A Systematic Review with Meta-Analysis on the Effects of Plyometric-Jump Training on the Physical Fitness of Combat Sport Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search, Administration, Update, and Inclusion and Exclusion Criteria
2.2. Data Extraction
2.3. Studies Methodological Quality
2.4. Meta-Analyses
2.5. Moderator Analyses
2.6. Certainty of Evidence
3. Results
3.1. Studies Selection, Inclusion, and Quality Assessment
3.2. Study Characteristics
3.3. Meta-Analyses
4. Discussion
4.1. Main Findings
4.2. Athletic Performance
4.3. Anthropometric Adaptations
4.4. Limitations
4.5. Practical Applications and Future Lines for Research
5. Conclusions
6. Registration
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barley, O.R.; Harms, C.A. Profiling combat sports athletes: Competitive history and outcomes according to sports type and current level of competition. Sport. Med.-Open 2021, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Peset, F.; Ferrer, A.; Villamon, M.; González, L.M.; Toca-Herrera, J.L.; Aleixandre-Benavent, R. Scientific literature analysis of Judo in Web of Science®. Arch. Budo 2013, 9, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gutiérrez, M.; Valdés Badilla, P.; Herrera-Valenzuela, T.; Gutiérrez-García, C. Taekwondo scientific production published in the Web of Science (1988–2016): Collaboration and topics. Mov. Rev. Da Esc. De Educ. Física 2017, 23, 1325–1340. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-García, C. Presentation of the Special Issue. Rev. Artes Marciales Asiáticas 2021, 16, 4–5. [Google Scholar] [CrossRef]
- Valdés-Badilla, P.; Herrera-Valenzuela, T.; Ramirez-Campillo, R.; Aedo-Muñoz, E.; Báez-San Martín, E.; Ojeda-Aravena, A.; Branco, B.H.M. Effects of Olympic combat sports on older adults’ health status: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 7381. [Google Scholar] [CrossRef] [PubMed]
- Bromley, S.J.; Drew, M.K.; Talpey, S.; McIntosh, A.S.; Finch, C.F. A systematic review of prospective epidemiological research into injury and illness in Olympic combat sport. Br. J. Sport. Med. 2018, 52, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Gutiérrez-García, C.; Izquierdo Macón, E. Olympic combat sports research output in the Web of Science: A sport sciences centered analysis. Ido Mov. Cult. 2018, 18, 21–27. [Google Scholar] [CrossRef]
- Turner, A.; James, N.; Dimitriou, L.; Greenhalgh, A.; Moody, J.; Fulcher, D.; Mias, E.; Kilduff, L. Determinants of olympic fencing performance and implications for strength and conditioning training. J. Strength Cond. Res. 2014, 28, 3001–3011. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Garcia Garcia, J.M.; Ramirez-Campillo, R. Six weeks of HIIT based on repeated 5-meter sprints vs. countermovement jumps: Effects on physical performance among karate athletes. A pilot-study. J. Martial Arts Anthropol. 2020, 20, 17–32. [Google Scholar]
- Dallas, G.C.; Pappas, P.; Ntallas, C.G.; Paradisis, G.P.; Exell, T.A. The effect of four weeks of plyometric training on reactive strength index and leg stiffness is sport dependent. J. Sport. Med. Phys. Fit. 2020, 60, 979–984. [Google Scholar] [CrossRef]
- Martínez de Quel, Ó.; Ara, I.; Izquierdo, M.; Ayán, C. Does physical fitness predict future karate success? a study in young female karatekas. Int. J. Sport. Physiol. Perform. 2020, 15, 868–873. [Google Scholar] [CrossRef] [PubMed]
- García-Pallarés, J.; López-Gullón, J.M.; Muriel, X.; Díaz, A.; Izquierdo, M. Physical fitness factors to predict male Olympic wrestling performance. Eur. J. Appl. Physiol. 2011, 111, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Báez, E.; Franchini, E.; Ramírez-Campillo, R.; Cañas-Jamett, R.; Herrera, T.; Burgos-Jara, C.; Henríquez-Olguín, C. Anthropometric characteristics of top-class brazilian jiu jitsu athletes: Role of fighting style. Int. J. Morphol. 2014, 32, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Aravena, A.; Azocar-Gallardo, J.; Galle, F.; García-García, J.M. Relación entre las características de la composición corporal y el rendimiento físico general y específico en competidores de taekwondo chilenos de nivel nacional de ambos sexos: Un estudio observacional. Rev. Española Nutr. Hum. Dietética 2020, 24, 154–164. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; García-García, J.M. Relación entre las características de la composición corporal y el rendimiento físico en atletas hombres de karate: Un estudio observacional. Rev. Española Nutr. Hum. Dietética 2020, 24, 366–373. [Google Scholar] [CrossRef]
