A Comparative Analysis of Acute Physiological and Perceptual Responses in Whole-Body and Ergometer-Based High-Intensity Interval Training Protocols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.3.1. Experimental Sessions
2.3.2. Outcomes of Interest
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchheit, M.; Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part I: Cardiopulmonary Emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Billat, L.V. Interval Training for Performance: A Scientific and Empirical Practice. Special Recommendations for Middle- and Long-Distance Running. Part I: Aerobic Interval Training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef]
- Batacan, R.B.J.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of High-Intensity Interval Training on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Intervention Studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological Adaptations to Low-Volume, High-Intensity Interval Training in Health and Disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Gibala, M.; Little, J.P. Exercise Snacks: A Novel Strategy to Improve Cardiometabolic Health. Exerc. Sport Sci. Rev. 2022, 50, 31–37. [Google Scholar] [CrossRef]
- Schaun, G.Z.; Pinto, S.S.; Silva, M.R.; Dolinski, D.B.; Alberton, C.L. Whole-Body High-Intensity Interval Training Induce Similar Cardiorespiratory Adaptations Compared with Traditional High-Intensity Interval Training and Moderate-Intensity Continuous Training in Healthy Men. J. Strength Cond. Res. 2018, 32, 2730–2742. [Google Scholar] [CrossRef]
- Thompson, W.R. Worldwide Survey for Fitness Trends for 2023. ACSM’s Health Fit. J. 2023, 27, 9–18. [Google Scholar] [CrossRef]
- McRae, G.; Payne, A.; Zelt, J.G.E.; Scribbans, T.D.; Jung, M.E.; Little, J.P.; Gurd, B.J. Extremely Low Volume, Whole-Body Aerobic-Resistance Training Improves Aerobic Fitness and Muscular Endurance in Females. Appl. Physiol. Nutr. Metab. 2012, 37, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.; Landwehr, R. The Surprising History of the “HRmax=220-Age” Equation. JEPonline 2002, 5, 1–10. [Google Scholar]
- American College of Sports Medicine. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription, 9th ed.; Swain, D.P., Ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; ISBN 9781609139568. [Google Scholar]
- Malek, M.H.; Berger, D.E.; Housh, T.J.; Coburn, J.W.; Beck, T.W. Validity of VO2max Equations for Aerobically Trained Males and Females. Med. Sci. Sports Exerc. 2004, 36, 1427–1432. [Google Scholar] [CrossRef]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of Moderate-Intensity Endurance and High-Intensity Intermittent Training on Anaerobic Capacity and VO2max. Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjokvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A Practical Approach to Monitoring Recovery: Development of a Perceived Recovery Status Scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.J.; Goss, F.L.; Dube, J.; Rutkowski, J.; Dupain, M.; Brennan, C.; Andreacci, J. Validation of the Adult OMNI Scale of Perceived Exertion for Cycle Ergometer Exercise. Med. Sci. Sports Exerc. 2004, 36, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Gist, N.H.; Freese, E.C.; Cureton, K.J. Comparison of Responses to Two High-Intensity Intermittent Exercise Protocols. J. Strength Cond. Res. 2014, 28, 3033–3040. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Langley, J.; Lee, M.; Myette-Côté, E.; Jackson, G.; Durrer, C.; Gibala, M.J.; Jung, M.E. Sprint exercise snacks: A novel approach to increase aerobic fitness. Eur. J. Appl. Physiol. 2019, 119, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Connolly, D.R.; Ferioli, D.; La Torre, A.; Alberti, G.; Bosio, A. Peripheral Neuromuscular Fatigue Induced by Repeated-Sprint Exercise: Cycling vs. Running. J. Sports Med. Phys. Fit. 2016, 56, 49–59. [Google Scholar]
