Study and Analysis on the Influence Degree of Particle Settlement Factors in Pipe Transportation of Backfill Slurry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Geometric Modeling and Meshing
- (1)
- Fluid properties: density 1680 (kg/m3), dynamic viscosity 0.513 (Pa·s).
- (2)
- Initial values: both are 0.
- (3)
- Wall: Wall condition—no slip.
- (4)
- Gravity: x axis is “0”, y axis is “g_const”.
- (5)
- Inlet: Normal speed is 2.0 m/s, 2.2 m/s, 2.4 m/s.
- (6)
- Outlet: Pressure condition is “0” Pa.
- (1)
- Particle properties: Particle density is 2620 (kg/m3). Particle diameter is 15.05 μm, 30.25 μm, 50.95 μm
- (2)
- Entrance: Release time—range (0, 0.05, 10), number of particles released each time n = 20.
3. Results
4. Discussion
4.1. Analysis of the Influence Degree
4.2. Effect of Particle Size on the Sedimentation Velocity
4.3. Effect of Concentration on the Sedimentation Velocity
4.4. Effect of Flow Velocity on the Sedimentation Velocity
4.5. Case Study and Analysis
5. Conclusions
- The simulation transport process model of the filling slurry pipeline was established and verified using COMSOL software. Comparing the simulation results with those obtained using a simplified Stokes formula and ignoring the influence of medium viscosity on sedimentation velocity yielded a relative error in the range 4–17%, which proved the reliability of the proposed model.
- Under different conditions, the model was used to calculate the variation characteristics of the sedimentation velocity. The sedimentation velocity was positively related to the particle size and adversely related to the concentration and flow velocity. Setting a reasonable range of particle sizes, preparing a slurry with a reasonable concentration, and adjusting an appropriate flow velocity are key factors in examining the sedimentation velocity. Therefore, this study provides a theoretical basis for investigating the sedimentation law.
- Using the range analysis method showed that the degree of influence on the sedimentation velocity is as follows: particle size > concentration > flow velocity. In a sample mining area, the optimal slurry concentration and particle size were 60% and 25.25 µm, respectively. Consequently, finding optimal parameters is significantly important in reducing the sedimentation velocity of particles and improving the efficiency of pipeline transportation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Tan, Y.; Zhang, K.; Zhang, C.; Song, W. Rheological Parameters and Transport Characteristics of Fresh Cement Tailings Backfill Slurry in an Underground Iron Mine. Adv. Civ. Eng. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Yilmaz, E.; Cao, S. Influence of Solid Content, Cement/Tailings Ratio, and Curing Time on Rheology and Strength of Cemented Tailings Backfill. Minerals 2020, 10, 922. [Google Scholar] [CrossRef]
- Duan, X.; Huang, Y.; Zheng, W. Study on the Influence of Particle Size and Grade of Total Tailings on the Fluidity of High-Concentration Filling Slurry considering Strength. Geofluids 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Cunliffe, C.J.; Dodds, J.M.; Dennis, D. Flow correlations and transport behaviour of turbulent slurries in partially filled pipes. Chem. Eng. Sci. 2021, 235, 116465. [Google Scholar] [CrossRef]
- Ozcan, N.T.; Ulusay, R.; Isik, N.S. A study on geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey). Environ. Earth Sci. 2013, 69, 1871–1890. [Google Scholar] [CrossRef]
