Structural-and-Phase Transformations in Fe-4.10 and 7.25 at.% Mn Alloys under Intensity External Actions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ovchinnikov, V.V. Nanoscale dynamic and long-range effects under cascade-forming irradiation. Surf. Coatings Technol. 2018, 355, 65–83. [Google Scholar] [CrossRef]
- Shabashov, V.A.; Kozlov, K.A.; Sagaradze, V.V.; Nikolaev, A.L.; Lyashkov, K.A.; Semyonkin, V.A.; Voronin, V.I. Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation. Phys. Met. Metallogr. 2018, 120, 560–576. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V. Radiation-dynamic effects. Potential for producing condensed media with unique properties and structural states. Phys.-Uspekhi 2008, 51, 955–964. [Google Scholar] [CrossRef]
- Kozlov, K.A.; Shabashov, V.A.; Sagaradze, V.V.; Pilyugin, V.P.; Lyashkov, K.A.; Zamatovsky, A.E. Deformation-induced atomic redistribution in bcc Fe-Mn alloy. Bull. Russ. Acad. Sci. Phys. 2017, 81, 840–844. [Google Scholar] [CrossRef]
- Shabashov, V.A.; Sagaradze, V.V.; Kozlov, K.A.; Ustyugov, Y.N. Atomic order and submicrostructure in iron alloys at megaplastic deformation. Metals 2018, 8, 995. [Google Scholar] [CrossRef] [Green Version]
- Cherdyntsev, V.V.; Kaloshkin, S.D.; Tomilin, I.A.; Shelekhov, E.V.; Baldokhin, Y.V. Phase composition and structural features of mechanically alloyed iron-manganese alloys. Phys. Met. Metallogr. 2002, 94, 747–752. [Google Scholar]
- Pustov, L.Y.; Estrin, E.I.; Kaloshkin, S.D.; Cherdyntsev, V.V.; Shelekhov, E.V.; Tomilin, I.A. Phase transformations in iron-rich Fe-Mn alloys obtained by mechanical alloying. Phys. Met. Metallogr. 2003, 95, 575–583. [Google Scholar]
- Glezer, A.M.; Pozdnyakov, V.A. Relaxation mechanisms and the different paths of the microstructure evolution under severe plastic deformation. Dokl. Akad. Nauk 2004, 398, 570–572. [Google Scholar] [CrossRef]
- Guseva, M.I. Ion implantation and nonsemiconductor materials. Adv. Sci. Technol. (Ser. Charg. Part Beams Solid State Phys. Fundam. Laser Beam Technol.) 1984, 5, 5–54. [Google Scholar]
- Hubler, O.K.; Smidt, F.A. Application of ion implantation to wear protection of materials. Nucl. Inst. Methods Phys. Res. B 1985, 7–8, 151–157. [Google Scholar] [CrossRef]
- Ligachev, A.E.; Kuzmin, O.S.; Potemkin, G.V.; Yanovskii, V.P. Structure and properties of implanted steels. Phys. Stat. Sol. A 1988, 109. [Google Scholar] [CrossRef]
- Guseva, M.I. Technological aspects of ion implantation in metals. Izv. Akad. Nauk SSSR. Met. 1993, 141–150. [Google Scholar]
- Perry, A.J.; Treglio, J.R.; Schaffer, J.P.; Brunner, J.; Valvoda, V.; Rafaja, D. Non-destructive study of the ion-implantation-affected zone (the long-range effect) in titanium nitride. Surf. Coat. Technol. 1994, 66, 377–383. [Google Scholar] [CrossRef]
- Perry, A.J.; Geist, D.E. On the residual stress profile developed in titanium nitride by ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1997, 127–128, 967–971. [Google Scholar] [CrossRef]
- Kozyr’, I.G.; Tsyganov, I.A.; Sharshakov, I.M. On the problem of long-range effect upon ion implantation. Metalloved. Termicheskaya Obrab. Met. 1996, 27, 5–8. [Google Scholar]
- Khmelevskaya, V.S.; Malynkin, V.G.; Kanunnikov, M.Y. The long-range effect in irradiated metallic systems with the coherent behavior. Poverkhnost Rentgen. Sink. Nejtr. Issled. 2003, 35, 66–70. [Google Scholar]
- Sharkeev, Y.P.; Didenko, A.N.; Kozlov, E.V. High dislocation density structures and hardening produced by high fluency pulsed-ion-beam implantation. Surf. Coat. Technol. 1994, 65, 112–120. [Google Scholar] [CrossRef]
- Sharkeev, Y.P.; Kozlov, E.V.; Didenko, A.N.; Kolupaeva, S.N.; Vihor, N.A. The mechanisms of the long-range effect in metals and alloys by ion implantation. Surf. Coat. Technol. 1996, 83, 15–21. [Google Scholar] [CrossRef]
