Radio Galaxies—The TeV Challenge
Abstract
:1. Introduction
2. Observations of the TeV Emitting Radio Galaxies
3. Radio Properties
3.1. Parent Population
3.2. Jet Kinematics—Speeds on Parsec to Kilo-Parsec Scales
3.3. Zooming into the Event Horizon Scales
4. TeV Variability
5. High-Energy Emitting Sites
6. Particle Acceleration Mechanisms
7. Future Directions
- are nearby AGN. The farthest detected is at a distance of 220 Mpc. Using the millimeter-VLBI observations, we can probe regions in the immediate vicinity of the central black hole i.e., down to a scale of less than 50 gravitational radii in the source frame (for more details about the imaging capabilities of the current and near-future high-resolution VLBI observations, check Boccardi et al. [82]). The mm-VLBI observations will provide an ultimate opportunity to probe the compact regions closer to the black hole, which are the potential sites of high-energy emission. High-resolution polarization imaging will probe the magnetic field strength and configuration of these compact emission regions, which is an essential piece of information in order to understand the production mechanisms of high-energy emission.
- Being seen off-axis, offers a unique opportunity to transversely resolve the jet. Using high-resolution VLBI, one can transversely resolve the fine scale jet structure and can probe their flux density and polarization variations. VLBI astrometry observations could provide the exact location of the core. Having that, we could combine the high-resolution VLBI imaging and multi-wavelength observations to exactly pinpoint the location of -ray emitting sites.
- There have been great advances in the theory and simulation front. Several details about plasma physics under extreme conditions can be better understood via simulations i.e., radiative signatures of relativistic magnetic reconnection [98,99,100,101,102], formation of jets and expulsion of magnetic flux from the central black hole [109,110,111], high-energy polarization signatures of shocks and reconnection [98,112,113]. A comparison of predictions from simulations with measurements will be crucial to understanding the physical processes happening around black holes.
- Cherenkov Telescope Array (CTA) [114] with its sensitivity better than the existing GeV/TeV instruments and spatial resolution of the order of a couple of arc-minutes at TeV energies will provide observations up to 300 TeV. CTA will detect many more misaligned AGN and will also help us in separating nuclear and off-nuclear components especially for nearby sources. Having the potential to probe deeper into the spectral and variability characteristics of AGN, CTA will eventually revolutionize our understanding of the TeV sky.
- The question of what powers -ray AGN flares is ultimately related to the energy dissipation mechanism at work. High-energy polarization observations will deliver an ultimate test for probing the energetic particle-acceleration processes and emission mechanisms: (i) leptonic versus hadronic models and (ii) shocks versus magnetic reconnection. High-energy polarimetry missions are on their way to unravel how the most efficient particle accelerators in the Universe work. For instance, the All-sky Medium Energy Gamma-ray Observatory (AMEGO: https://asd.gsfc.nasa.gov/amego/) will offer MeV polarization observations of the -ray bright AGN. The Imaging X-ray Polarimetry Explorer (IXPE: https://wwwastro.msfc.nasa.gov/ixpe/index.html) will observe polarization signatures from X-ray bright AGN.
- The recent observations of coincidence of a high-energy neutrino event with a flaring AGN, TXS 0506+056 indicate AGN as potential sources of high-energy neutrinos [115]. Multi-wavelength and multi-messenger observations of similar events will test if AGN jets are powerful sources of extra-galactic neutrinos and put constraints on lepto-hadronic models.