- Zhang, R.J.; Zheng, Y.L.; Dong, C.Q.; Zheng, J.J. Strength behavior of dredged mud slurry treated jointly by cement, flocculant and vacuum preloading. Acta Geotech. 2021, 1–16. [Google Scholar] [CrossRef]
- Wei, H.; Xiao, B.; Gao, Q. Flow Properties Analysis and Identification of a Fly Ash-Waste Rock Mixed Backfilling Slurry. Minerals 2021, 11, 576. [Google Scholar] [CrossRef]
- Leong, Y.K. Controlling the rheology of iron ore slurries and tailings with surface chemistry for enhanced beneficiation performance and output, reduced pumping cost and safer tailings storage in dam-ScienceDirect. Miner. Eng. 2021, 166, 106874. [Google Scholar] [CrossRef]
- Xing, K.; Hou, H.; Min, Z.; Yan, W.; Xian, Z. Effect of particle gradation on properties of fresh and hardened cemented paste backfill. Constr. Build. Mater. 2015, 96, 378–382. [Google Scholar]
- Wang, Y.; Song, Y.; Yu, J.; Chen, F. Effect of the injection orientation and position on the leakage flow in a honeycomb-tip turbine cascade. Int. J. Heat Mass Tranf. 2019, 144, 118633. [Google Scholar] [CrossRef]
- Yong, T.; Xiang, J.; Wan, Z.; Wei, Z.; Lei, W. A novel miniaturized loop heat pipe. Appl. Therm. Eng. 2010, 30, 1152–1158. [Google Scholar]
- Hz, A.; Ss, A.; Yy, A.; Jie, Z.; Dong, L. Column studies on the adsorption of As(V) by granular chitosan adsorbent prepared with backwashing iron-containing sludge. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127247. [Google Scholar]
- Zou, X.; Zhang, Z.; Wu, M.; Wan, Y. Slope scale spatial variability of fractal dimension of soil particle size distribution at multiple depths. Soil Sci. Soc. Am. J. 2021, 85, 117–131. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, S.; Wu, Z. Provenance Analysis of the Paleogene Strata in the Northern Qaidam Basin, China: Evidences from Sediment Distribution, Heavy Mineral Assemblages and Detrital Zircon U‒Pb Geochronology. Minerals 2020, 10, 854. [Google Scholar] [CrossRef]
- Huang, X.; Song, J.; Yue, W.; Wang, Z.; Mei, X.; Li, Y.; Li, F.; Lian, E.; Yang, S. Detrital Zircon U-Pb Ages in the East China Seas: Implications for Provenance Analysis and Sediment Budgeting. Minerals 2020, 10, 398. [Google Scholar] [CrossRef]
- Kumar, D.; Iveson, S.M.; Galvin, K.P. Novel jamming mechanism for dry separation of particles by density. Miner. Eng. 2020, 148, 106185. [Google Scholar] [CrossRef]
- Rouchalova, D.; Rouchalova, K.; Janakova, I.; Cablik, V.; Janstova, S. Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals 2020, 10, 1013. [Google Scholar] [CrossRef]
- Singh, R.; Akella, V.S.; Sethy, S.N. Exploration for strategic placer mineral deposits in a fluctuating shoreline: Depositional environment and mineralogical characterization of the NE Odisha coast placers, India. Ore Geol. Rev. 2020, 127, 103850. [Google Scholar] [CrossRef]
- Peng, H.F.; Kong, G.Q.; Liu, H.L.; Abuel-Naga, H.; Hao, Y.H. Thermo-mechanical behaviour of floating energy pile groups in sand. J. Zhejiang Univ. Ser. A 2018, 19, 638–649. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, J.; Deng, B.; Wang, Z.; Wu, Q. Study on separation of fine-particle ilmenite and mechanism using flocculation flotation with sodium oleate and polyacrylamide. Physicochem. Probl. Miner. Process. 2021, 1, 162–173. [Google Scholar]