- Bridge, C.A.; Ferreira da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sport. Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Chaabène, H.; Hachana, Y.; Franchini, E.; Mkaouer, B.; Chamari, K. Physical and physiological profile of elite karate athletes. Sport. Med. 2012, 42, 829–843. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Mkaouer, B.; Franchini, E.; Julio, U.; Hachana, Y. Physical and physiological attributes of wrestlers: An update. J. Strength Cond. Res. 2017, 31, 1411–1442. [Google Scholar] [CrossRef]
- Franchini, E.; Del Vecchio, F.B.; Matsushigue, K.A.; Artioli, G.G. Physiological profiles of elite judo athletes. Sport. Med. 2011, 41, 147–166. [Google Scholar] [CrossRef]
- Torres-Luque, G.; Hernández-García, R.; Escobar-Molina, R.; Garatachea, N.; Nikolaidis, P.T. Physical and physiological characteristics of judo athletes: An update. Sports 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Towards a determination of the physiological characteristics distinguishing successful mixed martial arts athletes: A systematic review of combat sport literature. Sport. Med. 2016, 46, 1525–1551. [Google Scholar] [CrossRef]
- Plush, M.G.; Guppy, S.N.; Nosaka, K.; Barley, O.R. Exploring the physical and physiological characteristics relevant to mixed martial arts. Strength Cond. J. 2022, 44, 52–60. [Google Scholar] [CrossRef]
- Francino, L.; Villarroel, B.; Valdés-Badilla, P.; Ramirez-Campillo, R.; Báez-San Martín, E.; Ojeda-Aravena, A.; Aedo-Muñoz, E.; Pardo-Tamayo, C.; Herrera-Valenzuela, T. Effect of a six week in-season training program on wrestling-specific competitive performance. Int. J. Environ. Res. Public Health 2022, 19, 9325. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of high-intensity interval training on olympic combat sports athletes’ performance and physiological adaptation: A systematic review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of high-intensity interval training in combat sports: A systematic review with meta-analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- Kostikiadis, I.N.; Methenitis, S.; Tsoukos, A.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. The effect of short-term sport-specific strength and conditioning training on physical fitness of well-trained mixed martial arts athletes. J. Sport. Sci. Med. 2018, 17, 348–358. [Google Scholar]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sport. Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; García-Pinillos, F.; Nikolaidis, P.T.; Clemente, F.; Gentil, P.; García-Hermoso, A. Body composition adaptations to lower-body plyometric training: A systematic review and meta-analysis. Biol. Sport 2021, 39, 273–287. [Google Scholar] [CrossRef]
- Bishop, C.; Cree, J.; Read, P.; Chavda, S.; Edwards, M.; Turner, A. Strength and conditioning for sprint swimming. Strength Cond. J. 2013, 35, 1–6. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 2020, 10, 530–536. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Andrade, D.C.; García-Pinillos, F.; Negra, Y.; Boullosa, D.; Moran, J. Effects of jump training on physical fitness and athletic performance in endurance runners: A meta-analysis. J. Sport. Sci. 2021, 39, 2030–2050. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Andrade, D.C.; Nikolaidis, P.T.; Moran, J.; Clemente, F.M.; Chaabene, H.; Comfort, P. Effects of plyometric jump training on vertical jump height of volleyball players: A systematic review with meta-analysis of randomized-controlled trial. J. Sport. Sci. Med. 2020, 19, 489–499. [Google Scholar]
- Ramirez-Campillo, R.; Castillo, D.; Raya-González, J.; Moran, J.; de Villarreal, E.S.; Lloyd, R.S. Effects of plyometric jump training on jump and sprint performance in young male soccer players: A systematic review and meta-analysis. Sport. Med. 2020, 50, 2125–2143. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Gentil, P.; Negra, Y.; Grgic, J.; Girard, O. Effects of plyometric jump training on repeated sprint ability in athletes: A systematic review and meta-analysis. Sport. Med. 2021, 51, 2165–2179. [Google Scholar] [CrossRef]
- Sáez de Villarreal, E.; Requena, B.; Newton, R.U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport 2010, 13, 513–522. [Google Scholar] [CrossRef]
- Markovic, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sport. Med. 2007, 41, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sport. 2020, 30, 983–997. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Moran, J.; Drury, B.; Williams, M.; Keogh, J.W.; Chaabene, H.; Granacher, U. Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. J. Strength Cond. Res. 2021, 35, 1916–1923. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F. Drop jumping as a training method for jumping ability. Sport. Med. 1990, 9, 7–22. [Google Scholar] [CrossRef]
