A Comparison of Machine versus Free-Weight Squats for the Enhancement of Lower-Body Power, Speed, and Change-of-Direction Ability during an Initial Training Phase of Recreationally-Active Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.2.1. Vertical Jump Test
2.2.2. Change-of-Direction and Sprint Tests
2.2.3. Squat 1-RM Tests
2.2.4. Training Sessions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shurley, J.P.; Todd, J.S.; Todd, T. The science of strength: Reflections on the National Strength and Conditioning Association and the emergence of research-based strength and conditioning. J. Strength Cond. Res. 2017, 31, 517–530. [Google Scholar] [PubMed]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; Mcgill, S.M. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Ben Amar, M.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J. Strength Cond. Res. 2009, 23, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Styles, W.J.; Matthews, M.J.; Comfort, P. Effects of strength training on squat and sprint performance in soccer players. J. Strength Cond. Res. 2016, 30, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Haigh, A.; Matthews, M.J. Are changes in maximal squat strength during preseason training reflected in changes in sprint performance in rugby league players? J. Strength Cond. Res. 2012, 26, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Carpinelli, R. A critical analysis of the National Strength and Conditioning Association’s opinion that free weights are superior to machines for increasing muscular strength and power. Med. Sport. Pract. 2017, 18, 21–39. [Google Scholar]
- Silvester, L.J.; Bryce, G.R. The effect of variable resistance and free-weight training programs on strength and vertical jump. Strength Cond. J. 1981, 3, 30–33. [Google Scholar] [CrossRef]
- Rossi, F.E.; Schoenfeld, B.J.; Ocetnik, S.; Young, J.; Vigotsky, A.; Contreras, B.; Krieger, J.W.; Miller, M.G.; Cholewa, J. Strength, body composition, and functional outcomes in the squat versus leg press exercises. J. Sports Med. Phys. Fit. 2018, 58, 263–270. [Google Scholar]
- Weiss, L.W.; Fry, A.C.; Wood, L.E.; Relyea, G.E.; Melton, C. Comparative effects of deep versus shallow squat and leg-press training on vertical jumping ability and related factors. J. Strength Cond. Res. 2000, 14, 241–247. [Google Scholar]
- Wirth, K.; Hartmann, H.; Sander, A.; Mickel, C.; Szilvas, E.; Keiner, M. The impact of back squat and leg-press exercises on maximal strength and speed-strength parameters. J. Strength Cond. Res. 2016, 30, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Moritani, T.; de Vries, H.A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.D. Power. In NSCA’s Guide to Tests and Assessments, 1st ed.; Miller, T., Ed.; Human Kinetics: Champaign, IL, USA, 2012; pp. 217–252. [Google Scholar]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M.; Kraemer, W.J. Estimation of human power output from vertical jump. J. Strength Cond. Res. 1991, 5, 116–120. [Google Scholar]
- Triplett, N.T. Speed and Agility. In NSCA’s Guide to Tests and Assessments, 1st ed.; Miller, T., Ed.; Human Kinetics: Champaign, IL, USA, 2012; pp. 253–274. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Moraes, J.E.; Kitamura, K.; Cal Abad, C.C.; Kobal, R.; Nakamura, F.Y. Jump-squat and half-squat exercises: Selective influences on speed-power performance of elite rugby sevens players. PLoS ONE 2017, 12, e0170627. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L. Muscular Strength. In NSCA’s Guide to Tests and Assessments, 1st ed.; Miller, T., Ed.; Human Kinetics: Champaign, IL, USA, 2012; pp. 147–192. [Google Scholar]
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.G.; Herniman, J.J.; Ricard, M.D.; Cheatham, C.C.; Michael, T.J. The effects of a 6-week plyometric training program on agility. J. Sports Sci. Med. 2006, 5, 459–465. [Google Scholar] [PubMed]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; de Villarreal, E.S.; Haff, G.G. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
