Reticulocyte Count and Exercise Performance in Elite Athletes: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Blood Tests
2.3. Cardiopulmonary Exercise Test
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. The Impact of Cardiac Function on Exercise Capacity
4.2. Variation of the Number of Reticulocytes with Training
4.3. Effect of Dynamic Exercise on RBC Function
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AT: | anaerobic threshold |
BP: | blood pressure |
ECG: | electrocardiogram |
Hb: | haemoglobin |
HR: | heart rate |
LV: | left ventricular |
O2: | oxygen |
RBCs: | red blood cells |
RC: | respiratory compensation |
RDW: | RBC distribution width |
RER: | respiratory exchange ratio |
RPI: | reticulocyte production index |
TTE: | echocardiography |
VE: | minute ventilation |
VO2: | oxygen uptake |
References
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Maeda, T.; Takahashi, T.; Ashikaga, K.; Tanaka, S.; Sumi, Y.; Itoh, H. Changes in oxygen uptake kinetics after exercise caused by differences in loading pattern and exercise intensity. ESC Heart Fail. 2020, 7, 1109–1117. [Google Scholar] [CrossRef]
- Bangsbo, J.; Magni, M.; Allan, P.; Jorge, P.G.; Peter, K. Training and testing the elite athlete. J. Exerc. Sci. Fit. 2006, 4, 1–14. [Google Scholar]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef]
- Guazzi, M.; Bandera, F.; Ozemek, C.; Systrom, D.; Arena, R. Cardiopulmonary Exercise Testing: What Is its Value? J. Am. Coll. Cardiol. 2017, 70, 1618–1636. [Google Scholar] [CrossRef]
- Rudofker, E.; Ochten, N.V.; Edward, J.; Parker, H.; Wulff, K.; Suckow, E.; Forbes, L.; Cornwell, W.K., 3rd. Exercise Testing in Elite Athletes. Heart Fail. Clin. 2025, 21, 15–25. [Google Scholar] [CrossRef]
- Kasiak, P.; Kowalski, T.; Klusiewicz, A.; Zdanowicz, R.; Ładyga, M.; Wiecha, S.; Mamcarz, A.; Śliż, D. Recalibrated FRIEND equation for peak oxygen pulse is accurate in endurance athletes: The NOODLE study. Sci. Rep. 2024, 14, 23133. [Google Scholar] [CrossRef]
- Wiecha, S.; Kasiak, P.S.; Szwed, P.; Kowalski, T.; Cieśliński, I.; Postuła, M.; Klusiewicz, A. VO2max prediction based on submaximal cardiorespiratory relationships and body composition in male runners and cyclists: A population study. eLife 2023, 12, e86291. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Epidemiological, biological and clinical update on exercise-induced hemolysis. Ann. Transl. Med. 2019, 7, 270. [Google Scholar] [CrossRef]
- Amoudruz, L.; Economides, A.; Koumoutsakos, P. The volume of healthy red blood cells is optimal for advective oxygen transport in arterioles. Biophys. J. 2024, 123, 1289–1296. [Google Scholar] [CrossRef]