- Redondo, J.C.; Alonso, C.J.; Sedano, S.; de Benito, A.M. Effects of a 12-week strength training program on experimented fencers’ movement time. J. Strength Cond. Res. 2014, 28, 3375–3384. [Google Scholar] [CrossRef]
- Fandos Soñén, D.; Falcón Miguel, D.; Moreno Azze, A.; Pradas de La Fuente, F. Influencia de un entrenamiento pliométrico monopodal y bipodal sobre la fuerza explosiva del tren inferior y la corrección de asimetrías en karatekas (Unilateral and bilateral Influence of pliometric training in lower limb power and asymmetry in karatek). Retos 2021, 39, 367–371. [Google Scholar] [CrossRef]
- al Syurgawi, D.; Mohamed Shapie, M.N. The effects of a 6-week plyometric training on muscular strength performance in silat exponents. Rev. De Artes Marciales Asiáticas 2019, 14, 28. [Google Scholar] [CrossRef]
- di Cagno, A.; Iuliano, E.; Buonsenso, A.; Giombini, A.; Di Martino, G.; Parisi, A.; Calcagno, G.; Fiorilli, G. Effects of accentuated eccentric training vs plyometric training on performance of young elite fencers. J. Sport. Sci. Med. 2020, 19, 703–713. [Google Scholar] [PubMed]
- Akın, M.; Kesilmiş, İ. The effec.ct of blood flow restriction and plyometric training methodon dynamic balance of Taekwondo athletes. Pedagog. Phys. Cult. Sport. 2020, 24, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Alvarez, C.; Garcia-Hermoso, A.; Ramirez-Velez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; Garcia-de-Alcaraz, A.; et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sport. Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef] [PubMed]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, precision, and sample size estimation in sport and exercise science research. J. Sport. Sci. 2020, 38, 1933–1935. [Google Scholar] [CrossRef]
- Kontochristopoulos, N.; Bogdanis, G.C.; Paradisis, G.; Tsolakis, C. Effect of a supplementary periodized complex strength training and tapering period on postactivation potentiation of sport-specific explosive performance in adolescent national-level fencers. J. Strength Cond. Res. 2021, 35, 1662–1670. [Google Scholar] [CrossRef]
- Murad, M.H.; Asi, N.; Alsawas, M.; Alahdab, F. New evidence pyramid. Evid.-Based Med. 2016, 21, 125–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Troup, J.P. The physiology and biomechanics of competitive swimming. Clin. Sport. Med. 1999, 18, 267–285. [Google Scholar] [CrossRef]
- Arce-Álvarez, A.; Veliz, C.; Vazquez-Muñoz, M.; von Igel, M.; Alvares, C.; Ramirez-Campillo, R.; Izquierdo, M.; Millet, G.P.; Del Rio, R.; Andrade, D.C. Hypoxic respiratory chemoreflex control in young trained swimmers. Front. Physiol. 2021, 12, 632603. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, F.C. Applied physiology of rowing. Sport. Med. 1984, 1, 303–326. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.M.; Montpetit, R.R. Applied physiology of swimming. Sport. Med. 1986, 3, 165–189. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, M.L.; Douglas, P.S. Applied physiology of triathlon. Sport. Med. 1995, 19, 251–267. [Google Scholar] [CrossRef]
- Ben Abdelkrim, N.; El Fazaa, S.; El Ati, J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br. J. Sport. Med. 2007, 41, 69–75. [Google Scholar] [CrossRef]
- Delextrat, A.; Cohen, D. Physiological testing of basketball players: Toward a standard evaluation of anaerobic fitness. J. Strength Cond Res. 2008, 22, 1066–1072. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Alonso-Martínez, A.M.; Ramírez-Vélez, R.; Pérez-Sousa, M.; Ramírez-Campillo, R.; Izquierdo, M. Association of Physical Education With Improvement of Health-Related Physical Fitness Outcomes and Fundamental Motor Skills Among Youths: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, e200223. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hermoso, A.; Ramirez-Campillo, R.; Izquierdo, M. Is muscular fitness associated with future health benefits in children and adolescents? a systematic review and meta-analysis of longitudinal studies. Sport. Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef]
- Garcia-Hermoso, A.; Ramirez-Velez, R.; Ramirez-Campillo, R.; Peterson, M.D.; Martinez-Vizcaino, V. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: A systematic review and meta-analysis. Br. J. Sport. Med. 2018, 52, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sport. Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef]
