Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Repeated-Sprint Ability Test
2.4. Near-Infrared Spectroscopy Measurements
2.5. Statistical Analyses
3. Results
3.1. Morphological Measure
3.2. Performance Parameters
3.3. Muscle Blood Volume and Oxygenation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wellman, A.D.; Coad, S.C.; Goulet, G.C.; McLellan, C.P. Quantification of competitive game demands of NCAA division I college football players using global positioning systems. J. Strength Cond. Res. 2016, 30, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Mendez-Villanueva, A.; Delhomel, G.; Brughelli, M.; Ahmaidi, S. Improving repeated sprint ability in young elite soccer players: Repeated shuttle sprints vs. explosive strength training. J. Strength Cond. Res. 2010, 24, 2715–2722. [Google Scholar] [CrossRef]
- Serpiello, F.R.; McKenna, M.J.; Stepto, N.K.; Bishop, D.J.; Aughey, R.J. Performance and physiological responses to repeated-sprint exercise: A novel multiple-set approach. Eur. J. Appl. Physiol. 2011, 111, 669–678. [Google Scholar] [CrossRef]
- Bravo, D.F.; Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Bishop, D.; Wisloff, U. Sprint vs. interval training in football. Int. J. Sports Med. 2008, 29, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Dawson, B.; Hopkinson, R.; Appleby, B.; Stewart, G.; Roberts, C. Comparison of training activities and game demands in the Australian Football League. J. Sci. Med. Sport 2004, 7, 292–301. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-Sprint Ability—Part II Recommendations for Training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Edge, J.; Goodman, C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur. J. Appl. Physiol. 2004, 92, 540–547. [Google Scholar] [CrossRef]
- Bishop, D.; Spencer, M. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained athletes. J. Sports Med. Phys. Fit. 2004, 44, 1–7. [Google Scholar]
- Brown, P.I.; Hughes, M.G.; Tong, R.J. Relationship between VO2max and repeated sprint ability using non-motorised treadmill ergometry. J. Sports Med. Phys. Fit. 2007, 47, 186–190. [Google Scholar]
- McMahon, S.; Wenger, H.A. The relationship between aerobic fitness and both power output and subsequent recovery during maximal intermittent exercise. J. Sci. Med. Sport 1999, 1, 219–227. [Google Scholar] [CrossRef]
- Tomlin, D.L.; Wenger, H.A. The relationships between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise. J. Sci. Med. Sport 2002, 5, 194–203. [Google Scholar] [CrossRef]
- Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Dimenna, F.J.; Jones, A.M. Optimizing the “priming” effect: Influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J. Appl. Physiol. (1985) 2009, 107, 1743–1756. [Google Scholar] [CrossRef]
- Dupont, G.; Millet, G.P.; Guinhouya, C.; Berthoin, S. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur. J. Appl. Physiol. 2005, 95, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Sassi, A.; Morelli, A.; Mazzoni, S.; Fanchini, M.; Coutts, A.J. Repeated-sprint ability in professional and amateur soccer players. Appl. Physiol. Nutr. Metab. 2009, 34, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Edge, J. Determinants of repeated-sprint ability in females matched for single-sprint performance. Eur. J. Appl. Physiol. 2006, 97, 373–379. [Google Scholar] [CrossRef]
- Billaut, F.; Buchheit, M. Repeated-sprint performance and vastus lateralis oxygenation: Effect of limited O2 availability. Scand. J. Med. Sci. Sports 2013, 23, e185–e193. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Ufland, P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur. J. Appl. Physiol. 2011, 111, 293–301. [Google Scholar] [CrossRef]
- Jones, A.M.; DiMenna, F.; Lothian, F.; Taylor, E.; Garland, S.W.; Hayes, P.R.; Thompson, K.G. ‘Priming’ exercise and O2 uptake kinetics during treadmill running. Respir. Physiol. Neurobiol. 2008, 161, 182–188. [Google Scholar] [CrossRef]
- Bishop, D. Warm up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003, 33, 439–454. [Google Scholar] [CrossRef]
