019, 740–741, 92–107. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Schmidtchen, M.; Kawalla, R. Fast Numerical Simulation of Symmetric Flat Rolling Processes for Inhomogeneous Materials Using a Layer Model−Part I: Basic Theory. Steel Res. Int. 2016, 87, 1065–1081. [Google Scholar] [CrossRef]
- Bouaziz, O.; Masse, J.P.; Petitgand, G.; Huang, M.X. A Novel Strong and Ductile TWIP/Martensite Steel Composite. Adv. Eng. Mater. 2016, 18, 56–59. [Google Scholar] [CrossRef]
- Jafarian, H. Characteristics of nano/ultrafine-grained austenitic TRIP steel fabricated by accumulative roll bonding and subsequent annealing. Mater. Charact. 2016, 114, 88–96. [Google Scholar] [CrossRef]
- Bleck, W. Werkstoffprüfung in Studium und Praxis; Wissenschaftsverlag: Aachen, Germany, 1999; ISBN 3-89653-563-3. [Google Scholar]
- DIN EN ISO 10113; Metallic Materials–Sheet and Strip–Determination of Plastic Strain Ratio. Deutsches Institut für Normung: Berlin, Germany, 2021.
- ASTM D1876-01; Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). ASTM International: West Conshohocken, PA, USA, 2010.
- Siegert, K. Blechumformung; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783540684183. [Google Scholar]
- Ghosh, P.; Ray, R.K. Deep drawable steels. In Automotive Steels; Elsevier: Amsterdam, The Netherlands, 2017; pp. 113–143. ISBN 9780081006535. [Google Scholar]
- Black, A.J.; Kopalinsky, E.M.; Oxley, P.L.B. Asperity Deformation Models for Explaining the Mechanisms Involved in Metallic Sliding Friction and Wear—A Review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1993, 207, 335–353. [Google Scholar] [CrossRef]
Element wt% | C | Cr | Mn | Ni | Si | N | P | S | Al | Co | Cu | Nb | Ti | V | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TRIP steel | 0.022 | 15.4 | 5.70 | 6.49 | 0.94 | 0.09 | 0.0046 | 0.0064 | 0.004 | 0.0043 | 0.017 | <0.005 | 0.0011 | 0.01 | Bal. |
TWIP steel | 0.023 | 16 | 6.46 | 9.7 | 0.98 | 0.02 | 0.0037 | 0.0061 | 0.033 | 0.0089 | <0.010 | 0.012 | <0.001 | 0.013 | Bal. |
Composite | r0 | r45 | r90 | rm | rp |
---|---|---|---|---|---|
TRIP–TWIP | 0.65 | 0.77 | 0.70 | 0.72 | −0.09 |
TWIP–TWIP | 0.57 | 0.70 | 0.54 | 0.63 | −0.15 |
Peel Test Specimen | Relative Area of DLs before CRB | Relative Area of DLs after CRB | Relative Area of Fully Bonded Regions | Maximum Peel Strength, N/cm |
---|---|---|---|---|
TRIP–TWIP #2 | 19% | 12% | 6% | 130 |
TWIP–TWIP #2 | 29% | 20% | 9% | 195 |
TRIP–TWIP to TWIP–TWIP Ratio | 0.66 | 0.60 | 0.66 (6) | 0.66 (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seleznev, M.; Renzing, C.; Schmidtchen, M.; Prahl, U.; Biermann, H.; Weidner, A. Deformation Lenses in a Bonding Zone of High-Alloyed Steel Laminates Manufactured by Cold Roll Bonding. Metals 2022, 12, 590. https://doi.org/10.3390/met12040590
Seleznev M, Renzing C, Schmidtchen M, Prahl U, Biermann H, Weidner A. Deformation Lenses in a Bonding Zone of High-Alloyed Steel Laminates Manufactured by Cold Roll Bonding. Metals. 2022; 12(4):590. https://doi.org/10.3390/met12040590
Chicago/Turabian StyleSeleznev, Mikhail, Christoph Renzing, Matthias Schmidtchen, Ulrich Prahl, Horst Biermann, and Anja Weidner. 2022. "Deformation Lenses in a Bonding Zone of High-Alloyed Steel Laminates Manufactured by Cold Roll Bonding" Metals 12, no. 4: 590. https://doi.org/10.3390/met12040590