- Slinde, F.; Suber, C.; Suber, L.; Edwen, C.E.; Svantesson, U. Test-retest reliability of three different countermovement jumping tests. J. Strength Cond. Res. 2008, 22, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Altmann, S.; Ringhof, S.; Neumann, R.; Woll, A.; Rumpf, M.C. Validity and reliability of speed tests used in soccer: A systematic review. PloS ONE 2019, 14, e0220982. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test-retest reliability of the one-repetition maximum (1RM) strength testassessment: A systematic review. Sport. Med.-Open, 2020; In press. [Google Scholar]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sport. Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav. Modif. 2016, 41, 323–339. [Google Scholar] [CrossRef] [PubMed]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Yamato, T.P.; Maher, C.; Koes, B.; Moseley, A. The PEDro scale had acceptably high convergent validity, construct validity, and interrater reliability in evaluating methodological quality of pharmaceutical trials. J. Clin. Epidemiol. 2017, 86, 176–181. [Google Scholar] [CrossRef]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sport. Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Young, W.B.; Saez de Villarreal, E. The effects of plyometric training on change-of-direction ability: A meta-analysis. Int. J. Sport. Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Romero-Moraleda, B.; Yanci, J.; Garcia-Hermoso, A.; Manuel Clemente, F. Effects of plyometric jump training in female soccer player’s vertical jump height: A systematic review with meta-analysis. J. Sport. Sci. 2020, 38, 1475–1487. [Google Scholar] [CrossRef]
- Valentine, J.C.; Pigott, T.D.; Rothstein, H.R. How many studies do you need?: A primer on statistical power for meta-analysis. J. Ed. Behav. Stat. 2010, 35, 215–247. [Google Scholar] [CrossRef]
- Moran, J.; Ramirez-Campillo, R.; Granacher, U. Effects of jumping exercise on muscular power in older adults: A meta-analysis. Sport. Med. 2018, 48, 2843–2857. [Google Scholar] [CrossRef] [PubMed]
- Pigott, T. Advances in Meta-Analysis; Springer: New York, NY, USA, 2012. [Google Scholar]
- Arnett, M.G.; Lutz, B. Effects of rope-jump training on the os calcis stiffness index of postpubescent girls. Med. Sci. Sport. Exerc. 2002, 34, 1913–1919. [Google Scholar] [CrossRef]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2008; pp. 243–296. [Google Scholar]
- Kontopantelis, E.; Springate, D.A.; Reeves, D. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PloS ONE 2013, 8, e69930. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Higgins; Deeks, J.J.; Altman, D.G. Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2008; pp. 481–529. [Google Scholar]
- Higgins; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Higgins; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Assessing Risk of Bias due to Missing Results in A Synthesis. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley Sons: Chichester, UK, 2019; p. 365. [Google Scholar]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Lin, L. The trim-and-fill method for publication bias: Practical guidelines and recommendations based on a large database of meta-analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
- Moran, J.; Clark, C.C.T.; Ramirez-Campillo, R.; Davies, M.J.; Drury, B. A meta-analysis of plyometric training in female youth: Its efficacy and shortcomings in the literature. J. Strength Cond. Res. 2019; In press. [Google Scholar]
- Moran, J.; Sandercock, G.; Ramirez-Campillo, R.; Clark, C.C.T.; Fernandes, J.F.T.; Drury, B. A meta-analysis of resistance training in female youth: Its effect on muscular strength, and shortcomings in the literature. Sport. Med. 2018, 48, 1661–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, J.; Sandercock, G.R.; Ramirez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J. Sport. Sci. 2017, 35, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Alonso-Coello, P.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences—Risk of bias and indirectness. J. Clin. Epidemiol. 2019, 111, 94–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Coello, P.A.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences—inconsistency, imprecision, and other domains. J. Clin. Epidemiol. 2019, 111, 83–93. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. Corrigendum to GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol 2011;64:1283-1293. J. Clin. Epidemiol. 2021, 137, 265. [Google Scholar] [CrossRef]
