Gamma-Ray Bursts at TeV Energies: Theoretical Considerations
Abstract
:1. Introduction
2. Relevant High-Energy or Very-High-Energy Emission Mechanisms
2.1. Electron Synchrotron Emission
2.2. Proton Synchrotron Emission
2.3. Synchrotron Self-Compton (SSC)
2.4. External Inverse-Compton
IC Scattering of X-ray Flare Photons by External Forward Shock Electrons
2.5. Pair Echoes
2.6. High-Energy -Rays from Pion Decay
2.7. High-Energy -Rays from the Bethe–Heitler Process
3. GRB Prompt HE Emission—Observations vs. Theory
- Extra HE spectral component: An extra power-law spectral component that extends to high energies and which is distinct from the typical sub-MeV Band component appears in several bright LAT detected GRBs.
- Delayed onset: The onset of this HE emission is delayed relative to the softer -rays near the spectral peak, with typical delays of a few to several seconds (s) for long-soft GRBs and a few tenths of a second (s) for short-hard GRBs.
3.1. Delayed Onset of the Fermi-LAT HE Emission
3.1.1. Forward External Shock Emission
3.1.2. Inverse-Compton GeV Flash
3.1.3. Synchrotron Emission from Protons Accelerated at the External Forward Shock
3.1.4. SSC Emission
3.2. Distinct HE Spectral Component
3.3. Long-Lived HE Emission
3.4. Constraints on Bulk
4. High-Energy (GeV) Afterglow and GRB 130427A
5. Very-High-Energy (TeV) Afterglow
5.1. Key Results Implications
5.1.1. IC Emission Is Needed to Explain the VHE -Rays
5.1.2. Constraints on Shock Microphysical Parameters
5.1.3. VHE -Rays as Electromagnetic Counterparts of Binary NS Mergers
6. Studying Non-GRB Physics
6.1. Constraining the Extragalactic Background Light Models with GRBs
6.2. Probing the Intergalactic Medium B-Field
6.3. Lorentz Invariance Constraints
7. Outstanding Questions
- (a)
- What makes GRBs TeV bright?: All TeV bright GRBs are also very bright in prompt -rays as well as in their X-ray afterglow emission. In fact, apart from GRB 190829A, the rest of the TeV bright GRBs have high prompt -ray fluences that put them among the top 1%, see Figure 1 of [19], as is also evident from their high erg from Table 1. Although not all MeV-bright GRBs were observed at TeV energies, it begs the question why no TeV emission was detected from, e.g., 130427A (one of the most energetic GRBs with erg) by VERITAS and HAWC, and whether we would have seen TeV -rays from all such GRBs. The majority of the highly energetic GRBs are also more distant with see, e.g., Figure 3 of [19], which makes it challenging to detect their TeV emission due to suppression by -annihilation on EBL photons. Internal absorption due to -annihilation of IC photons (that produce the TeV component) on the seed synchrotron photons (that produce the X-ray afterglow) can also become important [184] and may perhaps be enough in some bursts to significantly suppress the VHE emission. Detailed semi-analytic numerical models including the effects of pair cascades and Klein–Nishina suppression that can explain the multi-wavelength spectral and temporal evolution may shed more light on the properties of the emission region.
- (b)
- What causes the delayed onset of the Fermi-LAT emission?: The delayed onset of the HE emission w.r.t the MeV prompt -rays as seen by the Fermi-LAT has been interpreted as the peak of the standard afterglow emission [115,116], IC GeV flash from the pre-accelerated pair-rich circumburst medium swept up by the external forward shock [52,56], acceleration time of protons in hadronic emission scenarios [40], and the timescale over which the SSC radiation field builds up [128]. The latter two scenarios have some difficulties with, respectively, the global energetics and limitation on the delay duration, and the former two struggle with producing the observed variability at early times (while the sub-MeV prompt emission is ongoing) as both invoke emission from the external forward shock. Future and more sensitive observations of such delayed emission will be important in distinguishing between the different models.
