Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Base Fluids and Additives
2.2. Test Materials
2.3. Test Method and Conditions
2.3.1. Tribological Behaviour
2.3.2. Evaluation of ZDDP Activation Conditions
2.3.3. Wear Behaviour
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.; Liang, H. Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front. Mech. Eng. 2020, 6, 571464. [Google Scholar] [CrossRef]
- Tormos, B.; Ramírez, L.; Johansson, J.; Björling, M.; Larsson, R. Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications. Tribol. Int. 2017, 110, 23–34. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Czerwinski, F. Current Trends in Automotive Lightweighting Strategies and Materials. Materials 2021, 14, 6631. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Nagendramma, P.; Kaul, S. Development of ecofriendly/biodegradable lubricants: An overview. Renew. Sustain. Energy Rev. 2012, 16, 764–774. [Google Scholar] [CrossRef]
- Pettersson, A. High-performance base fluids for environmentally adapted lubricants. Tribol. Int. 2007, 40, 638–645. [Google Scholar] [CrossRef]
- Greaves, M. Oil Soluble Synthetic Polyalkylene Glycols A New Type of Group V Base Oil. Lube-Tech 2013, 104, 1–23. [Google Scholar]
- Zhou, A.; Du, C.; Peng, Z.; Peng, Q.; Qin, D. Rotor Temperature Safety Prediction Method of PMSM for Electric Vehicle on Real-Time Energy Equivalence. Math. Probl. Eng. 2020, 2020, 3213052. [Google Scholar] [CrossRef]
- Siegel, R.; Skidd, C. Case studies utilizing mobile on-site recycling of industrial oils for immediate reapplication. Lubr. Eng. 1995, 51, 767–770. [Google Scholar]
- Brown, P. Synthetic basestocks (Groups IV and V) in lubricant applications. Lubr. Eng. 2003, 59, 20–22. Available online: https://www.proquest.com/scholarly-journals/synthetic-basestocks-groups-iv-v-lubricant/docview/226966160/se-2?accountid=15300 (accessed on 3 December 2022).
- Shah, R.; Gashi, B.; Rosenkranz, A. Latest developments in designing advanced lubricants and greases for electric vehicles—An overview. Lubr. Sci. 2022, 34, 515–526. [Google Scholar] [CrossRef]
- Tung, S.C.; Woydt, M.; Shah, R. Global Insights on Future Trends of Hybrid/EV Driveline Lubrication and Thermal Management. Front. Mech. Eng. 2020, 6, 571786. [Google Scholar] [CrossRef]
- Pettersson, A. Tribological characterization of environmentally adapted ester based fluids. Tribol. Int. 2003, 36, 815–820. [Google Scholar] [CrossRef]
- Spikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef] [Green Version]
- Bunemann, T.F.; Kenbeck, D. Lubricants and additives Chapter 7. Organic friction modifiers. In Lubricant Additives: Chemistry and Applications, 3rd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 195–210. [Google Scholar]
- Cyriac, F.; Tee, X.Y.; Poornachary, S.K.; Chow, P.S. Influence of structural factors on the tribological performance of organic friction modifiers. Friction 2021, 9, 380–400. [Google Scholar] [CrossRef]
- Zahid, R.; Mufti, R.A.; Gulzar, M.; Hassan, M.B.H.; Alabdulkarem, A.; Varman, M.; Kalam, A.; Zulkifli, N.W.B.M.; Yunus, R. Tribological compatibility analysis of conventional lubricant additives with palm trimethylolpropane ester (TMP) and tetrahedral amorphous diamond-like carbon coating (ta-C). Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 999–1013. [Google Scholar] [CrossRef]
- Trindade, E.D.; Durango, A.Z.; Sinatora, A. Friction and wear performance of MoDTC-containing and ester-containing lubricants over steel surfaces under reciprocating conditions. Lubr. Sci. 2015, 27, 217–229. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Yang, J.; Shen, Y.; Xu, J. Friction performance of MoDTP and ester-containing lubricants between CKS piston ring and cast iron cylinder liner. Lubr. Sci. 2018, 30, 33–43. [Google Scholar] [CrossRef]
- Guegan, J.; Southby, M.; Spikes, H. Friction Modifier Additives, Synergies and Antagonisms. Tribol. Lett. 2019, 67, 83. [Google Scholar] [CrossRef] [Green Version]
- Soltanahmadi, S.; Esfahani, E.A.; Nedelcu, I.; Morina, A.; van Eijk, M.C.P.; Neville, A. Surface Reaction Films from Amine-Based Organic Friction Modifiers and Their Influence on Surface Fatigue and Friction. Tribol. Lett. 2019, 67, 80. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.; Davis, J.R. Cast Irons; AMS International: Materials Park, OH, USA, 1996. [Google Scholar]
- Fujita, H.; Spikes, H.A. Study of Zinc Dialkyldithiophosphate Antiwear Film Formation and Removal Processes, Part II: Kinetic Model. Tribol. Trans. 2005, 48, 567–575. [Google Scholar] [CrossRef]
