Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Apparatus
2.2. Experimental Conditions
3. Results and Discussion
3.1. Variations in Oil Film Thickness in Different Lubrication Regions
3.2. Discharge Characteristics under EHL
3.3. COFs in Various Lubrication Regions
3.4. Discharge Characteristics of Graphite-Based Conductive Grease
4. Conclusions
- (1)
- In an alternating current (AC) electric field, as the lubrication state changes from mixed lubrication to fluid lubrication, the oil film in the ball-on-disk contact area will change from resistive to capacitive, and the higher the film thickness, the smaller the capacitance value, and the higher the frequency of discharge.
- (2)
- Within the EHL region, Joule heating induces a reduction in oil film thickness in the Hertzian contact area. A larger potential difference corresponds to a diminished oil film thickness. Upon the potential difference reaching the threshold voltage, destructive discharge occurs, accompanied by the emergence of a significant quantity of purple light.
- (3)
- An AC electric field can reduce the friction coefficient in a fluid lubrication region. However, surface damage induced by discharges and the decrease in oil film thickness due to thermal effects ultimately precipitates a transition in the lubrication state toward mixed lubrication, resulting in contact between rough peaks and a noteworthy escalation in the friction coefficient.
- (4)
- When formulating conductive grease with nanographite as a conductive additive, a higher mass fraction of the additive can instigate discharges beyond the contact area. Furthermore, it is imperative to control the particle size, as an overly large size may lead to abrasive particle wear.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, F.; Xie, G.; Luo, J. Electrical bearing failures in electric vehicles. Friction 2020, 8, 4–28. [Google Scholar] [CrossRef]
- Plazenet, T.; Boileau, T.; Caironi, C.C.; Nahid-Mobarakeh, B. Influencing parameters on discharge bearing currents in inverter-fed induction motors. IEEE Trans. Energy Convers. 2021, 36, 940–949. [Google Scholar] [CrossRef]
- Isomura, Y.; Yamamoto, K.; Morimoto, S.; Maetani, T.; Watanabe, A.; Nakano, K. Study of the further reduction of shaft voltage of brushless DC motor with insulated rotor driven by PWM inverter. IEEE Trans. Ind. Appl. 2014, 50, 3738–3743. [Google Scholar] [CrossRef]
- Plazenet, T.; Boileau, T.; Caironi, C.; Nahid-Mobarakeh, B. A comprehensive study on shaft voltages and bearing currents in rotating machines. IEEE Trans. Ind. Appl. 2018, 54, 3749–3759. [Google Scholar] [CrossRef]
- Muetze, A.; Binder, A. Don’t lose your bearings. IEEE Ind. Appl. Mag. 2006, 12, 22–31. [Google Scholar] [CrossRef]
- Raymond, O. An Investigation of Shaft Current in a Large Sleeve Bearing Induction Machine. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1999. [Google Scholar]
- Niu, K.; Song, C.; Lou, Z.; Pang, X.; Lu, H.; Du, S.; Zhao, Y. Electric damage of bearing under AC shaft voltage at different rotation speeds. Tribol. Int. 2023, 177, 108008. [Google Scholar]
- Schneider, V.; Behrendt, C.; Höltje, P.; Cornel, D.; Becker-Dombrowsky, F.M.; Puchtler, S.; Kirchner, E. Electrical bearing damage, a problem in the nano-and macro-range. Lubricants 2022, 10, 194. [Google Scholar] [CrossRef]
- Boyanton, H.E.; Hodges, G. Bearing fluting [motors]. IEEE Ind. Appl. Mag. 2002, 8, 53–57. [Google Scholar] [CrossRef]
- Wouter, O.; Patrick, D.B. Failure analysis of the deep groove ball bearings of an electric motor. Eng. Fail. Anal. 2005, 12, 772–783. [Google Scholar]
- Sunahara, K.; Yamashita, S.; Yamamoto, M.; Ikeda, M.; Nishikawa, H.; Matsuda, K.; Kaneta, M. Development of grease film breakdown observing device. Tribol. Online 2008, 3, 40–43. [Google Scholar] [CrossRef]
- López-Uruñuela, F.J.; Fernandez-Diaz, B.; Pagano, F.; López-Ortega, A.; Pinedo, B.; Bayón, R.; Aguirrebeitia, J. Broad review of “White Etching Crack” failure in wind turbine gearbox bearings: Main factors and experimental investigations. Int. J. Fatigue 2021, 145, 106091. [Google Scholar] [CrossRef]
- Noguchi, S.; Korenaga, A.; Kanada, T. Occurrence condition of electric current density in electrical pitting (in case of ball bearing 608 for application of direct current). J. Adv. Mech. Des. Syst. Manuf. 2010, 4, 469–479. [Google Scholar] [CrossRef]
- Esmaeili, K.; Wang, L.; Harvey, T.J.; White, N.M.; Holweger, W. Electrical discharges in oil-lubricated rolling contacts and their detection using electrostatic sensing technique. Sensors 2022, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Muetze, A. Bearing Currents in Inverter-Fed AC-Motors. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2003. [Google Scholar]