Funding
Acknowledgments
Conflicts of Interest
References
- Rani, B.; Krichbaum, T.P.; Fuhrmann, L.; Böttcher, M.; Lott, B.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Bach, U.; Bastieri, D.; et al. Radio to gamma-ray variability study of blazar S5 0716+714. Astron. Astrophys. 2013, 552, A11. [Google Scholar] [CrossRef]
- Rani, B.; Krichbaum, T.P.; Marscher, A.P.; Jorstad, S.G.; Hodgson, J.A.; Fuhrmann, L.; Zensus, J.A. Jet outflow and gamma-ray emission correlations in S5 0716+714. Astron. Astrophys. 2014, 571, L2. [Google Scholar] [CrossRef] [Green Version]
- Algaba, J.C.; Lee, S.S.; Kim, D.W.; Rani, B.; Hodgson, J.; Kino, M.; Trippe, S.; Park, J.H.; Zhao, G.Y.; Byun, D.Y.; et al. Exploring the Variability of the Flat Spectrum Radio Source 1633+382. I. Phenomenology of the Light Curves. Astrophys. J. 2018, 852, 30. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Gamma-ray flaring activity of NGC 1275 in 2016–2017 measured by MAGIC. Astron. Astrophys. 2018, 617, 91. [Google Scholar]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Butt, Y.; et al. Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy. Science 2009, 325, 444. [Google Scholar] [PubMed]
- Agudo, I.; Jorstad, S.G.; Marscher, A.P.; Larionov, V.M.; Gómez, J.L.; Lähteenmäki, A.; Gurwell, M.; Smith, P.S.; Wiesemeyer, H.; Thum, C.; et al. Location of γ-ray Flare Emission in the Jet of the BL Lacertae Object OJ287 More than 14 pc from the Central Engine. Astrophys. J. Lett. 2011, 726, L13. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Smith, P.S.; Larionov, V.M.; Agudo, I.; Gurwell, M.; Wehrle, A.E.; Lähteenmäki, A.; Nikolashvili, M.G.; Schmidt, G.D.; et al. A Tight Connection between Gamma-Ray Outbursts and Parsec-scale Jet Activity in the Quasar 3C 454.3. Astrophys. J. 2013, 773, 147. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Rani, B.; Lee, S.S.; Algaba, J.C.; Kino, M.; Trippe, S.; Park, J.H.; Zhao, G.Y.; Byun, D.Y.; Kang, S.; et al. KVN observations reveal multiple γ-ray emission regions in 3C 84? Mon. Not. R. Astron. Soc. 2018, 475, 368–378. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Zhang, H. Leptonic and Hadronic Modeling of Fermi-Detected Blazars. Spectral Energy Distribution Modeling and High-Energy Polarization Predictions. Eur. Phys. J. Web Conf. 2013, 61, 05003. [Google Scholar] [CrossRef]
- Böttcher, M. Modeling the emission processes in blazars. In The Multi-Messenger Approach to High-Energy Gamma-Ray Sources; Springer: Dordrecht, The Netherlands, 2007; pp. 95–104. [Google Scholar]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley: New York, NY, USA, 1986; p. 400. [Google Scholar]
- Dermer, C.D.; Menon, G. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos; Princeton Univerisity Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Zhang, H.; Böttcher, M. X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars. Astrophys. J. 2013, 774, 18. [Google Scholar] [CrossRef]
- De Angelis, A.; Mallamaci, M. Gamma-ray astrophysics. Eur. Phys. J. Plus 2018, 133, 324. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Mattox, J.R.; Aller, M.F.; Aller, H.D.; Wehrle, A.E.; Bloom, S.D. Multiepoch Very Long Baseline Array Observations of EGRET-detected Quasars and BL Lacertae Objects: Connection between Superluminal Ejections and Gamma-Ray Flares in Blazars. Astrophys. J. 2001, 556, 738–748. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Larionov, V.M.; Agudo, I.; Smith, P.S.; Gurwell, M.; Lähteenmäki, A.; Tornikoski, M.; Markowitz, A.; Arkharov, A.A.; et al. Flaring Behavior of the Quasar 3C 454.3 Across the Electromagnetic Spectrum. Astrophys. J. 2010, 715, 362–384. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; Larionov, V.M.; Aller, M.F.; Aller, H.D.; Lähteenmäki, A.; Agudo, I.; Smith, P.S.; Gurwell, M.; Hagen-Thorn, V.A.; et al. Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-Waveband Monitoring During Strong Gamma-Ray Activity. Astrophys. J. Lett. 2010, 710, L126–L131. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G. The Megaparsec-scale X-ray Jet of The BL Lac Object OJ287. Astrophys. J. 2011, 729, 26. [Google Scholar] [CrossRef]