- Chaouachi, A.; Hammami, R.; Kaabi, S.; Chamari, K.; Drinkwater, E.J.; Behm, D.G. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. J. Strength Cond. Res. 2014, 28, 1483–1496. [Google Scholar] [CrossRef]
- Kosova, S.; Beyhan, R.; Koca Kosova, M. The effect of 8-week plyometric training on jump height, agility, speed and asymmetry. Pedagog. Phys. Cult. Sport. 2022, 26, 13–18. [Google Scholar] [CrossRef]
- Lee, H.M.; Oh, S.; Kwon, J.W. Effect of plyometric versus ankle stability exercises on lower limb biomechanics in taekwondo demonstration athletes with functional ankle instability. Int. J. Environ. Res. Public Health 2020, 17, 3665. [Google Scholar] [CrossRef]
- Sannicandro, I.; Piccinino, A.; Cofano, G.; Eirale, C.; Biscotti, G.N. Effects of plyometric training on phases of jumping in young fencers. Med. Dello Sport 2014, 67, 27–45. [Google Scholar]
- Singh, D.K. Effect of resistance training and plyometric training on explosive strength in adolescent male taekwondo players. Int. J. Behavioral. Socia Mov. Sci. 2012, 1, 49–56. [Google Scholar]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Gentil, P.; Moran, J.; Pereira, L.A.; Loturco, I. Plyometric training in young male soccer players: Potential effect of jump height. Pediatr. Exerc. Sci. 2019, 31, 306–313. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Zanetti, V.; Kitamura, K.; Abad, C.C.C.; Nakamura, F.Y. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J. Sport. Sci. 2015, 33, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Tricoli, V.; Roschel, H.; Nakamura, F.Y.; Cal Abad, C.C.; Kobal, R.; Gil, S.; Gonzalez-Badillo, J.J. Transference of traditional versus complex strength and power training to sprint performance. J. Hum. Kinet. 2014, 41, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Perez-Castilla, A.; Thapa, R.K.; Afonso, J.; Clemente, F.M.; Colado, J.C.; de Villarreal, E.S.; Chaabene, H. Effects of plyometric jump training on measures of physical fitness and sport-specific performance of water sports athletes: A systematic review with meta-analysis. Sport. Med.-Open 2022, 8, 108. [Google Scholar] [CrossRef]
- Malisoux, L.; Francaux, M.; Nielens, H.; Renard, P.; Lebacq, J.; Theisen, D. Calcium sensitivity of human single muscle fibers following plyometric training. Med. Sci. Sport. Exerc. 2006, 38, 1901–1908. [Google Scholar] [CrossRef]
- Malisoux, L.; Francaux, M.; Nielens, H.; Theisen, D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 2006, 100, 771–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malisoux, L.; Francaux, M.; Theisen, D. Effect Of Plyometric Training On Mechanical Properties Of Human Single Muscle Fibres. Med. Sci. Sport Exer. 2005, 37, S288. [Google Scholar] [CrossRef]
- Moran, J.; Liew, B.; Ramirez-Campillo, R.; Granacher, U.; Negra, Y.; Chaabene, H. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: A meta-analytical comparison. J. Sport Health Sci. 2021; In press. [Google Scholar] [CrossRef]
- Arntz, F.; Mkaouer, B.; Markov, A.; Schoenfeld, B.J.; Moran, J.; Ramirez-Campillo, R.; Behrens, M.; Baumert, P.; Erskine, R.M.; Hauser, L.; et al. Effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals: A systematic review with multilevel meta-analysis. Front. Physiol. 2022, 13, 888464. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.; Baudry, S.; Duchateau, J. Comparison of plyometric training with two different jumping techniques on achilles tendon properties and jump performances. J. Strength Cond. Res. 2020, 34, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.; Turner, A.; Read, P.; Bishop, C. Reactive strength index and its associations with measures of physical and sports performance: A systematic review with meta-analysis. Sport. Med. 2022, 52, 301–330. [Google Scholar] [CrossRef]
- Sale, D.G. Neural adaptation to resistance training. Med. Sci. Sport. Exerc. 1988, 20, S135–S145. [Google Scholar] [CrossRef]
- Ducrocq, G.P.; Hureau, T.J.; Meste, O.; Blain, G.M. Similar cardioventilatory but greater neuromuscular stimuli with interval drop jump than with interval running. Int. J. Sport. Physiol. Perform. 2019, 15, 330–339. [Google Scholar] [CrossRef]
- Lyons, T.S.; Navalta, J.W.; Stone, W.J.; Arnett, S.W.; Schafer, M.A.; Igaune, L. Evaluation of repetitive jumping intensity on the digi-jump machine. Int. J. Exerc. Sci. 2020, 13, 818–825. [Google Scholar]
- Singh, U.; Ramachandran, A.K.; Ramirez-Campillo, R.; Perez-Castilla, A.; Afonso, A.; Clemente, F.M.; Oliver, J. Jump rope training effects on health- and sport-related physical fitness in young participants: A systematic review with meta-analysis. J. Sport. Sci. 2022; In press. [Google Scholar]
