Post Flywheel Squat Potentiation of Vertical and Horizontal Ground Reaction Force Parameters during Jumps and Changes of Direction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Procedures
2.4. Flywheel Exercise
2.5. Physical Tests
2.6. Dependent Variables
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manning, D.R.; Stull, J.T. Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am. J. Physiol. Cell Physiol. 1982, 242, C234–C241. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.C.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Stiff, A.; Coratella, G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boullosa, D.; Beato, M.; Dello Iacono, A.; Cuenca-Fernandez, F.; Doma, K.; Schumann, M.; Zagatto, A.; Loturco, I.; Behm, D. A new taxonomy for post-activation potentiation in sport. Int. J. Sports Physiol. Perform. 2020. Epub Ahead of Print. [Google Scholar]
- Bauer, P.; Sansone, P.; Mitter, B.; Makivic, B.; Seitz, L.B.; Tschan, H. Acute effects of back squats on countermovement jump performance across multiple sets of a contrast training protocol in resistance-trained men. J. Strength Cond. Res. 2019, 33, 995–1000. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Beato, M.; Halperin, I. The effects of cluster-set and traditional-set postactivation potentiation protocols on vertical jump performance. Int. J. Sports Physiol. Perform. 2020, 15, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, W.C.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Effect of postactivation potentiation on explosive vertical jump: A systematic review and meta-analysis. J. Strength Cond. Res. 2019, 33, 2009–2018. [Google Scholar] [CrossRef]
- Boullosa, D.; Del Rosso, S.; Behm, D.G.; Foster, C. Post-activation potentiation (PAP) in endurance sports: A review. Eur. J. Sport Sci. 2018, 18, 595–610. [Google Scholar] [CrossRef]
- Robbins, D.W. Postactivation potentiation and its practical applicability: A brief review. J. Strength Cond. Res. 2005, 19, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Bigby, A.E.J.; De Keijzer, K.L.; Nakamura, F.Y.; Coratella, G.; McErlain-Naylor, S.A. Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PLoS ONE 2019, 14, e0222466. [Google Scholar] [CrossRef] [PubMed]
- de Hoyo, M.; de la Torre, A.; Pradas, F.; Sañudo, B.; Carrasco, L.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Gonzalo-Skok, O. Effects of eccentric overload bout on change of direction and performance in soccer players. Int. J. Sports Med. 2015, 36, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Coratella, A.G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 2019, 36, 241–248. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A.V.; Arjol-Serrano, J.L.; Moras, G.; Mendez-Villanueva, A. Eccentric-overload training in team-sport functional performance: Constant bilateral vertical versus variable unilateral multidirectional movements. Int. J. Sports Physiol. Perform. 2017, 12, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Madruga-Parera, M.; Piqueras-Sanchiz, F.; Moreno-Pérez, V.; Romero-Rodriguez, D. Acute effect of eccentric overload exercises on change of direction performance and lower-limb muscle contractile function. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Beato, M.; de Keijzer, K.L.K.L.; Fleming, A.; Coates, A.; La Spina, O.; Coratella, G.; McErlain-Naylor, S.A.S.A. Post flywheel squat vs. flywheel deadlift potentiation of lower limb isokinetic peak torques in male athletes. Sport. Biomech. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; De Keijzer, K.L.; Leskauskas, Z.; Allen, W.J.; Dello Iacono, A.; McErlain-Naylor, S.A. Effect of post-activation potentiation after medium vs. high inertia eccentric overload exercise on standing long jump, countermovement jump and change of direction performance. J. Strength Cond. Res. 2019. In Press. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beato, M.; McErlain-Naylor, S.A.; Halperin, I.; Dello Iacono, A. Current evidence and practical applications of flywheel eccentric overload exercises as postactivation potentiation protocols: A brief review. Int. J. Sports Physiol. Perform. 2020, 15, 154–161. [Google Scholar] [CrossRef]
- Núñez, F.J.; Suarez-Arrones, L.J.; Cater, P.; Mendez-Villanueva, A. The high-pull exercise: A comparison between a versapulley flywheel device and the free weight. Int. J. Sports Physiol. Perform. 2017, 12, 527–532. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Ruiz-Teba, A.; López-Contreras, G.; Arellano, R. Effects of 2 types of activation protocols based on postactivation potentiation on 50-m freestyle performance. J. Strength Cond. Res. 2018, 34, 3284–3292. [Google Scholar] [CrossRef] [PubMed]
- McErlain-Naylor, S.A.; Beato, M. Concentric and eccentric inertia-velocity and inertia-power relationships in the flywheel squat. J. Sports Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chow, S.-C.; Chen, M. A Bayesian approach on sample size calculation for comparing means. J. Biopharm. Stat. 2005, 15, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; McErlain-Naylor, S.A.; Dello Iacono, A.; Beato, M. Effect of volume on eccentric overload-induced postactivation potentiation of jumps. Int. J. Sports Physiol. Perform. 2020, 1–6. [Google Scholar] [CrossRef]