- Schinzel, F.K.; Lobanov, A.P.; Taylor, G.B.; Jorstad, S.G.; Marscher, A.P.; Zensus, J.A. Relativistic outflow drives γ-ray emission in 3C 345. Astron. Astrophys. 2012, 537, A70. [Google Scholar] [CrossRef]
- Rani, B.; Krichbaum, T.P.; Marscher, A.P.; Hodgson, J.A.; Fuhrmann, L.; Angelakis, E.; Britzen, S.; Zensus, J.A. Connection between inner jet kinematics and broadband flux variability in the BL Lacertae object S5 0716+714. Astron. Astrophys. 2015, 578, A123. [Google Scholar] [CrossRef]
- Orienti, M.; Koyama, S.; D’Ammando, F.; Giroletti, M.; Kino, M.; Nagai, H.; Venturi, T.; Dallacasa, D.; Giovannini, G.; Angelakis, E.; et al. Radio and γ-ray follow-up of the exceptionally high-activity state of PKS 1510-089 in 2011. Mon. Not. R. Astron. Soc. 2013, 428, 2418–2429. [Google Scholar] [CrossRef]
- Raiteri, C.M.; Villata, M.; D’Ammando, F.; Larionov, V.M.; Gurwell, M.A.; Mirzaqulov, D.O.; Smith, P.S.; Acosta-Pulido, J.A.; Agudo, I.; Arévalo, M.J.; et al. The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT. Mon. Not. R. Astron. Soc. 2013, 436, 1530–1545. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Rieger, F.M.; Levinson, A. Radio Galaxies at VHE energies. In arXiv; 2018. Available online: http://xxx.lanl.gov/abs/1810.05409 (accessed on 22 January 2019).
- Wills, K.A.; Morganti, R.; Tadhunter, C.N.; Robinson, T.G.; Villar-Martin, M. Emission lines and optical continuum in low-luminosity radio galaxies. Mon. Not. R. Astron. Soc. 2004, 347, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Falomo, R.; Carangelo, N.; Treves, A. Host galaxies and black hole masses of low- and high-luminosity radio-loud active nuclei. Mon. Not. R. Astron. Soc. 2003, 343, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE: XIII. Parsec-scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz. Astron. J. 2016, 152, 12. [Google Scholar] [CrossRef]
- Mertens, F.; Lobanov, A.P.; Walker, R.C.; Hardee, P.E. Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii. Astron. Astrophys. 2016, 595, A54. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.T.; Georganopoulos, M.; Sparks, W.B.; Perlman, E.; van der Marel, R.P.; Anderson, J.; Sohn, S.T.; Biretta, J.; Norman, C.; Chiaberge, M. A kiloparsec-scale internal shock collision in the jet of a nearby radio galaxy. Nature 2015, 521, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.L.H.; Rejkuba, M.; Harris, W.E. The Distance to NGC 5128 (Centaurus A). Publ. Astron. Soc. Aust. 2010, 27, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, D.; Falomo, R.; Fasano, G.; Govoni, F. The black hole mass of low redshift radiogalaxies. Astron. Astrophys. 2003, 399, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Bird, S.; Harris, W.E.; Blakeslee, J.P.; Flynn, C. The inner halo of M 87: A first direct view of the red-giant population. Astron. Astrophys. 2010, 524, A71. [Google Scholar] [CrossRef]
- Walsh, J.L.; Barth, A.J.; Ho, L.C.; Sarzi, M. The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations. Astrophys. J. 2013, 770, 86. [Google Scholar] [CrossRef]
- Strauss, M.A.; Huchra, J.P.; Davis, M.; Yahil, A.; Fisher, K.B.; Tonry, J. A redshift survey of IRAS galaxies. VII—The infrared and redshift data for the 1.936 Jansky sample. Astrophys. J. Suppl. Ser. 1992, 83, 29–63. [Google Scholar] [CrossRef]