- Sharkeev, Y.P.; Gashenko, S.A.; Pashchenko, O.V.; Krivobokov, V.P. Evaluation of the microhardness of ion-implanted metals. Surf. Coat. Technol. 1997, 91, 20–24. [Google Scholar] [CrossRef]
- Sharkeev, Y.P.; Kozlov, E.V.; Didenko, A.N. Defect structures in metals exposed to irradiation of different nature. Surf. Coat. Technol. 1997, 96, 95–102. [Google Scholar] [CrossRef]
- Sharkeev, Y.P.; Kozlov, E.V. The long-range effect in ion implanted metallic materials: Dislocation structures, properties, stresses, mechanisms. Surf. Coat. Technol. 2002, 158–159, 219–224. [Google Scholar] [CrossRef]
- Didenko, A.N.; Sharkeev, Y.P.; Kozlov, E.V.; Ryabchikov, A.I. Long-Range Effects in Ion-Implanted Metal Materials; NTL: Tomsk, Russia, 2004; pp. 47–74. [Google Scholar]
- Pogrebnyak, A.D.; Ligachev, A.E.; Remnev, G.E.; Chistyakov, S.A. Modification of the properties of metals under the exposure to powerful ion beams. Izv. Vyssh. Uchebn. Zaved. Fiz. 1987, 1, 52–65. [Google Scholar]
- Pogrebnjak, A.D.; Ligachev, A.E.; Nesmelov, A.V.; Nesterenko, V.P.; Puchkareva, L.N.; Pirogov, V.N.; Remnev, G.E.; Isakov, I.F.; Ruzimov, S.M. Structure modifications and mechanical properties of alloys exposed to pulsed ion beams. Radiat. Eff. 1987, 102, 103–115. [Google Scholar] [CrossRef]
- Didenko, A.N.; Ligachev, A.E.; Kurakin, I.B. The Impact of Beams of Charged Particles on the Surface of Metals and Alloys; Energoatomizdat: Moscow, Russia, 1987; pp. 39–46. [Google Scholar]
- Uglov, V.V.; Cherenda, N.N.; Danilyuk, A.L.; Rauschenbach, B. Structural and phase composition changes in aluminium induced by carbon implantation. Surf. Coat. Technol. 2000, 128–129, 358–363. [Google Scholar] [CrossRef]
- Kreindel, Y.E.; Ovchinnikov, V.V. Structural transformations and long-range effects in alloys caused by gas ion bombardment. Vacuum 1991, 42, 81–83. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V.; Kogan, Y.D.; Gavrilov, N.V.; Shtoltz, A.K. The formation of extraordinary magnetic states in an iron—nickel alloy with b.c.c.—f.c.c. transitions induced by ion irradiation. Surf. Coat. Technol. 1994, 64, 1–4. [Google Scholar] [CrossRef]
- Goloborodsky, B.Y.; Ovchinnikov, V.V.; Semionkin, V.A. Long-range effects in the FePd2Au alloy under ion bombardment. Fusion Technol. 2001, 39, 1217–1228. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V. Temperature decrease and multiple acceleration of structural and phase transformations in metastable metals and alloys under cascade-forming irradiation. Part 1—General questions and theory. J. Phys. Conf. Ser. 2018, 1115, 032046. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V. Temperature decrease and multiple acceleration of structural and phase transformations in metastable metals and alloys under cascade-forming irradiation. Part 2—Experimental Results and Discussion. J. Phys. Conf. Ser. 2018, 1115, 032047. [Google Scholar] [CrossRef]
- Gushchina, N.V.; Ovchinnikov, V.V.; Mozharovsky, S.M.; Kaigorodova, L.I. Restoration of plasticity of cold-deformed aluminum alloy by short-term irradiation with accelerated Ar+ ions. Surf. Coat. Technol. 2020, 389, 9. [Google Scholar] [CrossRef]
- Bannykh, O.A.; Budberg, P.B.; Alisova, S.P. Phase Diagrams of the State of Binary and Multicomponent Systems Based on Iron; Metallurgy: Moscow, Russia, 1986; pp. 49–51. [Google Scholar]
- Gavrilov, N.V.; Mesyats, G.A.; Nikulin, S.P.; Radkovskii, G.V.; Elkind, A.; Perry, A.J.; Treglio, J.R. New broad beam gas ion source for industrial application. J. Vac. Sci. Technol. A Vac. Surf. Film. 1996, 14, 1050–1055. [Google Scholar] [CrossRef]
