Tribological Effects of Metalworking Fluids in Cutting Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tribometers for Sliding Friction
2.2. Tribometer for Film Thickness Measurement
2.3. Cutting Test
3. Results
3.1. Frictional Tribometer Measurements
3.2. Film Thickness Investigations
3.3. Cutting Experiments
4. Discussion
5. Conclusions
- It could be demonstrated by tribometer experiments under sliding conditions that MWFs can significantly reduce the CoF compared to dry conditions, i.e., from CoF of 0.6 to 0.12.
- The condition of boundary lubrication was demonstrated by measuring the film formation properties and film thicknesses of MWF on an optical ball-on-disc test rig using interferometry. In the case of a rolling point contact on the optical film thickness test rig, no hydrodynamic film could be built by commercial MWF mixed with water. The lubrication status in the commercial emulsions can be considered as boundary lubrication but not hydrodynamic fluid lubrication. The boundary films formed by additives of the MWF may result in the friction reduction in the sliding tests. To reduce the friction in the secondary sliding zone of the cutting insert–chip contact, the penetration of MWF has to be ensured.
- The first test of the real cutting tests on the planing test rig showed that the current setup has insufficient pressure to achieve beneficial effects with the MWF. Higher jetting pressures and modified nozzle positions will be conducted in further studies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brinksmeier, E.; Meyer, D.; Huesmann-Cordes, A.; Herrmann, C. Metalworking fluids—Mechanisms and performance. CIRP Ann. 2015, 64, 605–628. [Google Scholar] [CrossRef]
- Osama, M.; Singh, A.; Walvekar, R.; Khalid, M.; Gupta, T.C.S.M.; Yin, W.W. Recent developments and performance review of metal working fluids. Tribol. Int. 2017, 114, 389–401. [Google Scholar] [CrossRef]
- Sangermann, H. Hochdruck-Kühlschmierstoffzufuhr in der Zerspanung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2013. [Google Scholar]
- Astakhov, V.P.; Joksch, S. (Eds.) Metalworking Fluids (MWFs) for Cutting and Grinding: Fundamentals and Recent Advances; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Yoshimura, H.; Itoigawa, F.; Nakamura, T.; Niwa, K. Development of Nozzle System for Oil-on-Water Droplet Metalworking Fluid and Its Application to Practical Production Line. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2005, 48, 723–729. [Google Scholar] [CrossRef]
- Klocke, F.; Krämer, A.; Sangermann, H.; Lung, D. Thermo-Mechanical Tool Load during High Performance Cutting of Hard-to-Cut Materials. Procedia CIRP 2012, 1, 295–300. [Google Scholar] [CrossRef]
- Soković, M.; Mijanović, K. Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. J. Mater. Process. Technol. 2001, 109, 181–189. [Google Scholar] [CrossRef]
- Rahim, E.; Ibrahim, M.; Aziz, S.; Mohid, Z. Experimental Investigation of Minimum Quantity Lubrication (MQL) as a Sustainable Cooling Technique. Procedia CIRP 2015, 26, 351–354. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. J. Clean. Prod. 2016, 127, 1–18. [Google Scholar] [CrossRef]
- Yanbin, Z.; Hao, L.N.; Changhe, L.; Chuanzhen, H.; Hafiz, M.A.; Xuefeng, X.; Cong, M.; Wenfeng, D.; Xin, C.; Min, Y.; et al. Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms. Friction 2022, 10, 803–841. [Google Scholar]
- Safie, N.S.S.; Murad, M.N.; Lih, T.C.; Azmi, A.I.; Hamzah, W.A.W.; Danish, M. Roles of Eco-Friendly Non-Edible Vegetable Oils in Drilling Inconel 718 through Minimum Quantity Lubrication. Lubricants 2022, 10, 211. [Google Scholar] [CrossRef]
- Carvalho, D.O.A.; da Silva, L.R.R.; de Souza, F.C.R.; França, P.H.P.; Machado, R.; Costa, E.S.; Fernandes, G.H.N.; da Silva, R.B. Flooding Application of Vegetable- and Mineral-Based Cutting Fluids in Turning of AISI 1050 Steel. Lubricants 2022, 10, 309. [Google Scholar] [CrossRef]
- Rech, J.; Arrazola, P.; Claudin, C.; Courbon, C.; Pusavec, F.; Kopac, J. Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann. 2013, 62, 79–82. [Google Scholar] [CrossRef]
- Lakner, T.; Hardt, M. A Novel Experimental Test Bench to Investigate the Effects of Cutting Fluids on the Frictional Conditions in Metal Cutting. J. Manuf. Mater. Process. 2020, 4, 45. [Google Scholar] [CrossRef]
- Norm DIN 51385; Schmierstoffe—Bearbeitungsmedien für die Umformung und Zerspanung von Werkstoffen—Begriffe. Beuth Verlag: Berlin, Germany, 2013.