- Damian, M.T.; Vulturar, R.; Login, C.C.; Damian, L.; Chis, A.; Bojan, A. Anemia in sports: A narrative review. Life 2021, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.; Gledhill, N.; Quinney, H.A. Blood volume, aerobic power, and endurance performance: Potential ergogenic effect of volume loading. Clin. J. Sport. Med. 2000, 10, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Gledhill, N.; Jamnik, V. High VO2max with no history of training is primarily due to high blood volume. Med. Sci. Sports Exerc. 2002, 34, 966–971. [Google Scholar] [CrossRef]
- Shrestha, R.P.; Horowitz, J.; Hollot, C.V.; Germain, M.J.; Widness, J.A.; Mock, D.M.; Veng-Pedersen, P.; Chait, Y. Models for the red blood cell lifespan. J. Pharmacokinet. Pharmacodyn. 2016, 43, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Samaja, M.; Rovida, E.; Motterlini, R.; Tarantola, M.; Rubinacci, A.; di Prampero, P.E. Human red cell age, oxygen affinity and oxygen transport. Respir. Physiol. 1990, 79, 69–79. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Olcina, G.; Sánchez-Ureña, B.; Pino-Ortega, J.; Martínez-Guardado, I.; Timón, R. Proteinuria and bilirubinuria as potential risk indicators of acute kidney injury during running in outpatient settings. Medicina 2020, 56, 562. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Aloe, R.; Banfi, G.; Guidi, G.C. Foot-strike haemolysis after a 60-km ultramarathon. Blood Transfus. 2012, 10, 377–383. [Google Scholar]
- Stevens-Hernandez, C.J.; Bruce, L.J. Reticulocyte Maturation. Membranes 2022, 12, 311. [Google Scholar] [CrossRef]
- Mosteller, R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Devereux, R.B. Detection of left ventricular hypertrophy by M-mode echocardiography. Anatomic validation, standardization, and comparison to other methods. Hypertension 1987, 9, II19–II26. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Caselli, S.; Sharma, S.; Basso, C.; Bax, J.J.; Corrado, D.; D’Andrea, A.; D’Ascenzi, F.; Di Paolo, F.M.; Edvardsen, T.; et al. European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: Recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. Eur. Heart J. 2018, 39, 1949–1969. [Google Scholar]
- Koepke, J.F.; Koepke, J.A. Reticulocytes. Clin. Lab. Haematol. 1986, 8, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Authors/Task Force Members; Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. J. Prev. Cardiol. 2016, 23, NP1–96. [Google Scholar]
- Itoh, H.; Ajisaka, R.; Koike, A.; Makita, S.; Omiya, K.; Kato, Y.; Adachi, H.; Nagayama, M.; Maeda, T.; Tajima, A.; et al. Heart rate and blood pressure response to ramp exercise and exercise capacity in relation to age, gender, and mode of exercise in a healthy population. J. Cardiol. 2013, 61, 71–78. [Google Scholar] [CrossRef]
- Ashikaga, K.; Itoh, H.; Maeda, T.; Itoh, H.; Ichikawa, Y.; Tanaka, S.; Ajisaka, R.; Koike, A.; Makita, S.; Omiya, K.; et al. Ventilatory efficiency during ramp exercise in relation to age and sex in a healthy Japanese population. J. Cardiol. 2021, 77, 57–64. [Google Scholar] [CrossRef]
