Differences in Kinetics during One- and Two-Leg Hang Power Clean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Measures
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawamori, N.; Crum, A.J.; Blumert, P.A.; Kulik, J.R.; Childers, J.T.; Wood, J.A.; Stone, M.H.; Haff, G.G. Influence of different relative intensities on power output during the hang power clean: Identification of the optimal load. J. Strength Cond. Res. 2005, 19, 698–708. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- McBride, J.M.; Triplett-McBride, T.; Davie, A.; Newton, R.U. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J. Strength Cond. Res. 2002, 16, 75–82. [Google Scholar]
- Kilduff, L.P.; Bevan, H.; Owen, N.; Kingsley, M.I.C.; Bunce, P.; Bennett, M.; Cunningham, D. Optimal loading for peak power output during the hang power clean in professional rugby players. Int. J. Sports Physiol. Perf. 2007, 2, 260–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormie, P.; McCaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. The impact of load on lower body performance variables during the hang power clean. Sports Biomech. 2014, 13, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Newton, R.U.; Andrews, W.A.; Kawamori, N.; McGuigan, M.R.; Nosaka, K. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J. Strength Cond. Res. 2008, 22, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Eliassen, W.; Saeterbakken, A.H.; van den Tillaar, R. Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation. Int. J. Sports Phys. Ther. 2018, 13, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Häkkinen, K.; Pastinen, U.M.; Karsikas, R.; Linnamo, V. Neuromuscular performance in voluntary bilateral and unilateral contraction and during electrical stimulation in men at different ages. Eur. J. Appl. Physiol. 1995, 70, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; de Graaf, W.W.; Jonk, J.N.; Casius, J.R. Explanation of the bilateral deficit in human vertical squat jumping. J. Appl. Physiol. 2006, 100, 493–499. [Google Scholar] [CrossRef]
- Kariyama, Y.; Hayashi, R.; Yoshida, T.; Zushi, A.; Zushi, K.; Zushi, K. The mechanical characteristics of single-leg squat exercise with emphasis on pelvic elevation. Jpn. J. Phys. Fit. Sports Med. 2018, 67, 187–197, In Japanese: English abstract. [Google Scholar] [CrossRef] [Green Version]
- Bosch, F. Strength Training and Coordination: An Integrative Approach; IPTS: Seville, Spain, 2015; pp. 265–323. [Google Scholar]
- Schache, A.G.; Blanch, P.D.; Dorn, T.W.; Brown, N.A.; Rosemond, D.; Pandy, M.G. Effect of running speed on lower limb joint kinetics. Med. Sci. Sports Exerc. 2011, 43, 1260–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariyama, Y.; Hobara, H.; Zushi, K. The effect of increasing jump steps on stance leg joint kinetics in bounding. Sports Biomech. 2018, 39, 661–667. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.; O’Kelley, E.; Kutz, M.; Langford, G.; Ernest, J.; Torres, M. Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. J. Sport Rehabil. 2010, 19, 57–70. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Comfort, P.; Allen, M.; Graham-Smith, P. Comparisons of peak ground reaction force and rate of force development during variations of the power clean. J. Strength Cond. Res. 2011, 25, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Udall, R.; Jones, P.A. The effect of loading on kinematic and kinetic variables during the midthigh clean pull. J. Strength Cond. Res. 2012, 26, 1208–1214. [Google Scholar] [CrossRef]
- McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J. Sports Sci. 2011, 29, 1215–1221. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Effect of various loads on the force-time characteristics of the hang high pull. J. Strength Cond. Res. 2015, 29, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- DeForest, B.A.; Cantrell, G.S.; Schilling, B.K. Muscle activity in single- vs. double-leg squats. Int. J. Exerc. Sci. 2014, 7, 302–310. [Google Scholar]
- Comfort, P.; Jones, P.A.; McMahon, J.J.; Newton, R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: Test-retest reliability. Int. J. Sports Physiol. Perform. 2015, 10, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Riemann, B.L.; Masmoudi, L.; Blaumann, M.; Abdelkarim, O.; Hökelmann, A. Kinetic and kinematic patterns during high intensity clean movement: Searching for optimal load. J. Sports Sci. 2018, 36, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Ae, M.; Tang, H.P.; Yokoi, T. Estimation of inertia properties of the body segment in Japanese athletes. Biomechanisms 1992, 11, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. 2014. Available online: http://sportsci.org/resource/stats/effectmag.html (accessed on 30 April 2020).
- Jakobi, J.M.; Chilibeck, P.D. Bilateral and unilateral contractions: Possible differences in maximal voluntary force. Can. J. Appl. Physiol. 2001, 26, 12–33. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.W.; Langford, G.A.; Doscher, M.W.; Wiley, L.P.; Mallard, K.G. The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J. Strength Cond. Res. 2005, 19, 9–15. [Google Scholar]
- Rube, N.; Secher, N.H. Effect of training on central factors in fatigue following two-and one-leg static exercise in man. Acta Physiol. Scand. 1990, 141, 87–95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, R.; Yoshida, T.; Kariyama, Y. Differences in Kinetics during One- and Two-Leg Hang Power Clean. Sports 2021, 9, 45. https://doi.org/10.3390/sports9040045
Hayashi R, Yoshida T, Kariyama Y. Differences in Kinetics during One- and Two-Leg Hang Power Clean. Sports. 2021; 9(4):45. https://doi.org/10.3390/sports9040045
Chicago/Turabian StyleHayashi, Ryohei, Takuya Yoshida, and Yasushi Kariyama. 2021. "Differences in Kinetics during One- and Two-Leg Hang Power Clean" Sports 9, no. 4: 45. https://doi.org/10.3390/sports9040045
APA StyleHayashi, R., Yoshida, T., & Kariyama, Y. (2021). Differences in Kinetics during One- and Two-Leg Hang Power Clean. Sports, 9(4), 45. https://doi.org/10.3390/sports9040045