- Kajdas, C. Additives for metalworking lubricants-a review. Lubr. Sci. 1989, 1, 385–409. [Google Scholar] [CrossRef]
- Zhang, F.; Fillot, N.; Bouscharain, N.; Devaux, N.; Philippon, D.; Matta, C.; Morales-Espejel, G. Water droplets in oil at the inlet of an EHD contact: A dual experimental and numerical investigation. Tribol. Int. 2023, 177, 108015. [Google Scholar] [CrossRef]
- Lim, S.K.; Azmi, W.H.; Jamaludin, A.S.; Yusoff, A.R. Characteristics of Hybrid Nanolubricants for MQL Cooling Lubrication Machining Application. Lubricants 2022, 10, 350. [Google Scholar] [CrossRef]
- Ma, J.; Gali, O.A.; Riahi, R.A. An Evaluation of the Tribological Behavior of Cutting Fluid Additives on Aluminum-Manganese Alloys. Lubricants 2021, 9, 84. [Google Scholar] [CrossRef]
- Canter, N. Special Report: Trends in extreme pressure additives. Tribol. Lubr. Technol. 2007, 63, 10. [Google Scholar]
- Brinksmeier, E.; Walter, A. Generation of Reaction Layers on Machined Surfaces. CIRP Ann. 2000, 49, 435–438. [Google Scholar] [CrossRef]
- Schulz, J.; Brinksmeier, E.; Meyer, D. On the Interactions of Additives in Metalworking Fluids with Metal Surfaces. Lubricants 2013, 1, 75–94. [Google Scholar] [CrossRef]
- Furlong, O.; Miller, B.; Kotvis, P.; Adams, H.; Tysoe, W.T. Shear and thermal effects in boundary film formation during sliding. RSC Adv. 2014, 4, 24059–24066. [Google Scholar] [CrossRef]
- Pape, F.; Muhmann, C.; Pahl, D.; Lipinsky, D.; Arlinghaus, H.F.; Poll, G. ZDDP Containing Tribofilms Generated under Sliding Micro Contact and Bearing Test Rig Conditions. Mater. Perform. Charact. 2018, 7, 191–212. [Google Scholar] [CrossRef]
- Gatzen, M.; Pape, F.; Bruening, C.; Gatzen, H.; Arlinghaus, H.; Poll, G. Correlation between performance and boundary layers in high speed bearings lubricated with polymer-enhanced greases. Tribol. Int. 2010, 43, 981–989. [Google Scholar] [CrossRef]
- Pape, F. Mikrotribologische Untersuchungen an Wälzlagern mit Polymeradditivierter Fettschmierung. PhD. Thesis, Leibniz University Hanover, PZH, Produktionstechnisches Zentrum, Garbsen, Germany, 2011. [Google Scholar]
- Britt, L.G.; Jenke, P.K.; Lipinsky, D.; Arlinghaus, H.F. ToF-SIMS investigation of tribochemical surface reaction films built up by specially added cooling lubricants. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 03F120. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Luo, J. Investigation of the film formation mechanism of oil-in-water (O/W) emulsions. Soft Matter 2011, 7, 4207–4213. [Google Scholar] [CrossRef]
- Liang, H.; Guo, D.; Ma, L.; Luo, J. Investigation of film formation mechanism of oil-in-water (O/W) emulsions at high speeds. Tribol. Int. 2017, 109, 428–434. [Google Scholar] [CrossRef]