- Wilman, R.J.; Edge, A.C.; Johnstone, R.M. The nature of the molecular gas system in the core of NGC 1275. Mon. Not. R. Astron. Soc. 2005, 359, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Scharwächter, J.; McGregor, P.J.; Dopita, M.A.; Beck, T.L. Kinematics and excitation of the molecular hydrogen accretion disc in NGC 1275. Mon. Not. R. Astron. Soc. 2013, 429, 2315–2332. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.; Alonso, M.V.; da Costa, L.N.; Willmer, C.N.A.; Wegner, G.; Pellegrini, P.S.; Rité, C.; Maia, M.A.G. Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample. Astron. J. 2002, 123, 2990–3017. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J.A.; González, J.B.; Bednarek, W.; Bernardini, E.; et al. Black hole lightning due to particle acceleration at subhorizon scales. Science 2014, 346, 1080–1084. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.J.; Lucey, J.R.; Hudson, M.J.; Schlegel, D.J.; Davies, R.L. Streaming motions of galaxy clusters within 12,000 kms−1—I. New spectroscopic data. Mon. Not. R. Astron. Soc. 2000, 313, 469–490. [Google Scholar] [CrossRef]
- Van den Bosch, R.C.E. Unification of the fundamental plane and Super Massive Black Hole Masses. Astrophys. J. 2016, 831, 134. [Google Scholar] [CrossRef]
- Jones, D.H.; Read, M.A.; Saunders, W.; Colless, M.; Jarrett, T.; Parker, Q.A.; Fairall, A.P.; Mauch, T.; Sadler, E.M.; Watson, F.G.; et al. The 6dF Galaxy Survey: Final redshift release (DR3) and southern large-scale structures. Mon. Not. R. Astron. Soc. 2009, 399, 683–698. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Anton, G.; de Almeida, U.B.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Boisson, C.; et al. Discovery of Very High Energy γ-Ray Emission from Centaurus a with H.E.S.S. Astrophys. J. Lett. 2009, 695, L40–L44. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Gamma-Ray Imaging of a Radio Galaxy. Science 2010, 328, 725. [Google Scholar]
- Sahakyan, N.; Yang, R.; Aharonian, F.A.; Rieger, F.M. Evidence for a Second Component in the High-energy Core Emission from Centaurus A? Astrophys. J. Lett. 2013, 770, L6. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.G.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.L.; Cortina, J.; et al. Is the giant radio galaxy M 87 a TeV gamma-ray emitter? Astron. Astrophys. 2003, 403, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; et al. Veritas 2008–2009 Monitoring of the Variable Gamma-ray Source M 87. Astrophys. J. 2010, 716, 819–824. [Google Scholar] [CrossRef]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. MAGIC observations of the giant radio galaxy M 87 in a low-emission state between 2005 and 2007. Astron. Astrophys. 2012, 544, A96. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. Fast Variability of Tera-Electron Volt γ Rays from the Radio Galaxy M87. Science 2006, 314, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Beilicke, M.; VERITAS Collaboration. VERITAS Observations of M87 in 2011/2012. AIP Conf. Proc. 2012, 1505, 586–589. [Google Scholar]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Discovery of Gamma-ray Emission from NGC 1275. Astrophys. J. 2009, 699, 31–39. [Google Scholar] [CrossRef]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; et al. Detection of very-high energy γ-ray emission from <ASTROBJ>NGC 1275</ASTROBJ> by the MAGIC telescopes. Astron. Astrophys. 2012, 539, L2. [Google Scholar]
- Benbow, W.; VERITAS Collaboration. Highlights from the VERITAS AGN Observation Program. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 821. [Google Scholar]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; et al. Detection of Very High Energy γ-ray Emission from the Perseus Cluster Head-Tail Galaxy IC 310 by the MAGIC Telescopes. Astrophys. J. Lett. 2010, 723, L207–L212. [Google Scholar] [CrossRef]
- Mukherjee, R. VERITAS discovery of VHE emission from the FRI radio galaxy 3C 264. Astronomer’s Telegr. 2018, 11436. [Google Scholar]
- Dyrda, M.; Wierzcholska, A.; Hervet, O.; Moderski, R.; Janiak, M.; Ostrowski, M.; Stawarz, Ł; for the H. E. S. S. Collaboration. Discovery of VHE gamma-rays from the radio galaxy PKS 0625-354 with H.E.S.S. arXiv, 2015; arXiv:1509.06851. [Google Scholar]