- Dd, A.; Rkm, B.; Hb, C.; Ar, D.; Pkp, E.; Eh, C. Combined effect of natural dispersant and a stabilizer in formulation of high concentration coal water slurry: Experimental and rheological modeling. J. Mol. Liq. 2020, 320, 114441. [Google Scholar]
- Das, D.; Pattanaik, S.; Parhi, P.K.; Mohapatra, R.K.; Jyothi, R.K.; Lee, J.; Kim, H.I. Stabilization and Rheological Behavior of Fly Ash–Water Slurry Using a Natural Dispersant in Pipeline Transportation. ACS Omega 2019, 4, 21604–21611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routray, A.; Senapati, P.K.; Padhy, M.; Das, D.; Mohapatra, R.K. Effect of mixture of a non-ionic and a cationic surfactant for preparation of stabilized high concentration coal water slurry. Int. J. Coal Prep. Util. 2019, 1–16. [Google Scholar] [CrossRef]
- Das, S.N.; Biswal, S.K.; Mohapatra, R.K. Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation. Mater. Today Proc. 2020, 33, 5093–5097. [Google Scholar] [CrossRef]
- Narkuniene, A.; Poskas, P.; Justinavicius, D. The Modeling of Laboratory Experiments with COMSOL Multiphysics Using Simplified Hydromechanical Model. Minerals 2021, 11, 754. [Google Scholar] [CrossRef]
- Crha, J.; Basařová, P.; Ruzicka, M.C.; Kašpar, O.; Zednikova, M. Comparison of Two Solvers for Simulation of Single Bubble Rising Dynamics: COMSOL vs. Fluent. Minerals 2021, 11, 452. [Google Scholar] [CrossRef]
- Wang, L.M.; Yin, S.H.; Wu, A.X. Visualization of flow behavior in ore-segregated packed beds with fine interlayers. Int. J. Min. Met. Mater. 2020, 27, 900–909. [Google Scholar] [CrossRef]
- Zeng; Tong; Yi; Chen. Selective Capture of Magnetic Wires to Particles in High Gradient Magnetic Separation. Minerals 2019, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.W.; Zhu, C.W.; Gong, X.N.; Wang, X. Analytical solutions for the steady-state seepage field in a finite seabed with a lined tunnel. Mar. Georesour. Geotechnol. 2019, 37, 972–978. [Google Scholar] [CrossRef]
- Rezaei Niya, S.M.; Selvadurai, A.P.S. Correlation of joint roughness coefficient and permeability of a fracture. Int. J. Rock Mech. Min. 2018, 113, 150–162. [Google Scholar] [CrossRef]
- Larsson, S.; Rodríguez Prieto, J.M.; Heiskari, H.; Jonsén, P. A Novel Particle-Based Approach for Modeling a Wet Vertical Stirred Media Mill. Minerals 2021, 11, 55. [Google Scholar] [CrossRef]
- Islam, M.T.; Nguyen, A.V. Bed expansion and gas holdup characteristics of bubble–assisted fluidization of liquid–particle suspensions in a HydroFloat cell. Miner Eng. 2021, 160, 106678. [Google Scholar] [CrossRef]
- Wang, S.; Guo, J.; Tang, L.; He, H.; Tao, X. Investigation of the induction time of low-rank coal particles on rising bubble surfaces. Int. J. Coal Prep. Util. 2017, 40, 640–654. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Xie, S.Q.; Zheng, J.J.; Wang, X.M. Sedimentation law research and transportation feasibility study of backfilling slurry. J. Chongqing Univ. 2011, 108–112. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Zhang, S. Correlation Analysis of Sprint Performance and Reaction Time Based on Double Logarithm Model. Complexity 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Lukács, A. The impact of physical activity on psychological well-being and perceived health status during coronavirus pandemic in university students. J. King Saud Univ. Sci. 2021, 33, 101531. [Google Scholar] [CrossRef]