- Salmeron, G.C.; Leckner, J.; Schwack, F.; Westbroek, R.; Glavatskih, S. Greases for electric vehicle motors: Thickener effect and energy saving potential. Tribol. Int. 2022, 167, 107400. [Google Scholar] [CrossRef]
- Gonda, A.; Capan, R.; Bechev, D.; Sauer, B. The Influence of Lubricant Conductivity on Bearing Currents in the Case of Rolling Bearing Greases. Lubricants 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Fujita, H.; Glovnea, R.P.; Spikes, H.A. Study of Zinc Dialkydithiophosphate Antiwear Film Formation and Removal Processes, Part I: Experimental. Tribol. Trans. 2005, 48, 558–566. [Google Scholar] [CrossRef]
- Spikes, H. The History and Mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489. [Google Scholar] [CrossRef]
- Ratoi, M.; Niste, V.B.; Alghawel, H.; Suen, Y.F.; Nelson, K. The impact of organic friction modifiers on engine oil tribofilms. RSC Adv. 2014, 4, 4278–4285. [Google Scholar] [CrossRef] [Green Version]
- Miklozic, K.T.; Forbus, T.R.; Spikes, H.A. Performance of Friction Modifiers on ZDDP-Generated Surfaces. Tribol. Trans. 2007, 50, 328–335. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Kalscheuer, C.; Thiex, M. Formation of tribochemical reaction layers on a metal modified amorphous carbon coating a-C:H:Zr (ZrCg). Tribol. Int. 2019, 135, 152–160. [Google Scholar] [CrossRef]
- Grossiord, C.; Martin, J.; Le Mogne, T.; Palermo, T. In situ MoS2 formation and selective transfer from MoDPT films. Surf. Coat. Technol. 1998, 108–109, 352–359. [Google Scholar] [CrossRef]
- De Barros’Bouchet, M.; Martin, J.; Le-Mogne, T.; Vacher, B. Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 2005, 38, 257–264. [Google Scholar] [CrossRef]
- Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Ye, J.; Burris, D.L.; Xie, T. A Review of Transfer Films and Their Role in Ultra-Low-Wear Sliding of Polymers. Lubricants 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Martini, A.; Ramasamy, U.S.; Len, M. Review of Viscosity Modifier Lubricant Additives. Tribol. Lett. 2018, 66, 58. [Google Scholar] [CrossRef]
- Müller, M.; Topolovec-Miklozic, K.; Dardin, A.; Spikes, H.A. The Design of Boundary Film-Forming PMA Viscosity Modifiers. Tribol. Trans. 2006, 49, 225–232. [Google Scholar] [CrossRef]
Code | Description | Viscosity at 40 °C | Viscosity at 100 °C | Viscosity Index |
---|---|---|---|---|
PAO 6 | PAO 6 | 30.3 cSt | 5.9 cSt | 143 |
BO | Base Oil: Group V ester + Group IV PAO 6 (1:1) | 22.9 cSt | 4.8 cSt | 136 |
Code | Description | Function |
---|---|---|
ZDDP | Zinc Bis(2-Ethylhexyl)Phosphorodithiodate | AW |
MoDTP | 2-Ethylhexyl-MoDTP | AW + FM |
OFM | Bis-(2-hydroxypropyl) Tallowamide | FM + low AW |
PFM1 | Polyisobutylsuccinate-polyetheramine polymer | FM |
PFM2 | Polymeric product from reaction of C8-C18 unsat FA, DEA and Propyleneoxide | FM |
Element | Composition, % (w/w) |
---|---|
Carbon, C | 0.98–1.1 |
Chromium, Cr | 1.3–1.6 |
Iron, Fe | 96.5–97.32 |
Manganese, Mn | 0.25–0.45 |
Phosphorous, P | ≤0.025 |
Silicon, Si | 0.15–0.30 |
Sulphur, S | ≤0.025 |
Property | MTM Specimen | SRV Specimen | ||
---|---|---|---|---|
Disc | Ball | Disc | Ball | |
Hardness, Vickers 1 kg | 755 ± 10 | 876 ± 8 | 790 ± 50 | 805 ± 25 |
Roughness, Ra (mm) | <0.020 | 0.046 ± 0.003 | 0.020 ± 0.001 | |
Young’s Modulus (GPa) [23] | 210 | 210 | ||
Poisson’s Ratio [23] | 0.30 | 0.30 |
Contact Conditions | |
---|---|
Load | 31 N |
Sliding rotation ratio, SRR (%) | 50% |
Mean speed | 50 mm·s−1 |
Temperature | 80 °C |
Contact Conditions | |
---|---|
Load | 55 and 275 N |
Pressure * | 1.70 and 2.94 GPa |
Stroke | 2 mm |
Frequency | 50 Hz |
Temperature | 80 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañellas, G.; Emeric, A.; Combarros, M.; Navarro, A.; Beltran, L.; Vilaseca, M.; Vives, J. Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications. Lubricants 2023, 11, 109. https://doi.org/10.3390/lubricants11030109
Cañellas G, Emeric A, Combarros M, Navarro A, Beltran L, Vilaseca M, Vives J. Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications. Lubricants. 2023; 11(3):109. https://doi.org/10.3390/lubricants11030109
Chicago/Turabian StyleCañellas, Gerard, Ariadna Emeric, Mar Combarros, Angel Navarro, Lluis Beltran, Montserrat Vilaseca, and Jordi Vives. 2023. "Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications" Lubricants 11, no. 3: 109. https://doi.org/10.3390/lubricants11030109
APA StyleCañellas, G., Emeric, A., Combarros, M., Navarro, A., Beltran, L., Vilaseca, M., & Vives, J. (2023). Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications. Lubricants, 11(3), 109. https://doi.org/10.3390/lubricants11030109