- Ratel, S.; Duche, P.; Williams, C.A. Muscle fatigue during high-intensity exercise in children. Sport. Med. 2006, 36, 1031–1065. [Google Scholar] [CrossRef]
- Read, M.M.; Cisar, C. The influence of varied rest interval lengths on depth jump performance. J. Strength Cond. Res. 2001, 15, 279–283. [Google Scholar]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association position statement on long-term athletic development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Meyers, R.W.; Oliver, J.L. The natural development and trainability of plyometric ability during childhood. Strength Cond. J. 2011, 33, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.S.; Oliver, J.L. The Youth Physical Development Model: A New Approach to Long-Term Athletic Development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, part 2: Barriers to success and potential solutions. J. Strength Cond. Res. 2015, 29, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Meyers, R.W.; Moody, J.A.; Stone, M.H. Long-Term Athletic Development and Its Application to Youth Weightlifting. Strength Cond. J. 2012, 34, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Valenzuela, T.; Valdés-Badilla, P.; Franchini, E.; Ferreira da Silva Santos, J.; Ramirez-Campillo, R.; Garcia-Hermoso, A.; Durán-Agüero, S.; Castañeda-Gomez, J. Effects of multi-component training on the physical fitness of young taekwondo athletes. Ido Mov. Culture. J. Martials Arts Anthropol. 2016, 16, 31–37. [Google Scholar]
- Norambuena, Y.; Winkler, L.; Guevara, R.; Lavados, P.; Monrroy, M.; Ramirez-Campillo, R.; Herrera-Valenzuela, T.; Gajardo-Burgos, R. 5-week suspension training program increase physical performance of youth judokas: A pilot study. Retos 2021, 39, 137–142. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Loturco, I.; Sanchez-Sanchez, J.; Izquierdo, M.; Moran, J.; Nakamura, F.Y.; Chaabene, H.; Granacher, U. Sequencing effects of plyometric training applied before or after regular soccer training on measures of physical fitness in young players. J. Strength Cond. Res. 2020, 34, 1959–1966. [Google Scholar] [CrossRef]
- Oliver, J.; Armstrong, N.; Williams, C. Changes in jump performance and muscle activity following soccer-specific exercise. J. Sport Sci. 2008, 26, 141–148. [Google Scholar] [CrossRef]
- Bedoya, A.A.; Miltenberger, M.R.; Lopez, R.M. Plyometric training effects on athletic performance in youth soccer athletes: A systematic review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef]
- NSCA. Position statement: Explosive/plyometric exercises. NSCA J. 1993, 15, 16. [Google Scholar]
- Patel, R.; Kemp, C.L.; Hafejee, M.; Peckham, N.; Jain, V.; McCann, G.P.; Pallikadavath, S. The underrepresentation of females in studies assessing the impact of high-dose exercise on cardiovascular outcomes: A scoping review. Sport. Med.-Open 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowley, E.S.; Olenick, A.A.; McNulty, K.L.; Ross, E.Z. “Invisible sportswomen”: The sex data gap in sport and exercise science research. Women Sport Phys. Act. J. 2021, 29, 146–151. [Google Scholar] [CrossRef]
- Afonso, J.O.J.J.; Fernandes, R.J.; Clemente, F.M.; Rocha-Rodrigues, S.; Claudino, J.G.; Ramirez-Campillo, R.; Valente, C.; Andrade, R.; Espregueira-Mendes, J. Effectiveness of conservative interventions after acute hamstrings injuries in athletes: A living systematic review. Sport. Med. 2023; 1–21, In press. [Google Scholar]
- Morris, Z.S.; Wooding, S.; Grant, J. The answer is 17 years, what is the question: Understanding time lags in translational research. J. R. Soc. Med. 2011, 104, 510–520. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Andrade, D.C.; Izquierdo, M. Effects of plyometric training volume and training surface on explosive strength. J. Strength Cond Res. 2013, 27, 2714–2722. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Pereira, L.A.; Andrade, D.; Méndez-Rebolledo, G.; de la Fuente, C.I.; Castro-Sepulveda, M.; García-Pinillos, F.; Freitas, T.T.; Loturco, I. Tapering strategies applied to plyometric jump training: A systematic review with meta-analysis of randomized-controlled trials. J. Sport. Med. Phys. Fitness 2021, 61, 53–62. [Google Scholar] [CrossRef]
- Bosquet, L.; Montpetit, J.; Arvisais, D.; Mujika, I. Effects of tapering on performance: A meta-analysis. Med. Sci. Sport. Exerc. 2007, 39, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: A review. Int J. Sport. Med. 1998, 19, 439–446. [Google Scholar] [CrossRef]
- Mujika, I. Tapering and Peaking for Optimal Performance; Human Kinetics: Champaign, IL, USA, 2009. [Google Scholar]