- McErlain-Naylor, S.; King, M.; Pain, M.T.G. Determinants of countermovement jump performance: A kinetic and kinematic analysis. J. Sports Sci. 2014, 32, 1805–1812. [Google Scholar] [CrossRef] [Green Version]
- Chaouachi, A.; Manzi, V.; Chaalali, A.; Wong, D.P.; Chamari, K.; Castagna, C. Determinants analysis of change-of-direction ability in elite soccer players. J. Strength Cond. Res. 2012, 26, 2667–2676. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. A single session of straight line and change-of-direction sprinting per week does not lead to different fitness improvements in elite young soccer players. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Gilbert, G.; Lees, A. Changes in the force development characteristics of muscle following repeated maximum force and power exercise. Ergonomics 2005, 48, 1576–1584. [Google Scholar] [CrossRef]
- Kruschke, J.K.; Liddell, T.M. Bayesian data analysis for newcomers. Psychon. Bull. Rev. 2018, 25, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Wagenmakers, E. Bayesian Cognitive Modeling: A Practical Course; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ly, A.; Verhagen, J.; Wagenmakers, E.-J. Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. J. Math. Psychol. 2016, 72, 19–32. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dello Iacono, A.; Padulo, J.; Seitz, L.D. Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players. J. Sports Sci. 2018, 36, 1269–1276. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2020. [Google Scholar] [CrossRef]
- Worcester, K.S.; Baker, P.A.; Bollinger, L.M. Effects of inertial load on sagittal plane kinematics of the lower extremity during flywheel-based squats. J. Strength Cond. Res. 2020, 1. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Morin, J.-B.; Hintzy, F.; Belli, A. A simple method for measuring force, velocity and power output during squat jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors modulating post-activation potentiation of jump, sprint, throw, and upperbody ballistic performances: A systematic review with meta-analysis. Sport Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum. Mov. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing post activation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Gołaś, A.; Wilk, M.; Stastny, P.; Maszczyk, A.; Pajerska, K.; Zając, A. Optimizing half squat postactivation potential load in squat jump training for eliciting relative maximal power in ski jumpers. J. Strength Cond. Res. 2017, 31, 3010–3017. [Google Scholar] [CrossRef] [PubMed]
Variable | Inertia (kg·m2) | Control | 6 min | BF10 within (Time) | Assessment | BF10 between (Inertia) | Assessment |
---|---|---|---|---|---|---|---|
CMJ PF (BW) | 0.029 | 2.27 ± 0.19 | 2.40 ± 0.23 | 293.8 | extreme H1 | 0.392 | anecdotal |
0.061 | 2.44 ± 0.24 | ||||||
CMJ PP (W·kg−1) | 0.029 | 49.94 ± 4.50 | 52.73 ± 6.07 | 7.122 | moderate H1 | 0.417 | anecdotal |
0.061 | 51.40 ± 5.37 | ||||||
CMJ PRFD (BW·s−1) | 0.029 | 10.06 ± 2.59 | 11.42 ± 4.39 | 4.354 | moderate H1 | 0.569 | anecdotal |
0.061 | 12.91 ± 4.92 | ||||||
SBJ PF (BW) | 0.029 | 2.55 ± 0.26 | 2.52 ± 0.30 | 0.257 | moderate H0 | 0.242 | moderate H0 |
0.061 | 2.54 ± 0.25 | ||||||
SBJ PP (W·kg−1) | 0.029 | 44.40 ± 4.85 | 43.37 ± 4.50 | 0.263 | moderate H0 | 0.275 | moderate H0 |
0.061 | 44.14 ± 5.54 | ||||||
SBJ PRFD (BW·s−1) | 0.029 | 11.70 ± 3.82 | 12.47 ± 3.39 | 0.247 | moderate H0 | 0.269 | moderate H0 |
0.061 | 11.64 ± 4.62 | ||||||
COD PF (BW) | 0.029 | 1.21 ± 0.24 | 1.18 ± 0.23 | 0.324 | moderate H0 | 0.223 | moderate H0 |
0.061 | 1.17 ± 0.18 | ||||||
COD PRFD (BW·s−1) | 0.029 | 19.98 ± 7.02 | 18.58 ± 4.03 | 0.712 | anecdotal | 0.283 | moderate H0 |
0.061 | 17.37 ± 4.76 |
Variable | Inertia (kg·m2) | Control | 6 min | BF10 | Assessment | δ | δ 95% Credible Interval | Assessment |
---|---|---|---|---|---|---|---|---|
CMJ PF (BW) | 0.029 | 2.27 ± 0.19 | 2.40 ± 0.23 | 2.738 | anecdotal | 0.854 | 0.037, 1.770 | moderate |
0.061 | 2.44 ± 0.24 | 33.549 | very strong | 1.656 | 0.666, 2.695 | large | ||
CMJ PP (W·kg−1) | 0.029 | 49.94 ± 4.50 | 52.73 ± 6.07 | 3.650 | moderate | 0.932 | 0.110, 1.877 | moderate |
0.061 | 51.40 ± 5.37 | 0.689 | anecdotal | 0.446 | −0.251, 1.279 | small | ||
CMJ PRFD (BW·s−1) | 0.029 | 10.06 ± 2.59 | 11.42 ± 4.39 | 0.725 | anecdotal | 0.462 | −0.255, 1.293 | small |
0.061 | 12.91 ± 4.92 | 1.904 | anecdotal | 0.741 | −0.046, 1.655 | moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McErlain-Naylor, S.A.; Beato, M. Post Flywheel Squat Potentiation of Vertical and Horizontal Ground Reaction Force Parameters during Jumps and Changes of Direction. Sports 2021, 9, 5. https://doi.org/10.3390/sports9010005
McErlain-Naylor SA, Beato M. Post Flywheel Squat Potentiation of Vertical and Horizontal Ground Reaction Force Parameters during Jumps and Changes of Direction. Sports. 2021; 9(1):5. https://doi.org/10.3390/sports9010005
Chicago/Turabian StyleMcErlain-Naylor, Stuart A., and Marco Beato. 2021. "Post Flywheel Squat Potentiation of Vertical and Horizontal Ground Reaction Force Parameters during Jumps and Changes of Direction" Sports 9, no. 1: 5. https://doi.org/10.3390/sports9010005