Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animal Handling and Establishment of Postmortem Delay
4.2. Histology
4.3. Antibodies
4.4. Western Blot Analysis
4.5. Confocal Immunohistochemistry
4.6. Image and Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNPase | 2′,3′-cyclic nucleotide 3′-phosphodiesterase (EC 3.1.4.37) |
DAPI | 2-[4-(aminoiminomethyl)phenyl]-1H-indole-6-carboximidamide hydrochloride |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) |
GFAP | glial fibrillary acidic protein |
H | histone |
H3K | histone Lys modification |
Iba1 | ionized calcium-binding adaptor molecule 1 |
IgG | immunoglobulin G |
NeuN | neuronal nuclei protein (hexaribonucleotide-binding protein-3 |
PBS | phosphate-buffered saline |
PTM | post-translational modification |
RT | room temperature |
SEM | standard error of the mean |
TBS | Tris-buffered saline |
WB | Western blot |
References
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Roidl, D.; Hacker, C. Histone methylation during neural development. Cell Tissue Res. 2014, 356, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Samudyata; Castelo-Branco, G.; Liu, J. Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders. Glia 2020, 68, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Christian, K.M.; He, C.; Jin, P.; Ming, G.L.; Song, H. Epigenetic mechanisms in neurogenesis. Nat. Rev. Neurosci. 2016, 17, 537–549. [Google Scholar] [CrossRef]
- Sen, P.; Shah, P.P.; Nativio, R.; Berger, S.L. Epigenetic mechanisms of longevity and aging. Cell 2016, 166, 822–839. [Google Scholar] [CrossRef] [PubMed]
- Zocher, S.; Toda, T. Epigenetic aging in adult neurogenesis. Hippocampus 2023, 33, 347–359. [Google Scholar] [CrossRef]
- Balan, S.; Iwayama, Y.; Ohnishi, T.; Fukuda, M.; Shirai, A.; Yamada, A.; Weirich, S.; Schuhmacher, M.K.; Dileep, K.V.; Endo, T.; et al. A loss of function variant in SUV39H2 identified in autism-spectrum disorder causes altered trimethylation of H3K9 and dysregulation of protocadherin β-cluster genes in the developing brain. Mol. Psychiatry 2021, 26, 7550–7559. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Subbanna, S. Histone methylation regulation in neurodegenerative disorders. Int. J. Mol. Sci. 2021, 22, 4654. [Google Scholar] [CrossRef]
- Berson, A.; Nativio, R.; Berger, S.L.; Bonini, N.M. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 2018, 41, 587–598. [Google Scholar] [CrossRef]
- Chase, K.A.; Gavin, D.P.; Guidotti, A.; Sharma, R.P. Histone methylation at H3K9: Evidence for a restrictive epigenome in schizophrenia. Schizophr. Res. 2013, 149, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Jiang, Y.; Kavanagh, D.H.; Dincer, A.; Brown, L.; Pothula, V.; Zharovsky, E.; Park, R.; Jacobov, R.; Magro, I.; et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol. Psychiatry 2017, 81, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Dulka, K.; Szabo, M.; Lajkó, N.; Belecz, I.; Hoyk, Z.; Gulya, K. Epigenetic consequences of in utero exposure to rosuvastatin: Alteration of histone methylation patterns in newborn rat brains. Int. J. Mol. Sci. 2021, 22, 3412. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Mill, J. Epigenetic studies of psychosis: Current findings, methodological approaches, and implications for postmortem research. Biol. Psychiatry 2011, 69, 146–156. [Google Scholar] [CrossRef]
- Bär, W.; Kratzer, A.; Mächler, M.; Schmid, W. Postmortem stability of DNA. Forensic Sci. Int. 1988, 39, 59–70. [Google Scholar] [CrossRef]
- Ferrer, I.; Martinez, A.; Boluda, S.; Parchi, P.; Barrachina, M. Brain banks: Benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank. 2008, 9, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Heng, Y.; Dubbelaar, M.L.; Marie, S.K.N.; Boddeke, E.W.G.M.; Eggen, B.J.L. The effects of postmortem delay on mouse and human microglia gene expression. Glia 2021, 69, 1053–1060. [Google Scholar] [CrossRef]