- Sáez de Villarreal, E.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Williams, C.A.; Gracia-Marco, L. The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Arch. Osteoporos. 2018, 13, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáez de Villarreal, E.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Sole, S.; Ramírez-Campillo, R.; Andrade, D.C.; Sanchez-Sanchez, J. Plyometric jump training effects on the physical fitness of individual-sport athletes: A systematic review with meta-analysis. PeerJ 2021, 9, e11004. [Google Scholar] [CrossRef] [PubMed]
Date of the search | April, 2017 | May, 2019 | August, 2021 |
Databases | PubMed | PubMed, WOS (Core Collection), Scopus | PubMed, WOS (Core Collection) a, Scopus |
Keywords | “plyometric”, “training” | “ballistic”, “complex”, “cycle”, “explosive”, “force”, “plyometric”, “shortening”, “stretch”, “training”, “velocity” | “ballistic”, “complex”, “cycle”, “explosive”, “force”, “jump”, “plyometric”, “power”, “shortening”, “stretch”, “training”, “velocity” |
Database fields for the search | All | PubMed: all WOS: all Scopus: title, abstract, keywords | PubMed: all b WOS: all b Scopus: title, abstract, keywords b |
Restrictions for the search | None | None | None |
Examples of search strategy code line | -PubMed: “plyometric exercise”[MeSH Terms] OR (“plyometric”[All Fields] AND “exercise”[All Fields]) OR “plyometric exercise”[All Fields] OR (“plyometric”[All Fields] AND “training”[All Fields]) OR “plyometric training”[All Fields] -WOS: (ALL = (plyometric)) AND ALL = (training) -SCOPUS: TITLE-ABS-KEY (plyometric AND training) |
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Healthy combat sport athletes, with no restrictions on their fitness or competitive level, sex, or age. | Participants with health problems (e.g., injuries, recent surgery), precluding participation in a plyometric jump training program. |
Intervention | A plyometric jump training program, with a minimal duration of ≥3 weeks, which included unilateral and/or bilateral jumps, which commonly utilize a pre-stretch or countermovement stressing the stretch–shortening cycle. | Exercise interventions not involving plyometric jump training (e.g., upper body plyometrics only training interventions) or exercise interventions involving plyometric jump training programs representing less than 50% of the total training load (i.e., volume, e.g., number of exercises) when delivered in conjunction with other training interventions (e.g., high-load resistance training). |
Comparator | Control group (i.e., standard sport training; alternative training intervention; physically active; non-active). | Absence of control group. |
Outcome | At least one measure related to physical fitness (e.g., countermovement jump height; body fat) and/or sport-specific performance (e.g., kicking speed) before and after the training intervention. | Lack of baseline and/or follow-up data. |
Study design | Multi-arm trials. | Single-arm trials/observational studies. |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Score a | Study Quality | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Akın & Kesilmiş, 2020 [45] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 4 | Moderate |
al Syurgawi & Mohamed Shapie, 2019 [43] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | Moderate |
Chaouachi et al., 2014 [96] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | High |
Dallas et al., 2020 [10] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 | Moderate |
di Cagno et al., 2020 [44] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | High |
Kontochristopoulos et al., 2021 [48] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | High |
Kosova et al., 2022 [97] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | High |
Lee et al., 2020 [98] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | High |
Ojeda-Aravena, 2020 [9] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 | High |
Redondo et al., 2014 [41] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | High |
Sannicandro et al., 2014 [99] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 4 | Moderate |
Singh, 2012 [100] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | Moderate |
Sex | Age | BM | Height * | SPT | SpoP | Fit | Freq | Dur | Int | BH | NTJ | T | RBS | RBR | RBTS | PO | TP | Repl | Tap | Comb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Akın 2020 | F-M | 15–19 | NR | NR | NR | TKD | Mod | 3 | 6 | NR | NR | NR | Mix | NR | NR | NR | NR | IS | No | No | No |