Week | Sessions 1 and 2 | Session 1 | Session 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Squat | Jumps | Drop Jumps | Sprint | Pro-Agility | Zig-Zag | |||||
Sets | Reps | Rest | Sets | Reps | Sets | Reps | Sets | Sets | Sets | |
1 | 3 | 10–12 | 90 s | 2 | 5 | - | - | 2 * | 2 * | 2 * |
2 | 3 | 8–10 | 90 s | 3 | 5 | - | - | 2 * | 2 * | 2 * |
3 | 4 | 6–8 | 90 s | 3 | 5 | - | - | 2 ** | 2 ** | 2 ** |
4 | 5 | 6–8 | 90 s | - | - | 3 | 5 | 3 * | 3 * | 3 * |
5 | 5 | 3–5 | 120 s | - | - | 3 | 5 | 3 * | 3 * | 3 * |
6 | 6 | 3–5 | 120 s | - | - | 4 | 5 | 4 ** | 4 ** | 4 ** |
Variable | Time | CON | FWS | MS | TOTAL |
---|---|---|---|---|---|
Age (years) | 23.89 ± 3.72 | 22.33 ± 3.20 | 21.89 ± 3.59 | 22.70 ± 3.48 | |
Height (cm) | 165.28 ± 4.70 | 164.56 ± 7.80 | 170.00 ± 6.88 | 166.61 ± 6.79 | |
Body Mass (kg) †† | Pre | 79.24 ± 21.87 | 64.68 ± 13.44 | 67.79 ± 11.35 | 70.57 ± 16.82 |
Post | 79.00 ± 22.49 | 65.39 ± 12.78 | 69.27 ± 11.06 * | 71.22 ± 16.66 | |
Δ | 0.24 ± 1.61 | 0.71 ± 1.70 | 1.47 ± 1.03 C | 0.64 ± 1.59 | |
Squat 1-RM (kg) | Pre | - | 50.76 ± 9.09 | 77.02 ± 19.53 | - |
Post | - | 69.09 ± 8.81 ** | 100.76 ± 18.07 ** | - | |
Δ | - | 18.43 ± 6.86 | 23.74 ± 7.20 | - | |
Vertical Jump (cm) † | Pre | 37.25 ± 5.99 | 33.87 ± 5.43 | 36.55 ± 8.82 | 35.89 ± 6.80 |
Post | 39.79 ± 6.75 | 34.85 ± 6.60 | 41.49 ± 10.32 | 38.71 ± 8.27 ** | |
Δ | 2.54 ± 2.77 | 0.98 ± 2.89 | 4.94 ± 4.73 | 2.82 ± 3.82 | |
Peak Jump Power (W) †† | Pre | 6981 ± 765 | 6247 ± 555 | 6525 ± 339 | 6584 ± 637 |
Post | 7129 ± 713 * | 6333 ± 583 | 6884 ± 514 ** | 6782 ± 676 | |
Δ | 148 ± 162 | 86 ± 228 | 359 ± 283 F | 198 ± 251 | |
Avg. Jump Power (W) †† | Pre | 3526 ± 491 | 3163 ± 307 | 3257 ± 209 | 3316 ± 376 |
Post | 3542 ± 493 | 3188 ± 293 | 3332 ± 215 ** | 3354 ± 371 | |
Δ | 16 ± 37 | 25 ± 59 | 75 ± 39 C | 38 ± 52 | |
30-Meter Sprint (s) † | Pre | 5.87 ± 0.61 | 5.75 ± 0.36 | 5.73 ± 0.67 | 5.79 ± 0.55 |
Post | 5.75 ± 0.51 | 5.67 ± 0.34 | 5.43 ± 0.62 | 5.61 ± 0.50 ** | |
Δ | −0.12 ± 0.25 | −0.08 ± 0.26 | −0.30 ± 0.29 | −0.17 ± 0.27 | |
Zig-Zig Test (s) † | Pre | 7.07 ± 0.59 | 7.29 ± 0.46 | 6.86 ± 0.57 | 7.07 ± 0.55 |
Post | 6.76 ± 0.62 | 6.95 ± 0.44 | 6.55 ± 0.74 | 6.76 ± 0.61 ** | |
Δ | −0.30 ± 0.27 | −0.33 ± 0.26 | −0.31 ± 0.32 | −0.31 ± 0.29 | |
Pro-Agility Test (s) † | Pre | 6.17 ± 0.60 | 6.76 ± 0.85 | 6.61 ± 1.04 | 6.51 ± 0.86 |
Post | 5.91 ± 0.49 | 6.18 ± 0.46 | 5.79 ± 0.66 | 5.96 ± 0.55 ** | |
Δ | −0.26 ± 0.35 | −0.58 ± 0.82 | −0.82 ± 0.52 | −0.55 ± 0.62 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, N.A.; Harper, S.P.; Waldhelm, A.; McKinley-Barnard, S.K.; Holden, S.L.; Kovaleski, J.E. A Comparison of Machine versus Free-Weight Squats for the Enhancement of Lower-Body Power, Speed, and Change-of-Direction Ability during an Initial Training Phase of Recreationally-Active Women. Sports 2019, 7, 215. https://doi.org/10.3390/sports7100215
Schwarz NA, Harper SP, Waldhelm A, McKinley-Barnard SK, Holden SL, Kovaleski JE. A Comparison of Machine versus Free-Weight Squats for the Enhancement of Lower-Body Power, Speed, and Change-of-Direction Ability during an Initial Training Phase of Recreationally-Active Women. Sports. 2019; 7(10):215. https://doi.org/10.3390/sports7100215
Chicago/Turabian StyleSchwarz, Neil A., Sean P. Harper, Andy Waldhelm, Sarah K. McKinley-Barnard, Shelley L. Holden, and John E. Kovaleski. 2019. "A Comparison of Machine versus Free-Weight Squats for the Enhancement of Lower-Body Power, Speed, and Change-of-Direction Ability during an Initial Training Phase of Recreationally-Active Women" Sports 7, no. 10: 215. https://doi.org/10.3390/sports7100215
APA StyleSchwarz, N. A., Harper, S. P., Waldhelm, A., McKinley-Barnard, S. K., Holden, S. L., & Kovaleski, J. E. (2019). A Comparison of Machine versus Free-Weight Squats for the Enhancement of Lower-Body Power, Speed, and Change-of-Direction Ability during an Initial Training Phase of Recreationally-Active Women. Sports, 7(10), 215. https://doi.org/10.3390/sports7100215