- Jarmasz, J.S.; Stirton, H.; Basalah, D.; Davie, J.R.; Clarren, S.K.; Astley, S.J.; Del Bigio, M.R. Global DNA methylation and histone posttranslational modifications in human and nonhuman primate brain in association with prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2019, 43, 1145–1162. [Google Scholar] [CrossRef]
- Jarmasz, J.S.; Stirton, H.; Davie, J.R.; Del Bigio, M.R. DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clin. Epigenet. 2019, 11, 5. [Google Scholar] [CrossRef]
- Sjöholm, L.K.; Ransome, Y.; Ekström, T.J.; Karlsson, O. Evaluation of post-mortem effects on global brain DNA methylation and hydroxymethylation. Basic Clin. Pharmacol. Toxicol. 2018, 122, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Beliczai, Z.; Varszegi, S.; Gulyas, B.; Halldin, C.; Kasa, P.; Gulya, K. Immunohistoblot analysis on whole human hemispheres from normal and Alzheimer diseased brains. Neurochem. Internat. 2008, 53, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.A.; Wang, C.; Hernandez, D.; Siedlak, S.L.; Rodgers, M.S.; Achar, R.K.; Fahmy, L.M.; Torres, S.L.; Petersen, R.B.; Zhu, X.; et al. Individual case analysis of postmortem interval time on brain tissue preservation. PLoS ONE 2016, 11, e0151615, Erratum in PLoS ONE 2016, 11, e0157209. [Google Scholar] [CrossRef]
- Chia, D.J.; Rotwein, P. Defining the epigenetic actions of growth hormone: Acute chromatin changes accompany GH-activated gene transcription. Mol. Endocrinol. 2010, 24, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Chia, D.J.; Young, J.J.; Mertens, A.R.; Rotwein, P. Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol. Endocrinol. 2010, 24, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Koshi-Mano, K.; Mano, T.; Morishima, M.; Murayama, S.; Tamaoka, A.; Tsuji, S.; Toda, T.; Iwata, A. Neuron-specific analysis of histone modifications with post-mortem brains. Sci. Rep. 2020, 10, 3767. [Google Scholar] [CrossRef]
- Nagy, C.; Maheu, M.; Lopez, J.P.; Vaillancourt, K.; Cruceanu, C.; Gross, J.A.; Arnovitz, M.; Mechawar, N.; Turecki, G. Effects of postmortem interval on biomolecule integrity in the brain. J. Neuropath. Exp. Neurol. 2015, 74, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Biel, M.; Wascholowski, V.; Giannis, A. Epigenetics—An epicenter of gene regulation: Histones and histone-modifying enzymes. Angew. Chem. (Int. Ed. Engl.) 2005, 44, 3186–3216. [Google Scholar] [CrossRef] [PubMed]
- Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Rowe, E.M.; Xing, V.; Biggar, K.K. Lysine methylation: Implications in neurodegenerative disease. Brain Res. 2019, 1707, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Trojer, P.; Reinberg, D. Histone lysine demethylases and their impact on epigenetics. Cell 2006, 125, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Zegerman, P.; Partridge, J.F.; Miska, E.A.; Thomas, J.O.; Allshire, R.C.; Kouzarides, T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Gao, Y.; Yang, L.; Li, C.; Liu, W.; Chen, C.; Kou, X.; Zhao, Y.; Chen, J.; et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat. Cell Biol. 2018, 20, 620–631. [Google Scholar] [CrossRef] [PubMed]
- Saksouk, N.; Simboeck, E.; Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenet. Chromatin 2015, 8, 3. [Google Scholar] [CrossRef]
- Tozzo, P.; Scrivano, S.; Sanavio, M.; Caenazzo, L. The role of DNA degradation in the estimation of post-mortem interval: A systematic review of the current literature. Int. J. Mol. Sci. 2020, 21, 3540. [Google Scholar] [CrossRef] [PubMed]