- Bracho, F.J.; Osorio, I.A. Evaluation of the reticulocyte production index in the pediatric population. Am. J. Clin. Pathol. 2020, 154, 70–77. [Google Scholar] [CrossRef]
- Zeng, S.M.; Yankowitz, J.; Widness, J.A.; Strauss, R.G. Etiology of differences in hematocrit between males and females: Sequence-based polymorphisms in erythropoietin and its receptor. J. Gend. Specif. Med. 2001, 4, 35–40. [Google Scholar]
- Tarallo, P.; Humbert, J.C.; Mahassen, P.; Fournier, B.; Henny, J. Reticulocytes: Biological variations and reference limits. Eur. J. Haematol. 1994, 53, 11–15. [Google Scholar] [CrossRef]
- Segal, J.B.; Moliterno, A.R. Platelet counts differ by sex, ethnicity, and age in the United States. Ann. Epidemiol. 2006, 16, 123–130. [Google Scholar] [CrossRef]
- Sparling, P.B. A meta-analysis of studies comparing maximal oxygen uptake in men and women. Res. Q. Exerc. Sport. 1980, 51, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R.; Conway, J. Measurement of cardiac output: Fick principle using catheterization. Eur. Heart J. 1990, 11 (Suppl. I), 1–5. [Google Scholar] [CrossRef] [PubMed]
- Stringer, W.W.; Hansen, J.E.; Wasserman, K. Cardiac output estimated noninvasively from oxygen uptake during exercise. J. Appl. Physiol. 1997, 82, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, D.A.; Tomschi, F.; Bales, G.; Nader, E.; Romana, M.; Connes, P.; Bloch, W.; Grau, M. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals? J. Sport Health Sci. 2020, 9, 595–603. [Google Scholar] [CrossRef]
- Robinson, Y.; Cristancho, E.; Böning, D. Intravascular hemolysis and mean red blood cell age in athletes. Med. Sci. Sports Exerc. 2006, 38, 480–483. [Google Scholar] [CrossRef]
- Malcovati, L.; Pascutto, C.; Cazzola, M. Hematologic passport for athletes competing in endurance sports: A feasibility study. Haematologica 2003, 88, 570–581. [Google Scholar] [PubMed]
- Schmidt, W.; Maassen, N.; Trost, F.; Böning, D. Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 490–498. [Google Scholar] [CrossRef]
- Santos-Silva, A.; Rebelo, M.I.; Castro, E.M.; Belo, L.; Guerra, A.; Rego, C.; Quintanilha, A. Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clin. Chim. Acta 2001, 306, 119–126. [Google Scholar] [CrossRef]
- Connes, P.; Bouix, D.; Py, G.; Prefaut, C.; Mercier, J.; Brun, J.F.; Caillaud, C. Opposite effects of in vitro lactate on erythrocyte deformability in athletes and untrained subjects. Clin. Hemorheol. Microcirc. 2004, 31, 311–318. [Google Scholar]
- Connes, P.; Simmonds, M.J.; Brun, J.F.; Baskurt, O.K. Exercise hemorheology: Classical data, recent findings and unresolved issues. Clin. Hemorheol. Microcirc. 2013, 53, 187–199. [Google Scholar] [CrossRef]
- Smith, J.A.; Telford, R.D.; Kolbuch-Braddon, M.; Weidemann, M.J. Lactate/H+ uptake by red blood cells during exercise alters their physical properties. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Nemkov, T.; Skinner, S.C.; Nader, E.; Stefanoni, D.; Robert, M.; Cendali, F.; Stauffer, E.; Cibiel, A.; Boisson, C.; Connes, P.; et al. Acute cycling exercise induces changes in red blood cell deformability and membrane lipid remodeling. Int. J. Mol. Sci. 2021, 22, 896. [Google Scholar] [CrossRef] [PubMed]
