The Role of Different TET Proteins in Cytosine Demethylation Revealed by Mathematical Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. PCR Assay
2.3. Mathematical Model
2.4. Steady State Solution
2.5. Estimation of Parameters Characterizing the Action of Enzymes
2.6. Model Selection
2.7. Performance Index
3. Results and Discussion
3.1. Biological Findings Resulting from Model Selection
- During the transformation 5-mdC → 5-hmdC, there is no enzymatic activity of TET3;
- During the transformation 5-hmdC → 5-fdC, there is no enzymatic activity of TET2;
- During the transformation 5-fdC → 5-cadC, TET1 can be replaced by TET3 or TET2.
3.2. Comparison of Model Simulations in Respect to Specific Modifications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ten-eleven translocation enzyme (concentration) | |
5- | 5-methyl-2’-deoxycytidine |
5- | 5-(hydroxymethyl)-2’-deoxycytidine |
5- | 5-formyl-2’-deoxycytidin |
5- | 5-carboxy-2’-deoxycytidine |
5- | 5-Hydroxymethyluracil |
U | uracil (concentration) |
References
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [PubMed]
- Cortellino, S.; Xu, J.; Sannai, M.; Moore, R.; Caretti, E.; Cigliano, A.; Le Coz, M.; Devarajan, K.; Wessels, A.; Soprano, D.; et al. Thymine DNA Glycosylase is Essential for Active DNA Demethylation by Linked Deamination—Base Excision Repair. Cell 2011, 146, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Krokan, H.E.; Drablos, F.; Slupphaug, G. Uracil in DNA—Occurrence, consequences and repair. Oncogene 2002, 21, 8935–8948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Wang, C.; Wang, X. TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Sig. Transduct. Target Ther. 2023, 8, 297. [Google Scholar] [CrossRef]
- Foksinski, M.; Zarakowska, E.; Gackowski, D.; Skonieczna, M.; Gajda, K.; Hudy, D.; Szpila, A.; Bialkowski, K.; Starczak, M.; Labejszo, A.; et al. Profiles of a broad spectrum of epigenetic DNA modifications in normal and malignant human cell lines: Proliferation rate is not the major factor responsible for the 5-hydroxymethyl-2′-deoxycytidine level in cultured cancerous cell lines. PLoS ONE 2017, 12, e0188856. [Google Scholar] [CrossRef] [PubMed]
- Modrzejewska, M.; Gawronski, M.; Skonieczna, M.; Zarakowska, E.; Starczak, M.; Foksinski, M.; Rzeszowska-Wolny, J.; Gackowski, D.; Olinski, R. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA. Free Radic. Biol. Med. 2016, 101, 378–383. [Google Scholar] [CrossRef] [PubMed]
- De Riso, G.; Fiorillo, D.F.G.; Fierro, A.; Cuomo, M.; Chiariotti, L.; Miele, G.; Cocozza, S. Modeling DNA methylation profiles through a dynamic equilibrium between methylation and demethylation. Biomolecules 2020, 10, 1271. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Chapter 23; Prentice-Hall: Kent, OH, USA, 1974; p. 161. [Google Scholar]
- Ar, J.; Chiang, H.R.; Martin, D.; Snyder, M.P.; Sage, J.; Reijo Pera, R.A.; Wossidlo, M. Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Rep. 2022, 23, e53968. [Google Scholar] [CrossRef]
- Rzeszowska-Wolny, J.; Hudy, D.; Biernacki, K.; Ciesielska, S.; Jaksik, R. Involvement of miRNAs in cellular responses to radiation. Int. J. Radiat. Biol. 2022, 98, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.; Serpa, C.; Szurko, A.; Widel, M.; Sochanik, A.; Snietura, M.; Kus, P.; Nunes, R.M.; Arnaut, L.G.; Ratuszna, A. Spectroscopic properties and photodynamic effects of new lipophilic porphyrin derivatives: Efficacy, localization and cell death pathways. J. Photochem. Photobiol. B 2006, 84, 1–14. [Google Scholar] [CrossRef]
- Nestor, C.E.; Ottaviano, R.; Reddington, J.; Sproul, D.; Reinhardt, D.; Dunican, D.; Katz, E.; Dixon, J.M.; Harrison, D.J.; Meehan, R.R. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res. 2012, 22, 467–477. [Google Scholar] [CrossRef] [PubMed]
RAJI | K562 | HCT | NHDF | Me45 | |
---|---|---|---|---|---|
AID | 0.009824 | 0.010643 | 0.086131 | 0.002238 | 0.001404 |
SMUG1 | 1.195942 | 1.19889 | 16.01112 | 0.914257 | 0.361182 |
TDG | 0.29466 | 0.174258 | 0.449975 | 0.030231 | 0.076355 |
DNMT1 | 0.092437 | 0.236583 | 0.081149 | 0.082171 | 0.038231 |
TET1 | 0.064967 | 0.169337 | 0.056229 | 0.033814 | 0.096231 |
TET2 | 0.614074 | 0.73099 | 0.620413 | 0.497276 | 0.043056 |
TET3 | 0.004811 | 0.003187 | 0.027295 | 0.002800 | 0.000876 |
5-mdC → 5-hmdC | 5-hmdC → 5-fdC | 5-fdC → 5-cadC | ||||||
---|---|---|---|---|---|---|---|---|
• | • | • | • | • | • | • | • | • |
• | • | • | • | • | • | • | • | |
• | • | • | • | • | • | • | • | |
• | • | • | • | • | • | • | • | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
• | • | • | • | • | • | |||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
• | • | • |
5-mdC → 5-hmdC | 5-hmdC → 5-fdC | 5-fdC → 5-cadC | |||||||
---|---|---|---|---|---|---|---|---|---|
Performance Index | |||||||||
• | • | • | • | • | • | ||||
• | • | • | • | • | |||||
• | • | • | • | • | • | • | |||
• | • | • | • | • | • | ||||
• | • | • | • | • | • | ||||
• | • | • | • | • | |||||
• | • | • | • | • | |||||
• | • | • | • | • | • | ||||
• | • | • | • | • | |||||
• | • | • | • | • | • | ||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
• | • | • | • | • | • | • | • | • | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
0.0167 | • | • | • |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurasz, K.; Rzeszowska-Wolny, J.; Oliński, R.; Foksiński, M.; Fujarewicz, K. The Role of Different TET Proteins in Cytosine Demethylation Revealed by Mathematical Modeling. Epigenomes 2024, 8, 18. https://doi.org/10.3390/epigenomes8020018
Kurasz K, Rzeszowska-Wolny J, Oliński R, Foksiński M, Fujarewicz K. The Role of Different TET Proteins in Cytosine Demethylation Revealed by Mathematical Modeling. Epigenomes. 2024; 8(2):18. https://doi.org/10.3390/epigenomes8020018
Chicago/Turabian StyleKurasz, Karolina, Joanna Rzeszowska-Wolny, Ryszard Oliński, Marek Foksiński, and Krzysztof Fujarewicz. 2024. "The Role of Different TET Proteins in Cytosine Demethylation Revealed by Mathematical Modeling" Epigenomes 8, no. 2: 18. https://doi.org/10.3390/epigenomes8020018
APA StyleKurasz, K., Rzeszowska-Wolny, J., Oliński, R., Foksiński, M., & Fujarewicz, K. (2024). The Role of Different TET Proteins in Cytosine Demethylation Revealed by Mathematical Modeling. Epigenomes, 8(2), 18. https://doi.org/10.3390/epigenomes8020018