- (c)
- What mechanism produces the Fermi-LAT extended emission?: The smooth temporal decay of the GeV Fermi-LAT extended emission naturally favors its origin in emission arising from the external forward shock. The main question here is whether the emission is entirely synchrotron radiation from non-thermal shock-heated electrons [112,115,116], the standard scenario, or IC radiation from mostly quasi-thermal electrons as the blast wave encounters pair-rich and pre-accelerated circumburst medium [52,56]. The latter scenario can only operate as long as there are softer seed photons that can Compton cool the thermal electrons. At early times, they are the prompt sub-MeV photons that overlap the afterglow shock, and at later times softer photons can be of synchrotron origin [226]. Detailed numerical models of blast waves propagating into pair-enriched media and the comparison of afterglow lightcurves with observations over the entire duration of the LAT extended emission can shed more light on this issue.
- (d)
- What mechanism produces multi-GeV photons at late times?: The detection of ≳10 GeV photons in several GRBs at late times (– s) is puzzling. When their origin is interpreted as the standard afterglow synchrotron emission from shock-heated electrons, for which strong evidence came from the broad band (optical to GeV) SED fits of the afterglow of GRB 130427A [137], it challenges our understanding of particle acceleration at relativistic collisionless shocks since the photon energy clearly violates . The alternative is IC (either SSC or EIC) afterglow emission, which can produce HE photons at late times. A prime example is GRB 190114C from which HE and VHE photons were detected by the Fermi-LAT (s) and MAGIC (s), respectively, at late times. Future such events with multi-wavelength constraints, especially at VHEs, along with numerical simulations of particle acceleration at shock fronts will be able to shed more light on this issue.
8. Closing Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 2004, 76, 1143–1210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Mészáros, P. Gamma-Ray Bursts: Progress, problems & prospects. Int. J. Mod. Phys. A 2004, 19, 2385–2472. [Google Scholar] [CrossRef]
- Mészáros, P. Gamma-ray bursts. Rep. Prog. Phys. 2006, 69, 2259–2321. [Google Scholar] [CrossRef]
- Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2015, 561, 1–109. [Google Scholar] [CrossRef] [Green Version]
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of Two Classes of Gamma-Ray Bursts. Astrophys. J. 1993, 413, L101. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-Ray Bursts from Stellar Mass Accretion Disks around Black Holes. Astrophys. J. 1993, 405, 273. [Google Scholar] [CrossRef]
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D.; Livio, M.; Piran, T.; Schramm, D.N. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 1989, 340, 126–128. [Google Scholar] [CrossRef]
- Narayan, R.; Paczynski, B.; Piran, T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 1992, 395, L83–L86. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.; et al. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diversity. Astrophys. J. 1993, 413, 281. [Google Scholar] [CrossRef]
- Preece, R.D.; Briggs, M.S.; Mallozzi, R.S.; Pendleton, G.N.; Paciesas, W.S.; Band, D.L. The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data. Astrophys. J. Suppl. Ser. 2000, 126, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, Y.; Preece, R.D.; Briggs, M.S.; Paciesas, W.S.; Meegan, C.A.; Band, D.L. The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts. Astrophys. J. Suppl. Ser. 2006, 166, 298–340. [Google Scholar] [CrossRef]
- Ajello, M.; Arimoto, M.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bhat, P.N.; Bissaldi, E.; Blandford, R.D.; et al. A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog. Astrophys. J. 2019, 878, 52. [Google Scholar] [CrossRef] [Green Version]
- Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M.G.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, E.D.; et al. Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi. Astrophys. J. 2012, 754, 121. [Google Scholar] [CrossRef] [Green Version]
- Vianello, G.; Gill, R.; Granot, J.; Omodei, N.; Cohen-Tanugi, J.; Longo, F. The Bright and the Slow—GRBs 100724B and 160509A with High-energy Cutoffs at ≲100 MeV. Astrophys. J. 2018, 864, 163. [Google Scholar] [CrossRef] [Green Version]