- Pape, F.; Liu, H.C.; Ellersiek, L.; Krödel, A.; Denkena, B.; Poll, G. Influence of Metal Working Fluids in Cutting Processes. Defect Diffus. Forum 2022, 414, 51–57. [Google Scholar] [CrossRef]
- Liu, H.C.; Guo, F.; Guo, L.; Wong, P.L. A dichromatic interference intensity modulation approach to measurement of lubricating film thickness. Tribol. Lett. 2015, 58, 15. [Google Scholar] [CrossRef]
- Greenwood, J.A. Elastohydrodynamic lubrication. Lubricants 2020, 8, 51. [Google Scholar] [CrossRef]
- Cambiella, A.; Benito, J.M.; Pazos, C.; Coca, J.; Ratoi, M.; Spikes, H.A. The effect of emulsifier concentration on the lubricating properties of oil-in-water emulsions. Tribol. Lett. 2006, 22, 53–65. [Google Scholar] [CrossRef]
- Liu, H.C.; Pape, F.; Zhao, Y.; Ellersiek, L.; Denkena, B.; Poll, G. On the Elastohydrodynamic Film-Forming Properties of Metalworking Fluids and Oil-in-Water Emulsions. Tribol. Lett. 2003, 71, 10. [Google Scholar] [CrossRef]
- Denkena, B.; Krödel, A.; Ellersiek, L. Influence of metal working fluid on chip formation and mechanical loads in orthogonal cutting. Int. J. Adv. Manuf. Technol. 2021, 118, 3005–3013. [Google Scholar] [CrossRef]
- Pape, F.; Möbes, G.; Lipinsky, D.; Muhmann, C.; Arlinghaus, H.F.; Poll, G.; Mori, S. Investigation of the temperature influence on the formation of boundary layers on bearings. Tribol. Schmier. 2017, 64, 39–46. [Google Scholar]
- Pape, F.; Terwey, J.T.; Wiesker, S.; Averbeck, S.; Muhmann, C.; Lipinsky, D.; Arlinghaus, H.F.; Kerscher, E.; Sauer, B.; Poll, G. Tribological research on the development of White Etching Cracks (WECs). Forsch. Ingenieurwesen 2018, 82, 341–352. [Google Scholar] [CrossRef]
- Merchant, M.E. Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip. J. Appl. Phys. 1945, 16, 267–275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pape, F.; Poll, G.; Ellersiek, L.; Denkena, B.; Liu, H. Tribological Effects of Metalworking Fluids in Cutting Processes. Lubricants 2023, 11, 224. https://doi.org/10.3390/lubricants11050224
Pape F, Poll G, Ellersiek L, Denkena B, Liu H. Tribological Effects of Metalworking Fluids in Cutting Processes. Lubricants. 2023; 11(5):224. https://doi.org/10.3390/lubricants11050224
Chicago/Turabian StylePape, Florian, Gerhard Poll, Lars Ellersiek, Berend Denkena, and Haichao Liu. 2023. "Tribological Effects of Metalworking Fluids in Cutting Processes" Lubricants 11, no. 5: 224. https://doi.org/10.3390/lubricants11050224
APA StylePape, F., Poll, G., Ellersiek, L., Denkena, B., & Liu, H. (2023). Tribological Effects of Metalworking Fluids in Cutting Processes. Lubricants, 11(5), 224. https://doi.org/10.3390/lubricants11050224