- Hasan, H.H.; Razali, S.F.M.; Razali, N.H.M. Does the Household Save Water? Evidence from Behavioral Analysis. Sustainability 2021, 13, 641. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, Q.; Yu, L.; Meng, Z.; Hu, Z.; Yuan, Q.; Šavija, B. An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration. Cem. Concr. Compos. 2021, 122, 104153. [Google Scholar] [CrossRef]
- Ibáñez-Insa, J.; Woźniak, T.; Oliva, R.; Popescu, C.; Hernández, S.; López-Vidrier, J. Structural and High-Pressure Properties of Rheniite (ReS2) and (Re,Mo)S2. Minerals 2021, 11, 207. [Google Scholar] [CrossRef]
- Costa, F.P.D.; Fernandes, J.V.; Melo, L.R.L.D.; Rodrigues, A.M.; Menezes, R.R.; Neves, G.D.A. The Potential for Natural Stones from Northeastern Brazil to Be Used in Civil Construction. Minerals 2021, 11, 440. [Google Scholar] [CrossRef]
- Aiaa, B. Development of numerical model for simulating resistivity and hydroelectric properties of fractured rock aquifers. J. Appl. Geophys. 2021, 189, 104319. [Google Scholar]
- Luo, J.; Li, X.; Zhang, F.J.; Chen, S.; Ren, D. Sintering of monoclinic SrAl_(2)Si_(2)O_(8) ceramics and their Sr immobilization. J. Miner. Metall. Mater. 2021, 28, 1057–1062. [Google Scholar] [CrossRef]
No. | Size | Volume % | Accumulation % | No. | Size | Volume % | Accumulation % | No. | Size | Volume % | Accumulation % |
---|---|---|---|---|---|---|---|---|---|---|---|
µm | µm | µm | |||||||||
1 | 0.36 | 0.01 | 0.01 | 13 | 2.53 | 2.72 | 14.67 | 25 | 17.84 | 6.43 | 65.84 |
2 | 0.42 | 0.02 | 0.03 | 14 | 2.98 | 2.75 | 17.42 | 26 | 20.99 | 6.67 | 72.51 |
3 | 0.5 | 0.03 | 0.06 | 15 | 3.50 | 2.81 | 20.23 | 27 | 24.70 | 6.60 | 79.11 |
4 | 0.59 | 0.09 | 0.15 | 16 | 4.12 | 2.93 | 23.16 | 28 | 29.06 | 6.15 | 85.26 |
5 | 0.69 | 0.19 | 0.34 | 17 | 4.85 | 3.14 | 26.30 | 29 | 34.20 | 5.34 | 90.60 |
6 | 0.81 | 0.42 | 0.76 | 18 | 5.71 | 3.53 | 29.83 | 30 | 40.24 | 4.17 | 94.77 |
7 | 0.95 | 0.76 | 1.52 | 19 | 6.72 | 4.01 | 33.84 | 31 | 47.36 | 2.87 | 97.64 |
8 | 1.12 | 1.25 | 2.77 | 20 | 7.91 | 4.42 | 38.26 | 32 | 55.73 | 1.65 | 99.29 |
9 | 1.32 | 1.78 | 4.55 | 21 | 9.30 | 4.72 | 42.98 | 33 | 65.58 | 0.66 | 99.95 |
10 | 1.55 | 2.22 | 6.77 | 22 | 10.95 | 5.02 | 48.00 | 34 | 77.17 | 0.05 | 100.00 |
11 | 1.83 | 2.51 | 9.28 | 23 | 12.88 | 5.44 | 53.44 | ||||
12 | 2.15 | 2.67 | 11.95 | 24 | 15.16 | 5.97 | 59.41 |
Number | Concentration % | Particle Size (µm) | Flow Velocity (m/s) |
---|---|---|---|
1 | 60 | 15.05 | 2.0 |
2 | 55 | 30.25 | 2.2 |
3 | 50 | 50.95 | 2.4 |
Number | 1 | 2 | 3 |
---|---|---|---|
Name | Concentration % | Particle Size (µm) | Flow Velocity (m/s) |
Level 1 | 60 | 15.05 | 2.0 |
Level 2 | 55 | 30.25 | 2.2 |
Level 3 | 50 | 50.95 | 2.4 |
Factor | Concentration % | Particle Size (µm) | Flow Velocity (m/s) |
---|---|---|---|
Test 1 | 60 | 15.05 | 2.0 |
Test 2 | 60 | 30.25 | 2.2 |
Test 3 | 60 | 50.95 | 2.4 |
Test 4 | 55 | 15.05 | 2.2 |
Test 5 | 55 | 30.25 | 2.4 |
Test 6 | 55 | 50.95 | 2.0 |
Test 7 | 50 | 15.05 | 2.4 |
Test 8 | 50 | 30.25 | 2.0 |
Test 9 | 50 | 50.95 | 2.2 |
Concentration | Cement–Sand Ratio | Quality1 (g) | Quality2 (g) | Quality3 (g) |
---|---|---|---|---|
60% | 1:6 | 25.71 | 154.29 | 300 |
55% | 1:6 | 23.57 | 141.43 | 300 |
50% | 1:6 | 21.43 | 128.57 | 300 |
Concentration | Cement–Sand Ratio | Particle Size (µm) | Yield Stress (Pa) | Plastic Viscosity (Pa·s) |
---|---|---|---|---|
60% | 1:6 | 15.05 | 50.05 | 0.513 |
60% | 1:6 | 30.25 | 51.23 | 0.522 |