al Syurgawi 2019 | M | 16.7 | 61.7 | 164 | NR | Silat | Mod | 2 | 6 | NR | NR | NR | NR | NR | NR | ≥48 | Vo, T | NR | Yes | NR | No |
Chaouachi 2014 | M | 11 | 40.1 | 150 | No | WRT; judo | Mod | 2 | 12 | Max | NR | 1080 | V + B | 3 | NR | 72 | Vo | NR | Yes | Yes | No |
Dallas 2020 | F | 13.9 | 48.9 | 160 | NR | TKD | Mod | 2 | 4 | NR | NR | 784 | Mix | 1.5 | NR | ≥48 | Vo, T | NR | No | No | No |
di Cagno 2020 | M | 17.6 | 64.2 | 173 | Yes | Fen | High | 2 | 6 | NR | <50 | 60 min + 336 | Mix | 2 | NR | 72 | Vo | IS | NA | No | No |
Kontochristopoulos 2021 | M | 16 | 66.7 | 175 | No | Fen | Mod-high | 2 | 6 | NR | NA | 108 | TJ | 1–3 | NR | 72–96 | No | PS | No | Yes | RT |
Kosova 2022 | NR | 15.2 | 61.8–63.3 | 166–172 | NR | Fen | Mod | 3 | 8 | NR | NA | 2970 | Mix | NR | NR | NR | Vo | NR | No | No | No |
Lee 2020 | M | 22–24 | 69.6–66.6 | 172–173 | NR | TKD | Mod | 2 | 8 | NR | NR | NR | Mix | 0.5 | NA | 48 | NR | NR | NR | No | No |
Ojeda-Aravena 2020 | M | 15.6 | 63.3 | 167.3 | NR | Karate | Mod | 3 | 6 | Max | NA | 54–72 min | CMJ | 2.5 | NA | 48 | Vo | NR | Yes | No | No |
Redondo 2014 | M | 24.8 | 70.4 | 173 | Yes | Fen | High | 2 | 6 | Max | NA | 432 | V+ B + A | 3 | NR | ≥48 | No | IS | Yes | No | RT |
Sannicandro 2014 | F-M | 13–14 | NR | NR | NR | Fen | Mod | 2 | 8 | High | 15–30 | 1600 | Mix | 1.5 | 45 | NR | Vo, T | NR | Yes | No | LD |
Singh 2012 | M | 14–15 | NR | NR | NR | TKD | Mod | 3 | 6 | NR | NR | 1350 | Mix V | 1 | NR | NR | Vo | NR | NR | No | RT |
Outcome | Studies n | E/C Groups n | Participant n | Effect Size | 95% CI for Effect Size | p Value | I2 |
---|---|---|---|---|---|---|---|
Maximal strength | 4 | 4/4, 1 SA | 117 | 0.77 (1.04) * | 0.14 to 1.40 (0.46 to 1.62) | 0.016 (<0.001) | 60.0 (19.4) |
Squat jump | 3 | 3/3, 1 SA | 72 | 0.06 (0.47) | −0.55 to 0.68 (−0.36 to 1.31) | 0.837 (0.266) | 29.8 (0.0) |
Countermovement jump | 7 | 7/7, 1 SA | 167 | 0.69 (0.89) | 0.01 to 1.36 (0.24 to 1.55) | 0.045 (0.008) | 76.8 (64.9) |
CODS | 3 | 3/3 | 46 | 0.72 | 0.16 to 1.28 | 0.012 | 0.0 |
Body mass | 5 | 5/5, 1 SA | 122 | 0.02 (0.02) | −0.33 to 0.36 (−0.43 to 0.47) | 0.929 (0.932) | 0.0 (0.0) |
Fat mass | 4 | 4/4 | 68 | 0.06 | −0.39 to 0.51 | 0.801 | 0.0 |
Muscle mass | 4 | 4/4, 1 SA | 92 | −0.01 (−0.06) | −0.40 to 0.38 (−0.64 to 0.53) | 0.954 (0.851) | 0.0 (0.0) |
CoSA SP | 3 | 3/3, 1 SA | 86 | 0.35 (0.72) | −0.19 to 0.89 (0.04 to 1.40) | 0.206 (0.038) | 30.7 (0.0) |
Outcome | N° Trials (n° Participants) | Comparisons | Certainty of Evidence |
---|---|---|---|
Maximal strength | 4 (n = 117) | PJT versus specific-active (1 group) or active controls (3 groups) | Moderate b |
Squat jump | 3 (n = 72) | PJT versus specific-active (1 group) or active controls (2 groups) | Moderate b |
Countermovement jump | 7 (n = 167) | PJT versus specific-active (1 group) or active controls (6 groups) | Low a, b |
CODS | 3 (n = 46) | PJT versus active controls (3 groups) | Moderate b |
Body mass | 5 (n = 122) | PJT versus specific-active (1 group) or active controls (4 groups) | Moderate b |
Fat mass | 4 (n = 68) | PJT versus active controls (4 groups) | Moderate b |
Muscle mass | 4 (n = 92) | PJT versus specific-active (1 group) or active controls (3 groups) | Moderate b |
CoSA SP | 3 (n = 86) | PJT versus specific-active (1 group) or active controls (2 groups) | Moderate b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Báez-San Martín, E.; Thapa, R.K.; Ramirez-Campillo, R. A Systematic Review with Meta-Analysis on the Effects of Plyometric-Jump Training on the Physical Fitness of Combat Sport Athletes. Sports 2023, 11, 33. https://doi.org/10.3390/sports11020033
Ojeda-Aravena A, Herrera-Valenzuela T, Valdés-Badilla P, Báez-San Martín E, Thapa RK, Ramirez-Campillo R. A Systematic Review with Meta-Analysis on the Effects of Plyometric-Jump Training on the Physical Fitness of Combat Sport Athletes. Sports. 2023; 11(2):33. https://doi.org/10.3390/sports11020033
Chicago/Turabian StyleOjeda-Aravena, Alex, Tomás Herrera-Valenzuela, Pablo Valdés-Badilla, Eduardo Báez-San Martín, Rohit K. Thapa, and Rodrigo Ramirez-Campillo. 2023. "A Systematic Review with Meta-Analysis on the Effects of Plyometric-Jump Training on the Physical Fitness of Combat Sport Athletes" Sports 11, no. 2: 33. https://doi.org/10.3390/sports11020033
APA StyleOjeda-Aravena, A., Herrera-Valenzuela, T., Valdés-Badilla, P., Báez-San Martín, E., Thapa, R. K., & Ramirez-Campillo, R. (2023). A Systematic Review with Meta-Analysis on the Effects of Plyometric-Jump Training on the Physical Fitness of Combat Sport Athletes. Sports, 11(2), 33. https://doi.org/10.3390/sports11020033