- Cole, M.A.; Brown, M.D. Response of the Human Triceps Surae Muscle to Electrical Stimulation during Varying Levels of Blood Flow Restriction. Eur. J. Appl. Physiol. 2000, 82, 39–44. [Google Scholar] [CrossRef]
- Volianitis, S.; Secher, N.H. Cardiovascular Control during Whole Body Exercise. J. Appl. Physiol. 2016, 121, 376–390. [Google Scholar] [CrossRef]
- Machado, A.F.; Evangelista, A.L.; Miranda, J.M.Q.; Teixeira, C.V.L.S.; Rica, R.L.; Lopes, C.R.; Figueira-Júnior, A.; Baker, J.S.; Bocalini, D.S. Description of Training Loads Using Whole-Body Exercise during High-Intensity Interval Training. Clinics 2018, 73, e516. [Google Scholar] [CrossRef]
- Clifford, T.; Berntzen, B.; Davison, G.W.; West, D.J.; Howatson, G.; Stevenson, E.J. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Mizuno, S.; Mori, A. Efficacy of Wearing Compression Garments during Post-Exercise Period after Two Repeated Bouts of Strenuous Exercise: A Randomized Crossover Design in Healthy, Active Males. Sports Med. Open 2017, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; Milak, A. Exercise-Induced Muscle Damage Following a Bout of Sport Specific Repeated Sprints. J. Strength Cond. Res. 2009, 23, 2419–2424. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.L. Causes of Delayed Onset Muscle Soreness and the Impact on Athletic Performance: A Review. J. Strength Cond. Res. 1992, 6, 135–141. [Google Scholar]
- Twist, C.; Eston, R. The Effects of Exercise-Induced Muscle Damage on Maximal Intensity Intermittent Exercise Performance. Eur. J. Appl. Physiol. 2005, 94, 652–658. [Google Scholar] [CrossRef]
- Noakes, T.D. Effect of Exercise on Serum Enzyme Activities in Humans. Sports Med. 1987, 4, 245–267. [Google Scholar] [CrossRef]
- Cipryan, L. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols. J. Hum. Kinet. 2017, 56, 139–148. [Google Scholar] [CrossRef]
- Foschini, D.; Prestes, J.; Charro, M.A. Relationship between Physical Exercise, Muscle Damage and Delayed-Onset Muscle Soreness. Braz. J. Kinanthropometry Hum. Perform. 2007, 9, 101–106. [Google Scholar]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine Kinase Monitoring in Sport Medicine. Br. Med. Bull. 2007, 81–82, 209–230. [Google Scholar] [CrossRef]
HIIT-C | HIIT-WB | ||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p Value | |
HRpeak (bpm) | 184.3 | ±7.8 | 182.1 | ±7.2 | 0.57 |
(%HRmax) | 95.8 | ±4.1 | 94.8 | ±3.7 | 0.63 |
(%HRR) | 93.9 | ±5.9 | 92.9 | ±6.2 | 0.63 |
HRavg (bpm) | 167.6 | ±8.5 | 165.6 | ±10.5 | 0.73 |
(%HRmax) | 87.1 | ±4.3 | 86.1 | ±5.6 | 0.72 |
(%HRR) | 80.9 | ±5.9 | 79.8 | ±9.6 | 0.72 |
RPR | 6.8 | ±1.5 | 7.5 | ±1.5 | 0.14 |
RPE | 9.6 | ±0.5 | 8.8 | ±0.9 | 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaun, G.Z.; Orcy, R.B.; Del Vecchio, F.B. A Comparative Analysis of Acute Physiological and Perceptual Responses in Whole-Body and Ergometer-Based High-Intensity Interval Training Protocols. Sports 2024, 12, 166. https://doi.org/10.3390/sports12060166
Schaun GZ, Orcy RB, Del Vecchio FB. A Comparative Analysis of Acute Physiological and Perceptual Responses in Whole-Body and Ergometer-Based High-Intensity Interval Training Protocols. Sports. 2024; 12(6):166. https://doi.org/10.3390/sports12060166
Chicago/Turabian StyleSchaun, Gustavo Z., Rafael B. Orcy, and Fabrício B. Del Vecchio. 2024. "A Comparative Analysis of Acute Physiological and Perceptual Responses in Whole-Body and Ergometer-Based High-Intensity Interval Training Protocols" Sports 12, no. 6: 166. https://doi.org/10.3390/sports12060166
APA StyleSchaun, G. Z., Orcy, R. B., & Del Vecchio, F. B. (2024). A Comparative Analysis of Acute Physiological and Perceptual Responses in Whole-Body and Ergometer-Based High-Intensity Interval Training Protocols. Sports, 12(6), 166. https://doi.org/10.3390/sports12060166