- Barshtein, G.; Gural, A.; Arbell, D.; Barkan, R.; Livshits, L.; Pajic-Lijakovic, I.; Yedgar, S. Red blood cell deformability is expressed by a set of interrelated membrane proteins. Int. J. Mol. Sci. 2023, 24, 12755. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, C.; Tsuchiya, K.; Maeda, K. Reticulocyte hemoglobin content. Clin. Chim. Acta 2020, 504, 138–145. [Google Scholar] [CrossRef]
Total (n = 105) | Male (n = 66) | Female (n = 39) | p Value | |
---|---|---|---|---|
Age, years | 25.6 ± 4.1 | 26.0 ± 4.4 | 24.7 ± 3.6 | 0.105 |
Body weight, kg | 75.6 ± 10.6 | 81.9 ± 11.6 | 64.8 ± 8.8 | <0.001 |
Body whight, cm | 179.2 ± 9.0 | 184.8 ± 9.8 | 169.8 ± 7.2 | <0.001 |
BMI, kg/m2 | 23.3 ± 2.0 | 23.9 ± 2.1 | 22.4 ± 1.7 | <0.001 |
BSA, m2 | 1.93 ± 0.18 | 2.03 ± 0.19 | 1.74 ± 0.15 | <0.001 |
Afro-Caribbean | 1 (1) | 0 (0) | 1 (3) | 0.356 |
Smoking | 7 (7) | 5 (8) | 2 (5) | 0.645 |
LVEDV, mL | 143.2 ± 27.5 | 159.4 ± 30.6 | 115.9 ± 20.9 | <0.001 |
LVSV, mL | 89.8 ± 18.6 | 99.7 ± 20.5 | 73.0 ± 14.7 | <0.001 |
LVM, g | 196.8 ± 37.5 | 214.6 ± 38.7 | 166.7 ± 35.4 | <0.001 |
LVMi, g/m2 | 101.6 ± 16.6 | 105.2 ± 16.8 | 95.5 ± 16.1 | 0.005 |
LVEF, % | 62.6 ± 4.6 | 62.6 ± 5.0 | 62.7 ± 3.9 | 0.949 |
LVEDD, mm | 54.4 ± 3.0 | 56.2 ± 2.9 | 51.4 ± 3.1 | <0.001 |
RWT | 0.34 ± 0.03 | 0.34 ± 0.03 | 0.34 ± 0.03 | 0.936 |
Total (n = 105) | Male (n = 66) | Female (n = 39) | p Value | |
---|---|---|---|---|
RBC, 1012/L | 4.88 ± 0.31 | 5.13 ± 0.33 | 4.47 ± 0.28 | <0.001 |
Hb concentration, g/dL | 14.4 ± 0.9 | 15.1 ± 0.9 | 13.3 ± 0.9 | <0.001 |
Ht, % | 42.7 ± 2.5 | 44.4 ± 2.5 | 39.8 ± 2.4 | <0.001 |
MCV, fL | 87.3 ± 5.2 | 86.2 ± 4.8 | 89.1 ± 5.9 | 0.011 |
MCH, pg | 29.5 ± 1.8 | 29.4 ± 1.5 | 29.8 ± 2.2 | 0.328 |
MCHC, g/dL | 33.9 ± 0.8 | 34.1 ± 0.8 | 33.4 ± 0.8 | <0.001 |
WBC, 109/L | 5.87 ± 1.21 | 5.79 ± 1.24 | 6.00 ± 1.16 | 0.399 |
Platelets, 109/L | 235 ± 45 | 224 ± 39 | 254 ± 53 | 0.003 |
Reticulocytes, % | 1.21 ± 0.47 | 1.28 ± 0.53 | 1.08 ± 0.36 | 0.022 |
Reticulocytes, 1012/L | 0.059 ± 0.024 | 0.065 ± 0.027 | 0.048 ± 0.016 | <0.001 |
RPI | 1.1 ± 0.4 | 1.3 ± 0.5 | 0.9 ± 0.3 | <0.001 |
T-Bil, mg/dL | 0.7 ± 0.4 | 0.5 ± 0.3 | 0.7 ± 0.3 | 0.005 |
AST, U/L | 26.6 ± 10.2 | 28.6 ± 11.6 | 23.2 ± 1.6 | 0.004 |
ALT, U/L | 21.8 ± 9.0 | 23.8 ± 9.3 | 18.3 ± 8.5 | 0.003 |
Γ-GTP, U/L | 20.2 ± 35.7 | 24.4 ± 44.6 | 13.3 ± 6.7 | 0.051 |
Cr, mg/dL | 0.96 ± 0.11 | 1.01 ± 0.11 | 0.87 ± 0.12 | <0.001 |
CRP, mg/L | 1.3 ± 2.0 | 1.5 ± 2.3 | 1.0 ± 1.3 | 0.201 |
Total (n = 105) | Male (n = 66) | Female (n = 39) | p Value | |
---|---|---|---|---|
HR at rest, beat/min | 54 ± 9 | 54 ± 10 | 55 ± 8 | 0.704 |
HR at peak, beat/min | 164 ± 10 | 162 ± 10 | 168 ± 9 | 0.008 |