- Graf, S.; Werner, M.; Koch, O.; Götz, S.; Sauer, B. Breakdown voltages in thrust bearings behavior and measurement. Tribol. Trans. 2023, 8, 11. [Google Scholar] [CrossRef]
- Gonda, A.; Capan, R.; Bechev, D.; Sauer, B. The influence of lubricant conductivity on bearing currents in the case of rolling bearing greases. Lubricants 2019, 7, 108. [Google Scholar] [CrossRef]
- Turnbull, R.; Rahmani, R.; Paul, S.; Rahnejat, H. Electrotribodynamics of ball bearings in electrical machines. Tribol. Int. 2023, 188, 108817. [Google Scholar] [CrossRef]
- Bleger, A.; Leighton, M.; Morris, N. Automotive e-motor bearing electrical discharge phenomena: An experimental and numerical investigation. Tribol. Int. 2024, 191, 109140. [Google Scholar] [CrossRef]
- Suzumura, J. Prevention of electrical pitting on rolling bearings by electrically conductive grease. Q. Rep. RTRI 2016, 57, 42–47. [Google Scholar] [CrossRef]
- Zhang, P.L.; Wang, G.G.; Zhao, Y.J.; Wu, H.; Xia, Y.Q. Study of conductive and friction properties of grease containing carbon black additive. Adv. Mat. Res. 2015, 1120, 586–589. [Google Scholar] [CrossRef]
- Guo, L.; Mol, H.; Nijdam, T.; Vries, L.D.; Bongaerts, J. Study on the electric discharge behaviour of a single contact in EV motor bearings. Tribol. Int. 2023, 187, 108743. [Google Scholar] [CrossRef]
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.Y.; Liang, H. Performance characteristics of lubricants in electric and hybrid vehicles: A review of current and future needs. Front. Mech. Eng. 2020, 6, 571464. [Google Scholar] [CrossRef]
- Prashad, H. Effect of operating parameters on the threshold voltages and impedance response of non-insulated rolling element bearings under the action of electrical currents. Wear 1987, 117, 223–240. [Google Scholar] [CrossRef]
- Romanenko, A.; Muetze, A.; Ahola, J. Effects of electrostatic discharges on bearing grease dielectric strength and composition. IEEE Trans. Ind. Appl. 2016, 52, 4835–4842. [Google Scholar] [CrossRef]
- Luo, J.B.; He, Y.; Zhong, M.; Jin, Z.M. Gas bubble phenomenon in nanoscale liquid film under external electric field. Appl. Phys. Lett. 2006, 89, 013104. [Google Scholar] [CrossRef]
- Xie, G.X.; Luo, J.B.; Liu, S.H.; Zhang, C.H.; Guo, D. Effect of external electric field on liquid film confined within nanogap. J. Appl. Phys. 2008, 103, 094306. [Google Scholar] [CrossRef]
- Xie, G.X.; Luo, J.B.; Liu, S.H.; Zhang, C.H.; Lu, X.C. Micro-bubble phenomenon in nanoscale water-based lubricating film induced by external electric field. Tribol. Lett. 2008, 29, 169–176. [Google Scholar] [CrossRef]
- Xie, G.X.; Luo, J.B.; Liu, S.H.; Guo, D.; Li, G.; Zhang, C.H. Effect of liquid properties on the growth and motion characteristics of micro-bubbles induced by electric fields in confined liquid films. J. Phys. D 2009, 42, 115502. [Google Scholar] [CrossRef]
- Sunahara, K.; Ishida, Y.; Yamamoto, S.; Nishikawa, H.; Matsuda, K.; Kaneta, M. Preliminary measurements of electrical micropitting in grease-lubricated point contacts. Tribol. Trans. 2011, 54, 730–735. [Google Scholar] [CrossRef]
- Liu, H.C.; Guo, F.; Guo, L.; Wong, P.L. A dichromatic interference intensity modulation approach to measurement of lubricating film thickness. Tribol. Lett. 2015, 58, 15. [Google Scholar] [CrossRef]
- Martin, G.; Becker, F.M.; Kirchner, E. A novel method for diagnosing rolling bearing surface damage by electric impedance analysis. Tribol. Int. 2022, 170, 107503. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Temperature T (°C) | 20 ± 1 |
Load w (N) | 15, 20 |
Slide–roll ratio ξ | 30% |
Entrainment speed ue (mm·s−1) | 10, 32, 96, 128, 512, 1800 |
Grease supply | Fully |
Sample | G-A | G-B |
---|---|---|
Base oil | PAO + diester oil | PAO + diester oil |
Thickener | Lithium 12-hydroxy stearate | Lithium 12-hydroxy stearate |
Additive | NO | Nanographite (0.2 %wt.) |
NLGI grade | 3 | 3 |
Dynamic viscosity of base oil (mPa·s@20 ℃) | 56 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Guo, F.; Jing, Z.; Li, B.; Zhang, L.; Wang, X. Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields. Lubricants 2024, 12, 79. https://doi.org/10.3390/lubricants12030079
Li Z, Guo F, Jing Z, Li B, Zhang L, Wang X. Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields. Lubricants. 2024; 12(3):79. https://doi.org/10.3390/lubricants12030079
Chicago/Turabian StyleLi, Ziying, Feng Guo, Zhaogang Jing, Bing Li, Li Zhang, and Xiaobo Wang. 2024. "Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields" Lubricants 12, no. 3: 79. https://doi.org/10.3390/lubricants12030079
APA StyleLi, Z., Guo, F., Jing, Z., Li, B., Zhang, L., & Wang, X. (2024). Study on Grease Lubrication and Electric Erosion Characteristics in AC Electric Fields. Lubricants, 12(3), 79. https://doi.org/10.3390/lubricants12030079