- Semionkin, V.A.; Oshtrakh, M.I.; Milder, O.B.; Novikov, E.G. A High velocity resolution Mössbauer spectrometric system for biomedical research. Bull. Rus. Acad. Sci. Phys. 2010, 74, 416–420. [Google Scholar] [CrossRef]
- Bogachov, I.N.; Charushnikova, G.A.; Ovchinnikov, V.V.; Litvinov, V.S. Investigationof segregation in the irreversible temper embitterment range of the steel FeMn8. Phys. Met. Metall. 1975, 39, 129–134. [Google Scholar]
- Ovchinnikov, V.V.; Zvigintsev, N.V.; Litvinov, V.S.; Osminkin, V.A. Investigation of aging of Fe-Co-Cr alloys by calorimetry and nuclear gamma-resonance. Phys. Met. Metall. 1976, 42, 310–313. [Google Scholar]
- Ovchinnikov, V.V.; Litvinov, V.S.; Charushnikova, G.A. Mössbauer investigation in to the nature of irreversible temper embattlement of iron-manganese alloys. Phys. Met. Metall. 1979, 47, 174–178. [Google Scholar]
- Ovchinnikov, V.V. Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys; Cambridge International Science Publishing: Cambridge, UK, 2006; pp. 81–85. [Google Scholar]
- Rusakov, V.S.; Kadyrzhanov, K.K. Mössbauer Spectroscopy of Locally Inhomogeneous Systems. Hiperf. Inter. 2005, 164, 87–97. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V.; Makarov, E.V.; Gushchina, N.V. Austenite Formation in α-Phase Fe-Mn Alloy after Cold Plastic Working and Fast Heating by an Ar+ Ion Beam to 299 °C. Phys. Met. Metallogr. 2019, 120, 1207–1212. [Google Scholar] [CrossRef]
- Dovgopol, S.P.; Litvinov, V.S.; Karakishev, S.D.; Ovchinnikov, V.V. Redistribution of electrons and stability of the bcc structure in Fe-Mn alloys. Phys. Met. Metallogr. 1979, 47, 96–101. [Google Scholar]
- Ovchinnikov, V.V.; Goloborodsky, B.Y.; Gushchina, N.V.; Semionkin, V.A.; Wieser, E. Enhanced Atomic Short-Range Ordering of Alloy Fe-15 at.% Cr Caused by Ion Irradiation at Elevated Temperature and Thermal Effects Only. Appl. Phys. A. 2006, 83, 83–88. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V.; Makhin’ko, F.F.; Solomonov, V.I. Thermal-spikes temperature measurement in pure metals under argon ion irradiation (E = 5–15 keV). J. Phys. Conf. Ser. 2015, 652, 012070. [Google Scholar] [CrossRef] [Green Version]
- De Schepper, L.; Segers, D.; Dorikens-Vanpraet, L.; Dorikens, M.; Knuyt, G.; Stals, L.M.; Moser, P. Positron annihilation on pure and carbon-doped -iron in thermal equilibrium. Phys. Rev. B 1983, 27, 5257. [Google Scholar] [CrossRef]
Processing | W(0) | W(1) | W(2) | c * (c1) | <H> | ||||
---|---|---|---|---|---|---|---|---|---|
Quenching | 0.555 | 0.339 | 0.091 | 1.00 | 0.00 | 0.0711 | ― | 0.02 | 317 |
Quenching + irradiation | 0.558 | 0.338 | 0.089 | 1.00 | 0.00 | 0.0703 | ― | 0.03 | 317 |
Quenching + HRT + irradiation | 0.624 | 0.303 | 0.064 | 0.969 | 0.031 | (0.0573) | 38.4 | (0.21) 2 | 320 |
Quenching + HRT | 0.562 | 0.336 | 0.088 | 1.00 | 0.00 | 0.0696 | ― | 0.04 | 318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovchinnikov, V.V.; Makarov, E.V.; Gushchina, N.V. Structural-and-Phase Transformations in Fe-4.10 and 7.25 at.% Mn Alloys under Intensity External Actions. Metals 2021, 11, 1667. https://doi.org/10.3390/met11111667
Ovchinnikov VV, Makarov EV, Gushchina NV. Structural-and-Phase Transformations in Fe-4.10 and 7.25 at.% Mn Alloys under Intensity External Actions. Metals. 2021; 11(11):1667. https://doi.org/10.3390/met11111667
Chicago/Turabian StyleOvchinnikov, Vladimir V., Efrem V. Makarov, and Natalia V. Gushchina. 2021. "Structural-and-Phase Transformations in Fe-4.10 and 7.25 at.% Mn Alloys under Intensity External Actions" Metals 11, no. 11: 1667. https://doi.org/10.3390/met11111667
APA StyleOvchinnikov, V. V., Makarov, E. V., & Gushchina, N. V. (2021). Structural-and-Phase Transformations in Fe-4.10 and 7.25 at.% Mn Alloys under Intensity External Actions. Metals, 11(11), 1667. https://doi.org/10.3390/met11111667