- Pekny, T.; Andersson, D.; Wilhelmsson, U.; Pekna, M.; Pekny, M. Short general anaesthesia induces prolonged changes in gene expression in the mouse hippocampus. Acta Anaesthesiol. Scand. 2014, 58, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Ferri, K.F.; Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 2001, 3, E255–E263. [Google Scholar] [CrossRef]
- Hadley, G.; Neuhaus, A.A.; Couch, Y.; Beard, D.J.; Adriaanse, B.A.; Vekrellis, K.; DeLuca, G.C.; Papadakis, M.; Sutherland, B.A.; Buchan, A.M. The role of the endoplasmic reticulum stress response following cerebral ischemia. Int. J. Stroke 2018, 13, 379–390. [Google Scholar] [CrossRef]
- Hayashi, T.; Abe, K. Ischemic neuronal cell death and organellae damage. Neurol. Res. 2004, 26, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Loesch, A.; Majkowska, J. Ultrastructural features of the neurohypophysis of reanimated rat in connection with experimentally induced clinical death lasting 15 min. A case report. J. Hirnforsch. 1990, 31, 99–106. [Google Scholar] [PubMed]
- Hencz, A.; Magony, A.; Thomas, C.; Kovacs, K.; Szilagyi, G.; Pal, J.; Sik, A. Mild hypoxia-induced structural and functional changes of the hippocampal network. Front. Cell. Neurosci. 2023, 17, 1277375. [Google Scholar] [CrossRef] [PubMed]
- Nagańska, E.; Matyja, E. Ultrastructural characteristics of necrotic and apoptotic mode of neuronal cell death in a model of anoxia in vitro. Folia Neuropathol. 2001, 39, 129–139. [Google Scholar]
- Ziakova, K.; Kovalska, M.; Pilchova, I.; Dibdiakova, K.; Brodnanova, M.; Pokusa, M.; Kalenska, D.; Racay, P. Involvement of proteasomal and endoplasmic reticulum stress in neurodegeneration after global brain ischemia. Mol. Neurobiol. 2023, 60, 6316–6329. [Google Scholar] [CrossRef] [PubMed]
- Gallyas, F.; Farkas, O.; Mázló, M. Gel-to-gel phase transition may occur in mammalian cells: Mechanism of formation of “dark” (compacted) neurons. Biol. Cell 2004, 96, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Rauchová, H.; Vokurková, M.; Koudelová, J. Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol. Res. 2012, 61 (Suppl. S1), S89–S101. [Google Scholar] [CrossRef]
- Habib, P.; Slowik, A.; Zendedel, A.; Johann, S.; Dang, J.; Beyer, C. Regulation of hypoxia-induced inflammatory responses and M1-M2 phenotype switch of primary rat microglia by sex steroids. J. Mol. Neurosci. 2014, 52, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Böttiger, B.W.; Möbes, S.; Glätzer, R.; Bauer, H.; Gries, A.; Bärtsch, P.; Motsch, J.; Martin, E. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 2001, 103, 2694–2698. [Google Scholar] [CrossRef] [PubMed]
- Snigdha, S.; Prieto, G.A.; Petrosyan, A.; Loertscher, B.M.; Dieskau, A.P.; Overman, L.E.; Cotman, C.W. H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged Hippocampus. J. Neurosci. 2016, 36, 3611–3622. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Lee, J.; Hyeon, S.J.; Cho, H.; Hwang, Y.J.; Shin, J.Y.; McKee, A.C.; Kowall, N.W.; Kim, J.I.; Stein, T.D.; et al. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in Alzheimer’s disease. Aging Cell 2020, 19, e13153. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.; Thakur, M.K. Increase in hippocampal histone H3K9me3 is negatively correlated with memory in old male mice. Biogerontology 2020, 21, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.G.; McCarthy, K.J.; Milne, T.A.; Pfaff, D.W.; McEwen, B.S. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl. Acad. Sci. USA 2009, 106, 20912–20917. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Terry, A.V.; Singh, P.B.; Gilbert, D.M. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol. Biol. Cell 2005, 16, 2872–2881. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, F.; Lent, R.; Herculano-Houzel, S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc. Natl. Acad. Sci. USA 2009, 106, 14108–14113. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jung, D.Y.; Kim, H.R.; Jung, M.H. Histone H3K9 Demethylase JMJD2B Plays a Role in LXRα-Dependent Lipogenesis. Int. J. Mol. Sci. 2020, 21, 8313. [Google Scholar] [CrossRef] [PubMed]