- Fukazawa, Y.; Finke, J.; Stawarz, Ł; Tanaka, Y.; Itoh, R.; Tokuda, S. Suzaku Observations of γ-Ray Bright Radio Galaxies: Origin of the X-Ray Emission and Broadband Modeling. Astrophys. J. 2015, 798, 74. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P. A catalogue of quasars and active nuclei: 12th edition. Astron. Astrophys. 2006, 455, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.; Krauss, F.; Kadler, M.; Truestedt, J.; Ojha, R.; Ros, E.; Wilms, J.; Boeck, M.; Dutka, M.; Carpenter, B. The TANAMI program: Southern-hemisphere AGN on (sub-)parsec scales. In Proceedings of the 11th European VLBI Network Symposium AMP Users Meeting, Bordeaux, France, 9–12 October 2012; p. 20. [Google Scholar]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Evans, D.A.; Croston, J.H. The X-ray nuclei of intermediate-redshift radio sources. Mon. Not. R. Astron. Soc. 2006, 370, 1893–1904. [Google Scholar] [CrossRef] [Green Version]
- Baum, S.A.; Zirbel, E.L.; O’Dea, C.P. Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power. Astrophys. J. 1995, 451, 88. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C.; Rees, M.J. The accretion luminosity of a massive black hole in an elliptical galaxy. Mon. Not. R. Astron. Soc. 1995, 277, L55–L58. [Google Scholar]
- Asada, K.; Nakamura, M.; Doi, A.; Nagai, H.; Inoue, M. Discovery of Sub- to Superluminal Motions in the M87 Jet: An Implication of Acceleration from Sub-relativistic to Relativistic Speeds. Astrophys. J. Lett. 2014, 781, L2. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Lister, M.L.; Homan, D.C.; Kellermann, K.I. The Inner Jet of the Radio Galaxy M87. Astrophys. J. Lett. 2007, 668, L27–L30. [Google Scholar] [CrossRef]
- Hada, K.; Park, J.H.; Kino, M.; Niinuma, K.; Sohn, B.W.; Ro, H.W.; Jung, T.; Algaba, J.C.; Zhao, G.Y.; Lee, S.S.; et al. Pilot KaVA monitoring on the M 87 jet: Confirming the inner jet structure and superluminal motions at sub-pc scales. Publ. Astron. S. Jpn. 2017, 69, 71. [Google Scholar] [CrossRef]
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. Astrophys. J. 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Biretta, J.A.; Junor, W. The Parsec-Scale Jet in M87. Proc. Natl. Acad. Sci. USA 1995, 92, 11364–11367. [Google Scholar] [CrossRef]
- Meyer, E.T.; Sparks, W.B.; Biretta, J.A.; Anderson, J.; Sohn, S.T.; van der Marel, R.P.; Norman, C.; Nakamura, M. Optical Proper Motion Measurements of the M87 Jet: New Results from the Hubble Space Telescope. Astrophys. J. Lett. 2013, 774, L21. [Google Scholar] [CrossRef]
- Giroletti, M.; Hada, K.; Giovannini, G.; Casadio, C.; Beilicke, M.; Cesarini, A.; Cheung, C.C.; Doi, A.; Krawczynski, H.; Kino, M.; et al. The kinematic of HST-1 in the jet of M 87. Astron. Astrophys. 2012, 538, L10. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Kadler, M.; Ojha, R.; Perucho, M.; Großberger, C.; Ros, E.; Wilms, J.; Blanchard, J.; Böck, M.; Carpenter, B.; et al. TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet. Astron. Astrophys. 2014, 569, A115. [Google Scholar] [CrossRef] [Green Version]
- Tingay, S.J.; Preston, R.A.; Jauncey, D.L. The Subparsec-Scale Structure and Evolution of Centaurus A. II. Continued Very Long Baseline Array Monitoring. Astron. J. 2001, 122, 1697–1706. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Worrall, D.M.; Kraft, R.P.; Forman, W.R.; Jones, C.; Murray, S.S. Radio and X-Ray Observations of the Jet in Centaurus A. Astrophys. J. 2003, 593, 169–183. [Google Scholar] [CrossRef]
- Marshall, H.L.; Miller, B.P.; Davis, D.S.; Perlman, E.S.; Wise, M.; Canizares, C.R.; Harris, D.E. A High-Resolution X-Ray Image of the Jet in M87. Astrophys. J. 2002, 564, 683–687. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE. X. Parsec-scale Jet Orientation Variations and Superluminal Motion in Active Galactic Nuclei. Astron. J. 2013, 146, 120. [Google Scholar] [CrossRef]