- Barcroft, H.; Edholm, O.G. The effect of temperature on blood flow and deep temperature in the human forearm. J. Physiol. 1943, 102, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Grassi, B.; Gladden, L.B.; Samaja, M.; Stary, C.M.; Hogan, M.C. Faster adjustment of O2 delivery does not affect VO2 on-kinetics in isolated in situ canine muscle. J. Appl. Physiol. (1985) 1998, 85, 1394–1403. [Google Scholar] [CrossRef]
- Grassi, B.; Gladden, L.B.; Stary, C.M.; Wagner, P.D.; Hogan, M.C. Peripheral O2 diffusion does not affect VO2 on-kinetics in isolated in situ canine muscle. J. Appl. Physiol. 1998, 85, 1404–1412. [Google Scholar] [CrossRef]
- Grassi, B.; Hogan, M.C.; Kelley, K.M.; Aschenbach, W.G.; Hamann, J.J.; Evans, R.K.; Patillo, R.E.; Gladden, L.B. Role of convective O2 delivery in determining VO2 on-kinetics in canine muscle contracting at peak VO2. J. Appl. Physiol. (1985) 2000, 89, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Doust, J.H.; Carter, H.; Jones, A.M. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans. Exp. Physiol. 2001, 86, 417–425. [Google Scholar] [CrossRef]
- Burnley, M.; Doust, J.H.; Jones, A.M. Effects of prior warm-up regime on severe-intensity cycling performance. Med. Sci. Sports Exerc. 2005, 37, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Doust, J.H.; Jones, A.M. Time required for the restoration of normal heavy exercise Vo(2) kinetics following prior heavy exercise. J. Appl. Physiol. 2006, 101, 1320–1327. [Google Scholar] [CrossRef]
- Carter, H.; Grice, Y.; Dekerle, J.; Brickley, G.; Hammond, A.J.P.; Pringle, J.S.M. Effect of prior exercise above and below critical power on exercise to exhaustion. Med. Sci. Sports Exerc. 2005, 37, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, A.; Ward, S.A.; Whipp, B.J. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J. Appl. Physiol. 1996, 80, 99–107. [Google Scholar] [CrossRef]
- Jones, A.M.; Berger, N.J.A.; Wilkerson, D.P.; Roberts, C.L. Effects of “priming” exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions. J. Appl. Physiol. 2006, 101, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Koppo, K.; Burnley, M. Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med. 2003, 33, 949–971. [Google Scholar] [CrossRef] [PubMed]
- Salvador, A.F.; De Aguiar, R.A.; Lisboa, F.D.; Pereira, K.L.; Cruz, R.S.D.; Caputo, F. Ischemic Preconditioning and Exercise Performance: A Systematic Review and Meta-Analysis. Int. J. Sports Physiol. Perform. 2016, 11, 4–14. [Google Scholar] [CrossRef]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Med. 2015, 45, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.E.A.; Galea, D.; Tufft, G.; Bunce, D.; Ferguson, R.A. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J. Appl. Physiol. 2013, 115, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shryock, J.C.; Belardinelli, L. Adenosine and adenosine receptors in the cardiovascular system: Biochemistry, physiology, and pharmacology. Am. J. Cardiol. 1997, 79, 2–10. [Google Scholar] [CrossRef]
- Agewall, S.; Whalley, G.A.; Doughty, R.N.; Sharpe, N. Handgrip exercise increases postocclusion hyperaemic brachial artery dilatation. Heart 1999, 82, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, O.; Fukutani, A. Effects of low-load resistance exercise with blood flow restriction on intramuscular hemodynamics, oxygenation level and water content. J. Sports Med. Phys. Fit. 2018, 58, 793–801. [Google Scholar] [CrossRef]
- Yasuda, T.; Abe, T.; Brechue, W.F.; Iida, H.; Takano, H.; Meguro, K.; Kurano, M.; Fujita, S.; Nakajima, T. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 2010, 59, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, S.S.H.; Stranden, E.; Kroese, A.J.; Diep, L.M.; Haug, E.; Jorgensen, J.J. Pro-inflammatory interleukins in patients operated on for proximal femur fracture. Scand. J. Clin. Lab. Investig. 