60% | 1:6 | 50.95 | 52.34 | 0.568 |
55% | 1:6 | 15.05 | 20.58 | 0.339 |
55% | 1:6 | 30.25 | 21.36 | 0.348 |
55% | 1:6 | 50.95 | 22.59 | 0.362 |
50% | 1:6 | 15.05 | 15.33 | 0.248 |
50% | 1:6 | 30.25 | 16.47 | 0.269 |
50% | 1:6 | 50.95 | 17.26 | 0.297 |
No. | Concentration % | Particle Size µm | Flow Velocity m/s | Simulation Speed cm/s | Calculation Speed cm/s | Relative Error % |
---|---|---|---|---|---|---|
1 | 50% | 15.05 | 2.0 | 0.0182 | 0.0199 | 8.54 |
2 | 50% | 30.25 | 2.2 | 0.0759 | 0.0807 | 5.95 |
3 | 50% | 50.95 | 2.4 | 0.2193 | 0.2291 | 4.28 |
4 | 55% | 15.05 | 2.2 | 0.0175 | 0.0199 | 12.06 |
5 | 55% | 30.25 | 2.4 | 0.0724 | 0.0807 | 10.29 |
6 | 55% | 50.95 | 2.0 | 0.2135 | 0.2291 | 6.81 |
7 | 60% | 15.05 | 2.4 | 0.0166 | 0.0199 | 16.58 |
8 | 60% | 30.25 | 2.0 | 0.0701 | 0.0807 | 13.14 |
9 | 60% | 50.95 | 2.2 | 0.2099 | 0.2291 | 8.38 |
Name | Simulation Speed (cm/s) | Calculation Speed (cm/s) | ||||
---|---|---|---|---|---|---|
Pearson Correlation | Sig. (Double Tail) | Case Number | Pearson Correlation | Sig. (Double Tail) | Case Number | |
Simulation speed (cm/s) | 1 | 0 | 9 | 0.999437 | 1.3948388027 × 10−11 | 9 |
Calculation speed (cm/s) | 0.999437 | 1.3948388027 × 10−11 | 9 | 1 | 0 | 9 |
Range | Test Factor | ||
---|---|---|---|
Concentration % | Particle Size (µm) | Flow Velocity (m/s) | |
0.3134 | 0.0523 | 0.3018 | |
0.3034 | 0.2184 | 0.3033 | |
0.2966 | 0.6427 | 0.3083 | |
0.1045 | 0.0174 | 0.1006 | |
0.1011 | 0.0728 | 0.1011 | |
0.0989 | 0.2142 | 0.1028 | |
0.0056 | 0.1968 | 0.0022 |
Concentration % | Particle Size µm | Flow Velocity m/s | Simulation Speed cm/s | Experimental Speed cm/s | Relative Error % | |
---|---|---|---|---|---|---|
1 | 50% | 15.05 | 2.0 | 0.0182 | 0.0198 | 8.08 |
2 | 50% | 30.25 | 2.2 | 0.0759 | 0.0805 | 5.71 |
3 | 50% | 50.95 | 2.4 | 0.2193 | 0.2293 | 4.36 |
4 | 55% | 15.05 | 2.2 | 0.0175 | 0.0195 | 10.26 |
5 | 55% | 30.25 | 2.4 | 0.0724 | 0.0809 | 10.51 |
6 | 55% | 50.95 | 2.0 | 0.2135 | 0.2289 | 6.73 |
7 | 60% | 15.05 | 2.4 | 0.0166 | 0.0194 | 14.43 |
8 | 60% | 30.25 | 2.0 | 0.0701 | 0.0802 | 12.59 |
9 | 60% | 50.95 | 2.2 | 0.2099 | 0.2288 | 8.26 |
Concentration | Particle Size | Flow Velocity | Sedimentation Velocity | Resistance Loss | |
---|---|---|---|---|---|
% | µm | m/s | cm/s | Pa/m | |
1 | 55% | 18.25 | 2.0 | 0.0256 | 4532.6 |
2 | 55% | 25.25 | 2.0 | 0.0618 | 4705.7 |
3 | 55% | 32.25 | 2.0 | 0.1393 | 4932.4 |
4 | 60% | 18.25 | 2.0 | 0.0248 | 5087.5 |
5 | 60% | 25.25 | 2.0 | 0.0601 | 5365.2 |
6 | 60% | 32.25 | 2.0 | 0.1154 | 5736.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Gan, D. Study and Analysis on the Influence Degree of Particle Settlement Factors in Pipe Transportation of Backfill Slurry. Metals 2021, 11, 1780. https://doi.org/10.3390/met11111780
Wang C, Gan D. Study and Analysis on the Influence Degree of Particle Settlement Factors in Pipe Transportation of Backfill Slurry. Metals. 2021; 11(11):1780. https://doi.org/10.3390/met11111780
Chicago/Turabian StyleWang, Chonghao, and Deqing Gan. 2021. "Study and Analysis on the Influence Degree of Particle Settlement Factors in Pipe Transportation of Backfill Slurry" Metals 11, no. 11: 1780. https://doi.org/10.3390/met11111780
APA StyleWang, C., & Gan, D. (2021). Study and Analysis on the Influence Degree of Particle Settlement Factors in Pipe Transportation of Backfill Slurry. Metals, 11(11), 1780. https://doi.org/10.3390/met11111780