- Dhawan, V.; Kellermann, K.I.; Romney, J.D. Kinematics of the Nucleus of NGC 1275 (3C 84). Astrophys. J. Lett. 1998, 498, L111–L114. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Troitsky, I.S.; Agudo, I.; Casadio, C.; Foord, A.; Gómez, J.L.; MacDonald, N.R.; Molina, S.N.; et al. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program. Astrophys. J. 2017, 846, 98. [Google Scholar] [CrossRef] [Green Version]
- Kadler, M.; Eisenacher, D.; Ros, E.; Mannheim, K.; Elsässer, D.; Bach, U. The blazar-like radio structure of the TeV source IC 310. Astron. Astrophys. 2012, 538, L1. [Google Scholar] [CrossRef]
- Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y.Y.; et al. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii. Nat. Astron. 2018, 2, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Krichbaum, T.P.; Lu, R.S.; Ros, E.; Bach, U.; Bremer, M.; de Vicente, P.; Lindqvist, M.; Zensus, J.A. The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale. Astron. Astrophys. 2018, 616, A188. [Google Scholar] [CrossRef] [Green Version]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. Astron. Astrophys. Rev. 2017, 25, 4. [Google Scholar] [CrossRef]
- Hada, K.; Doi, A.; Kino, M.; Nagai, H.; Hagiwara, Y.; Kawaguchi, N. An origin of the radio jet in M87 at the location of the central black hole. Nature 2011, 477, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Doeleman, S.S.; Fish, V.L.; Schenck, D.E.; Beaudoin, C.; Blundell, R.; Bower, G.C.; Broderick, A.E.; Chamberlin, R.; Freund, R.; Friberg, P.; et al. Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 2012, 338, 355. [Google Scholar] [CrossRef] [PubMed]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Akiyama, K.; Tazaki, F.; Lico, R.; Giroletti, M.; Giovannini, G.; et al. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. Astrophys. J. 2016, 817, 131. [Google Scholar] [CrossRef]
- Lu, R.S.; Broderick, A.E.; Baron, F.; Monnier, J.D.; Fish, V.L.; Doeleman, S.S.; Pankratius, V. Imaging the Supermassive Black Hole Shadow and Jet Base of M87 with the Event Horizon Telescope. Astrophys. J. 2014, 788, 120. [Google Scholar] [CrossRef]
- Rani1, B.; Jorstad, S.G.; Marscher, A.P.; Agudo, I.; Sokolovsky, K.V.; Larionov, V.M.; Smith, P.; Mosunova, D.A.; Borman, G.A.; Grishina, T.S. Exploring the connection between parsec-scale jet activity and broadband outbursts in 3C 279. Astrophys. J. 2018, 858, 80. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; D’Arcangelo, F.D.; Smith, P.S.; Williams, G.G.; Larionov, V.M.; Oh, H.; Olmstead, A.R.; Aller, M.F.; Aller, H.D.; et al. The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature 2008, 452, 966–969. [Google Scholar] [CrossRef]
- Lott, B.; Escande, L.; Larsson, S.; Ballet, J. An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data. Astron. Astrophys. 2012, 544, A6. [Google Scholar] [CrossRef]
- Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. Variable Very High Energy γ-Ray Emission from Markarian 501. Astrophys. J. 2007, 669, 862–883. [Google Scholar] [CrossRef]
- Hada, K.; Kino, M.; Nagai, H.; Doi, A.; Hagiwara, Y.; Honma, M.; Giroletti, M.; Giovannini, G.; Kawaguchi, N. VLBI Observations of the Jet in M 87 during the Very High Energy γ-Ray Flare in 2010 April. Astrophys. J. 2012, 760, 52. [Google Scholar] [CrossRef]
- Hada, K.; Giroletti, M.; Kino, M.; Giovannini, G.; D’Ammando, F.; Cheung, C.C.; Beilicke, M.; Nagai, H.; Doi, A.; Akiyama, K.; et al. A Strong Radio Brightening at the Jet Base of M 87 during the Elevated Very High Energy Gamma-Ray State in 2012. Astrophys. J. 2014, 788, 165. [Google Scholar] [CrossRef]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Chidiac, C.; Rani, B.; Krichbaum, T.P.; Angelakis, E.; Fuhrmann, L.; Nestoras, I.; Zensus, J.A.; Sievers, A.; Ungerechts, H.; Itoh, R.; et al. Exploring the nature of the broadband variability in the flat spectrum radio quasar 3C 273. Astron. Astrophys. 2016, 590, A61. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Krichbaum, T.P.; Marscher, A.P.; Jorstad, S.G.; Rani, B.; Marti-Vidal, I.; Bach, U.; Sanchez, S.; Bremer, M.; Lindqvist, M.; et al. Location of γ-ray emission and magnetic field strengths in OJ 287. Astron. Astrophys. 2017, 597, A80. [Google Scholar] [CrossRef]