2010, 70, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, S.S.H.; Stranden, E.; Kroese, A.J.; Slagsvold, C.E.; Diep, L.M.; Stromsoe, K.; Jorgensen, J.J. Edema in the lower limb of patients operated on for proximal femoral fractures. J. Trauma Inj. Infect. Crit. Care 2007, 62, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Pujol, T.J. The use of occlusion training to produce muscle hypertrophy. Strength Cond. J. 2009, 31, 77–84. [Google Scholar] [CrossRef]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; Naimo, M.A. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J. Strength Cond. Res. 2013, 27, 3068–3075. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Howatson, G.; Pattison, J.R.; McInnes, G. The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. J. Strength Cond. Res. 2008, 22, 1597–1601. [Google Scholar] [CrossRef] [PubMed]
- McCully, K.K.; Hamaoka, T. Near-infrared spectroscopy: What can it tell us about oxygen saturation in skeletal muscle? Exerc. Sport Sci. Rev. 2000, 28, 123–127. [Google Scholar] [PubMed]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Willis, S.J.; Alvarez, L.; Borrani, F.; Millet, G.P. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction. Physiol. Rep. 2018, 6, e13872. [Google Scholar] [CrossRef]
- Yanagisawa, O.; Sanomura, M. Effects of low-load resistance exercise with blood flow restriction on high-energy phosphate metabolism and oxygenation level in skeletal muscle. Interv. Med. Appl. Sci. 2017, 9, 67–75. [Google Scholar] [CrossRef]
- Richardson, R.S.; Grassi, B.; Gavin, T.P.; Haseler, L.J.; Tagore, K.; Roca, J.; Wagner, P.D. Evidence of O2 supply-dependent (V)over-dotO2max in the exercise-trained human quadriceps. J. Appl. Physiol. 1999, 86, 1048–1053. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Aagaard, T.; Olsen, M.; Kiens, B.; Turcotte, L.P.; Richter, E.A. Lactate and H+ uptake in inactive muscles during intense exercise in man. J. Physiol. 1995, 488, 219–229. [Google Scholar] [CrossRef]
- Paradis-Deschênes, P.; Joanisse, D.R.; Billaut, F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Appl. Physiol. Nutr. Metab. 2016, 41, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.C.; Edwards, R.H.; Hultman, E.; Nordesjo, L.O.; Nylind, B.; Sahlin, K. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflug. Arch. Eur. J. Physiol. 1976, 367, 137–142. [Google Scholar] [CrossRef]
- McGawley, K.; Bishop, D. Anaerobic and aerobic contribution to two, 5 x 6-s repeated-sprint bouts. Verona-Ghirada Team-Sport Conf. 2008, 3, 52. [Google Scholar]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
Pre-Compression (dL) | Post-Compression (dL) | % Difference Post vs. Pre | ES (90% CL) | % Chances for WFR to Be / = / than SHAM | |
---|---|---|---|---|---|
SHAM | 60.3 ± 9.9 | 60.4 ± 9.2 | 0.2 ± 2.2 | 0.21 (0.07, 0.36) | 57/43/0 |
WFR | 57.3 ± 5.6 | 59.0 ± 6.0 | 3.0 ± 1.0 * |
SHAM | WFR | ES (90% CL) | % Chances for WFR to Be /=/ than SHAM | |||||
---|---|---|---|---|---|---|---|---|
V1 | V3 | ΔV3−V1 | V1 | V3 | ΔV3−V1 | |||
1st section warm-up | ||||||||
SmO2avg | 85.9 ± 17.4 | 77.5 ± 21.3 | −8.5 ± 5.3 | 77.4 ± 16.4 | 66.3 ± 21.5 | −11.1 ± 11.5 | −0.06 | 0/96/4 |
(−0.19, 0.07) | ||||||||
[THb]avg | 99.0 ± 1.6 | 99.4 ± 1.2 | 0.3 ± 1.6 | 98.8 ± 1.2 | 99.6 ± 1.0 | 0.8 ± 1.7 | 0.18 | 47/40/12 |
(−0.38, 0.73) | ||||||||
RSA test | ||||||||
SmO2avg | 52.7 ± 32.8 | 50.4 ± 23.3 | −2.3 ± 12.8 | 36.7 ± 16.5 | 42.5 ± 18.8 | 5.9 ± 18.7 | 0.15 | 41/52/7 |
(−0.24, 0.54) | ||||||||
[THb]avg | 98.8 ± 2.5 | 98.1 ± 2.8 | −0.6 ± 2.9 | 97.8 ± 1.2 | 98.7 ± 2.1 | 0.9 ± 2.5 | 0.46 | 71/20/9 |
(−0.35, 1.27) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortin, J.-F.; Billaut, F. Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players. Sports 2019, 7, 121. https://doi.org/10.3390/sports7050121
Fortin J-F, Billaut F. Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players. Sports. 2019; 7(5):121. https://doi.org/10.3390/sports7050121
Chicago/Turabian StyleFortin, Jean-François, and François Billaut. 2019. "Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players" Sports 7, no. 5: 121. https://doi.org/10.3390/sports7050121
APA StyleFortin, J. -F., & Billaut, F. (2019). Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players. Sports, 7(5), 121. https://doi.org/10.3390/sports7050121