- Klose, R.J.; Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 307–318. [Google Scholar] [CrossRef]
- Gu, F.; Lin, Y.; Wang, Z.; Wu, X.; Ye, Z.; Wang, Y.; Lan, H. Biological roles of LSD1 beyond its demethylase activity. Cell Mol. Life Sci. 2020, 77, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Whetstine, J.R.; Nottke, A.; Lan, F.; Huarte, M.; Smolikov, S.; Chen, Z.; Spooner, E.; Li, E.; Zhang, G.; Colaiacovo, M.; et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 2006, 125, 467–481. [Google Scholar] [CrossRef]
- Lu, Y.; Wajapeyee, N.; Turker, M.S.; Glazer, P.M. Silencing of the DNA mismatch repair gene MLH1 induced by hypoxic stress in a pathway dependent on the histone demethylase LSD1. Cell Rep. 2014, 8, 501–513. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.I.; Baek, S.H. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J. Biomed. Sci. 2021, 28, 41. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Primary Antibody, Abbrev. Name | Primary Antibody, Full Name (Cat. No.) | Final Dilution | Company Name | Secondary Antibody with Fluorochrome, Full Name (Cat. No.) | Company Name | Final Dilution |
---|---|---|---|---|---|---|
NeuN | Mouse anti-NeuN, monocl. ab. (MAB377) | 1:100 | Chemicon, Temecula, CA, USA | Alexa Fluor 488 goat anti-mouse IgG (A-10680) | Invitrogen, Carlsbad, CA, USA | 1:1000 |
GFAP | Mouse anti-GFAP, monocl. ab. (MA1-19395) | 1:100 | ThermoFisher Scientific, Inc., Waltham, MA, USA | Alexa Fluor 488 goat anti-mouse IgG (A-10680) | Invitrogen, Carlsbad, CA, USA | 1:1000 |
CNPase | Mouse anti-CNPase, monocl. ab. (ab6319) | 1:500 | Abcam, Cambridge, UK | Alexa Fluor 488 goat anti-mouse IgG (A-10680) | Invitrogen, Carlsbad, CA, USA | 1:1000 |
Iba1 | Mouse anti-Iba1, monocl. ab. (016-26721) | 1:500 | FUJIFILM Wako Chemicals Europe GmbH, Neuss, Germany | Alexa Fluor 488 goat anti-mouse IgG (A-10680) | Invitrogen, Carlsbad, CA, USA | 1:1000 |
H3 | Rabbit anti-histone H3, polycl. ab., Chip Grade (ab1891) | 1:1500 | Abcam, Cambridge, UK | Alexa Fluor 488 goat anti-rabbit IgG (SAB4600389); Anti-rabbit IgG, perox. conjug. (WB) (A9169) | Sigma, St. Louis, MO, USA; Invitrogen, Carlsbad, CA, USA | 1:2000; 1:1000 (WB) |
H3K9me3 | Rabbit anti-histone H3 (trimethyl K9), polycl. ab., Chip Grade (ab8898) | 1:1000 | Abcam, Cambridge, UK | Alexa Fluor 488 goat anti-rabbit IgG (SAB4600389); Anti-rabbit IgG, peroxidase conjug. (WB) (A9169) | Sigma, St. Louis, MO, USA; Invitrogen, Carlsbad, CA, USA | 1:2000; 1:1000 (WB) |
GAPDH | Mouse anti-GAPDH, monocl. ab., clone GAPDH-71.1 (G8795) | 1:20,000 | Sigma, St. Louis, MO, USA | Anti-mouse IgG, peroxidase conjug. (WB) (A9044) | Sigma, St. Louis, MO, USA | 1:2000 (WB) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dulka, K.; Lajkó, N.; Nacsa, K.; Gulya, K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. Epigenomes 2024, 8, 11. https://doi.org/10.3390/epigenomes8010011
Dulka K, Lajkó N, Nacsa K, Gulya K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. Epigenomes. 2024; 8(1):11. https://doi.org/10.3390/epigenomes8010011
Chicago/Turabian StyleDulka, Karolina, Noémi Lajkó, Kálmán Nacsa, and Karoly Gulya. 2024. "Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus" Epigenomes 8, no. 1: 11. https://doi.org/10.3390/epigenomes8010011
APA StyleDulka, K., Lajkó, N., Nacsa, K., & Gulya, K. (2024). Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. Epigenomes, 8(1), 11. https://doi.org/10.3390/epigenomes8010011