- Karamanavis, V.; Fuhrmann, L.; Angelakis, E.; Nestoras, I.; Myserlis, I.; Krichbaum, T.P.; Zensus, J.A.; Ungerechts, H.; Sievers, A.; Gurwell, M.A. What can the 2008/10 broadband flare of PKS 1502+106 tell us? Nuclear opacity, magnetic fields, and the location of γ rays. Astron. Astrophys. 2016, 590, A48. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304. Astrophys. J. Lett. 2007, 664, L71–L74. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, X.; Guo, F.; Giannios, D. Large-amplitude Blazar Polarization Angle Swing as a Signature of Magnetic Reconnection. Astrophys. J. Lett. 2018, 862, L25. [Google Scholar] [CrossRef]
- Petropoulou, M.; Giannios, D.; Sironi, L. Blazar flares powered by plasmoids in relativistic reconnection. Mon. Not. R. Astron. Soc. 2016, 462, 3325–3343. [Google Scholar] [CrossRef] [Green Version]
- Giannios, D. Reconnection-driven plasmoids in blazars: Fast flares on a slow envelope. Mon. Not. R. Astron. Soc. 2013, 431, 355–363. [Google Scholar] [CrossRef]
- Petropoulou, M.; Sironi, L. The Steady Growth of the High-Energy Spectral Cutoff in Relativistic Magnetic Reconnection. Mon. Not. Roy. Astron. Soc. 2018, 481, 4. [Google Scholar] [CrossRef]
- Kagan, D.; Sironi, L.; Cerutti, B.; Giannios, D. Relativistic Magnetic Reconnection in Pair Plasmas and Its Astrophysical Applications. Space Sci. Rev. 2015, 191, 545–573. [Google Scholar] [CrossRef] [Green Version]
- Hirotani, K.; Pu, H.Y. Energetic Gamma Radiation from Rapidly Rotating Black Holes. Astrophys. J. 2016, 818, 50. [Google Scholar] [CrossRef]
- Rieger, F.M. Nonthermal Processes in Black Hole-Jet Magnetospheres. Int. J. Modern Phys. D 2011, 20, 1547–1596. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef] [Green Version]
- Katsoulakos, G.; Rieger, F.M. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei. Astrophys. J. 2018, 852, 112. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.; Yuan, Y.; Hoshino, M.; Sironi, L. Magnetoluminescence. Space Sci. Rev. 2017, 207, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.; East, W.; Nalewajko, K.; Yuan, Y.; Zrake, J. Active Galactic Nuclei: The TeV Challenge. arXiv, 2015; arXiv:1511.07515. [Google Scholar]
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes. Science 2013, 339, 49. [Google Scholar] [CrossRef] [PubMed]
- Zamaninasab, M.; Clausen-Brown, E.; Savolainen, T.; Tchekhovskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 2014, 510, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S. Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 2018, 474, L81–L85. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Guo, F.; Taylor, G. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations. Astrophys. J. 2017, 835, 125. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars. Astrophys. J. 2014, 780, 87. [Google Scholar] [CrossRef]
- Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; Ambrosi, G.; et al. Science with the Cherenkov Telescope Array. arXiv, 2017; arXiv:1709.07997. [Google Scholar]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, B. Radio Galaxies—The TeV Challenge. Galaxies 2019, 7, 23. https://doi.org/10.3390/galaxies7010023
Rani B. Radio Galaxies—The TeV Challenge. Galaxies. 2019; 7(1):23. https://doi.org/10.3390/galaxies7010023
Chicago/Turabian StyleRani, Bindu. 2019. "Radio Galaxies—The TeV Challenge" Galaxies 7, no. 1: 23. https://doi.org/10.3390/galaxies7010023
APA StyleRani, B. (2019). Radio Galaxies—The TeV Challenge. Galaxies, 7(1), 23. https://doi.org/10.3390/galaxies7010023