One-Step Electrodeposition of Superhydrophobic Coating on 316L Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology and Wettability
3.2. Corrosion Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Verho, T.; Ras, R.H.A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arab. J. Chem. 2020, 13, 1763–1802. [Google Scholar] [CrossRef]
- Wang, F.; Pi, J.; Song, F.; Feng, R.; Xu, C.; Wang, X.L.; Wang, Y.Z. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness. Chem. Eng. J. 2020, 381, 122539. [Google Scholar] [CrossRef]
- Ren, T.; He, J. Substrate-versatile approach to robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environments. ACS Appl. Mater. Interfaces 2017, 9, 34367–34376. [Google Scholar] [CrossRef]
- Guan, Y.; Yu, C.; Zhu, J.; Yang, R.; Li, X.; Wei, D.; Xu, X. Design and fabrication of vapor-induced superhydrophobic surfaces obtained from polyethylene wax and silica nanoparticles in hierarchical structures. RSC Adv. 2018, 8, 25150–25158. [Google Scholar] [CrossRef] [Green Version]
- Boinovich, L.B.; Emelyanenko, A.M.; Ivanov, V.K.; Pashinin, A.S. Durable icephobic coating for stainless steel. ACS Appl. Mater. Interfaces 2013, 5, 2549–2554. [Google Scholar] [CrossRef]
- Gao, L.; Yang, S.; Yang, H.; Ma, T. One-Stage Method for Fabricating Superhydrophobic Stainless Steel Surface and Its Anti-Corrosion Performance. Adv. Eng. Mater. 2017, 19, 1–6. [Google Scholar] [CrossRef]
- Liang, J.; Li, D.; Wang, D.; Liu, K.; Chen, L. Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification. Appl. Surf. Sci. 2014, 293, 265–270. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Han, X.; Zhao, Y. A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning, anticorrosion, and anti-scaling properties. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 503, 43–52. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Liu, S.; Zhang, Y.; Qu, L. Fabrication of superhydrophobic marigold shape LDH films on stainless steel meshes via in-situ growth for enhanced anti-corrosion and high efficiency oil-water separation. Appl. Clay Sci. 2019, 182, 105292. [Google Scholar] [CrossRef]
- Liu, E.; Yin, X.; Hu, J.; Yu, S.; Zhao, Y.; Xiong, W. Fabrication of a biomimetic hierarchical superhydrophobic Cu-Ni coating with self-cleaning and anti-corrosion properties. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124223. [Google Scholar] [CrossRef]
- Zhang, B.; Ni, H.; Chen, R.; Zhan, W.; Zhang, C.; Lei, R.; Zha, Y. A two-step anodic method to fabricate self-organised nanopore arrays on stainless steel. Appl. Surf. Sci. 2015, 351, 1161–1168. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 2009, 14, 270–280. [Google Scholar] [CrossRef]
- Di Franco, F.; Zaffora, A.; Vassallo, P.; Santamaria, M. Double Step Electrochemical Process for the Deposition of Superhydrophobic Coatings for Enhanced Corrosion Resistance. J. Electrochem. Soc. 2021, 168, 101502. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Zhao, X.; Hu, X.; Yang, L.; Wang, N.; Li, Y.; Hou, B. Biomimetic one step fabrication of manganese stearate superhydrophobic surface as an efficient barrier against marine corrosion and Chlorella vulgaris-induced biofouling. Chem. Eng. J. 2016, 306, 441–451. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, Q.; Li, Y.; Hou, B. Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion. Chem. Eng. J. 2018, 352, 625–633. [Google Scholar] [CrossRef]
- Zhao, T.; Kang, Z. Simultaneously Fabricating Multifunctional Superhydrophobic/Superoleophilic Coatings by One-Step Electrodeposition Method on Cathodic and Anodic Magnesium Surfaces. J. Electrochem. Soc. 2016, 163, D628–D635. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470041406. [Google Scholar]
- Zaffora, A.; Tranchida, G.; Di Franco, F.; Di Quarto, F.; Santamaria, M. Physico-Chemical Characterization of Anodic Oxides on Hf as a Function of the Anodizing Conditions. J. Electrochem. Soc. 2016, 163, C563–C570. [Google Scholar] [CrossRef]
- Zaffora, A.; Di Quarto, F.; Kura, C.; Sato, Y.; Aoki, Y.; Habazaki, H.; Santamaria, M. Electrochemical Oxidation of Hf-Nb Alloys as a Valuable Route to Prepare Mixed Oxides of Tailored Dielectric Properties. Adv. Electron. Mater. 2018, 4, 1800006. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M. The behaviour of fluoro- and hydrocarbon surfactants used for fabrication of superhydrophobic coatings at solid/water interface. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 481, 167–175. [Google Scholar] [CrossRef]
Solvent | Electrodeposition Time (s) | Rel (Ω cm2) | Rcoat (Ω cm2) | Qcoat (S sn cm−2) | n | χ2 |
---|---|---|---|---|---|---|
Mirror-finished sample | - | 20 | 6.0 × 105 | 2.5 × 10−5 | 0.92 | 2.5 × 10−3 |
DMSO | 20 | 32 | 7.7 × 105 | 8.9 × 10−6 | 0.86 | 7.2 × 10−3 |
40 | 40 | 4.7 × 106 | 4.3 × 10−6 | 0.87 | 1.4 × 10−2 | |
60 | 50 | 6.8 × 106 | 1.8 × 10−6 | 0.87 | 2.9 × 10−3 | |
Ethanol | 20 | 36 | 2.2 × 106 | 2.0 × 10−6 | 0.77 | 1.1 × 10−2 |
40 | 37 | 3.1 × 105 | 2.4 × 10−6 | 0.74 | 1.4 × 10−2 | |
60 | 43 | 3.5 × 106 | 2.0 × 10−6 | 0.80 | 4.3 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaffora, A.; Di Franco, F.; Megna, B.; Santamaria, M. One-Step Electrodeposition of Superhydrophobic Coating on 316L Stainless Steel. Metals 2021, 11, 1867. https://doi.org/10.3390/met11111867
Zaffora A, Di Franco F, Megna B, Santamaria M. One-Step Electrodeposition of Superhydrophobic Coating on 316L Stainless Steel. Metals. 2021; 11(11):1867. https://doi.org/10.3390/met11111867
Chicago/Turabian StyleZaffora, Andrea, Francesco Di Franco, Bartolomeo Megna, and Monica Santamaria. 2021. "One-Step Electrodeposition of Superhydrophobic Coating on 316L Stainless Steel" Metals 11, no. 11: 1867. https://doi.org/10.3390/met11111867
APA StyleZaffora, A., Di Franco, F., Megna, B., & Santamaria, M. (2021). One-Step Electrodeposition of Superhydrophobic Coating on 316L Stainless Steel. Metals, 11(11), 1867. https://doi.org/10.3390/met11111867