SBP at rest, mmHg | 115 ± 11 | 119 ± 11 | 109 ± 9 | <0.001 |
SBP at peak, mmHg | 180 ± 19 | 186 ± 19 | 170 ± 19 | <0.001 |
Peak VE, L/min | 114.3 ± 24.0 | 126.9 ± 25.7 | 93.0 ± 20.8 | <0.001 |
AT, mL/min/kg | 27.6 ± 7.9 | 28.3 ± 8.8 | 26.4 ± 6.1 | 0.196 |
Peak VO2, mL/min/kg | 45.5 ± 9.1 | 46.7 ± 9.8 | 43.4 ± 7.7 | 0.056 |
Peak RER | 1.13 ± 0.06 | 1.13 ± 0.07 | 1.11 ± 0.05 | 0.112 |
Peak O2 pulse, mL/beat | 20.8 ± 4.2 | 23.3 ± 4.6 | 16.7 ± 3.3 | <0.001 |
VE vs. VCO2 slope | 25.1 ± 2.6 | 24.9 ± 4.3 | 25.5 ± 2.8 | 0.247 |
Peak workload, watt | 292 ± 68 | 323 ± 74 | 239 ± 58 | <0.001 |
Independent Variables | B ± SE | Wald Χ2 | 95% CI of B | p Value |
---|---|---|---|---|
Age, years | 0.1 ± 0.2 | 0.2 | −0.3 to 0.5 | 0.684 |
Female | −3.1 ± 3.1 | 1.0 | −9.1 to 2.9 | 0.315 |
Stroke volume, mL | 0.0 ± 0.1 | 0.1 | −0.1 to 0.1 | 0.846 |
Hb concentration, g/dL | 1.3 ± 1.0 | 1.7 | −0.7 to 3.4 | 0.195 |
HR at peak, beat/min | 0.1 ± 0.1 | 2.7 | −0.0 to 0.2 | 0.102 |
Reticulocytes, 1012/L | −119.1 ± 37.3 | 10.2 | −192.3 to −45.9 | 0.001 |
Constant | 14.0 ± 19.6 | 0.5 | −24.4 to 52.5 | 0.474 |
Independent Variables | B ± SE | Wald Χ2 | 95% CI of B | p Value |
---|---|---|---|---|
Age, years | 0.2 ± 0.2 | 0.4 | −0.2 to 0.6 | 0.309 |
Female | −0.8 ± 2.7 | 0.1 | −6.1 to 4.4 | 0.752 |
Stroke volume, mL | 0.0 ± 0.1 | 1.1 | −0.0 to 0.1 | 0.293 |
Hemoglobin, g/dL | 0.9 ± 0.9 | 1.0 | −0.9 to 2.7 | 0.319 |
HR at peak, beat/min | 0.1 ± 0.1 | 1.0 | −0.0 to 0.3 | 0.094 |
Reticulocytes, 1012/L | −78.6 ± 33.1 | 5.6 | −143.4 to −13.8 | 0.018 |
Constant | −0.8 ± 2.7 | 4.0 | −53.4 to 27.1 | 0.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashikaga, K.; Perrone, M.A.; Gianfelici, A.; Ortolina, D.; Crotta, S.; Spinelli, A.; Monosilio, S.; Di Gioia, G.; Maestrini, V.; Squeo, M.R.; et al. Reticulocyte Count and Exercise Performance in Elite Athletes: A Retrospective Study. Sports 2025, 13, 169. https://doi.org/10.3390/sports13060169
Ashikaga K, Perrone MA, Gianfelici A, Ortolina D, Crotta S, Spinelli A, Monosilio S, Di Gioia G, Maestrini V, Squeo MR, et al. Reticulocyte Count and Exercise Performance in Elite Athletes: A Retrospective Study. Sports. 2025; 13(6):169. https://doi.org/10.3390/sports13060169
Chicago/Turabian StyleAshikaga, Kohei, Marco Alfonso Perrone, Antonio Gianfelici, Davide Ortolina, Simone Crotta, Alessandro Spinelli, Sara Monosilio, Giuseppe Di Gioia, Viviana Maestrini, Maria Rosaria Squeo, and et al. 2025. "Reticulocyte Count and Exercise Performance in Elite Athletes: A Retrospective Study" Sports 13, no. 6: 169. https://doi.org/10.3390/sports13060169
APA StyleAshikaga, K., Perrone, M. A., Gianfelici, A., Ortolina, D., Crotta, S., Spinelli, A., Monosilio, S., Di Gioia, G., Maestrini, V., Squeo, M. R., & Pelliccia, A. (2025). Reticulocyte Count and Exercise Performance in Elite Athletes: A Retrospective Study. Sports, 13(6), 169. https://doi.org/10.3390/sports13060169