- Nava, L. Gamma-ray Bursts at the Highest Energies. Universe 2021, 7, 503. [Google Scholar] [CrossRef]
- Noda, K.; Parsons, R.D. Gamma-Ray Bursts at TeV Energies: Observational Status. Galaxies 2022, 10, 7. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Piran, T. High-energy γ-ray emission from gamma-ray bursts—Before GLAST. Front. Phys. China 2008, 3, 306–330. [Google Scholar] [CrossRef] [Green Version]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. 1949, 75, 1169–1174. [Google Scholar] [CrossRef]
- Axford, W.I.; Leer, E.; Skadron, G. The Acceleration of Cosmic Rays by Shock Waves. In Proceedings of the International Cosmic Ray Conference, International Cosmic Ray Conference, Plovdiv, Bulgaria, 13–26 August 1977; Volume 11, p. 132. [Google Scholar]
- Bell, A.R. The acceleration of cosmic rays in shock fronts—I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. 1998, 497, L17–L20. [Google Scholar] [CrossRef]
- Granot, J.; Sari, R. The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows. Astrophys. J. 2002, 568, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Guetta, D.; Granot, J. Observational implications of a plerionic environment for gamma-ray bursts. Mon. Not. R. Astron. Soc. 2003, 340, 115–138. [Google Scholar] [CrossRef] [Green Version]
- Guilbert, P.W.; Fabian, A.C.; Rees, M.J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 1983, 205, 593–603. [Google Scholar] [CrossRef]
- de Jager, O.C.; Harding, A.K. The Expected High-Energy to Ultra–High-Energy Gamma-Ray Spectrum of the Crab Nebula. Astrophys. J. 1992, 396, 161. [Google Scholar] [CrossRef]
- Piran, T.; Nakar, E. On the External Shock Synchrotron Model for Gamma-ray Bursts’ GeV Emission. Astrophys. J. 2010, 718, L63–L67. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Hernández, R.A.; Bošnjak, Ž.; Barniol Duran, R. Maximum synchrotron frequency for shock-accelerated particles. Mon. Not. R. Astron. Soc. 2012, 427, L40–L44. [Google Scholar] [CrossRef] [Green Version]
- Atwood, W.B.; Baldini, L.; Bregeon, J.; Bruel, P.; Chekhtman, A.; Cohen-Tanugi, J.; Drlica-Wagner, A.; Granot, J.; Longo, F.; Omodei, N.; et al. New Fermi-LAT Event Reconstruction Reveals More High-energy Gamma Rays from Gamma-Ray Bursts. Astrophys. J. 2013, 774, 76. [Google Scholar] [CrossRef] [Green Version]
- Fenimore, E.E.; Epstein, R.I.; Ho, C. The escape of 100 MeV photons from cosmological gamma-ray bursts. AASS 1993, 97, 59–62. [Google Scholar]
- Woods, E.; Loeb, A. Empirical Constraints on Source Properties and Host Galaxies of Cosmological Gamma-Ray Bursts. Astrophys. J. 1995, 453, 583. [Google Scholar] [CrossRef]
- Baring, M.G.; Harding, A.K. The Escape of High-Energy Photons from Gamma-Ray Bursts. Astrophys. J. 1997, 491, 663–686. [Google Scholar] [CrossRef]
- Lithwick, Y.; Sari, R. Lower Limits on Lorentz Factors in Gamma-Ray Bursts. Astrophys. J. 2001, 555, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Granot, J.; Cohen-Tanugi, J.; Silva, E.D.C.E. Opacity Buildup in Impulsive Relativistic Sources. Astrophys. J. 2008, 677, 92–126. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.; Granot, J. The effect of pair cascades on the high-energy spectral cut-off in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2018, 475, L1–L5. [Google Scholar] [CrossRef]
- Böttcher, M.; Dermer, C.D. High-energy Gamma Rays from Ultra-high-energy Cosmic-Ray Protons in Gamma-Ray Bursts. Astrophys. J. 1998, 499, L131–L134. [Google Scholar] [CrossRef] [Green Version]
- Totani, T. Very Strong TeV Emission as Gamma-Ray Burst Afterglows. Astrophys. J. 1998, 502, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, S.; Dermer, C.D.; Finke, J.D. Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C. Open Astron. J. 2010, 3, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Ghirlanda, G.; Oganesyan, G.; Ascenzi, S.; Nava, L.; Celotti, A.; Salafia, O.S.; Ravasio, E.M.; Ronchi, M. Proton-synchrotron as the radiation mechanism of the prompt emission of GRBs? arXiv 2019, arXiv:1912.02185. [Google Scholar]
- Wang, X.Y.; Li, Z.; Dai, Z.G.; Mészáros, P. GRB 080916C: On the Radiation Origin of the Prompt Emission from keV/MeV TO GeV. Astrophys. J. 2009, 698, L98–L102. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D. Sources of GeV Photons and the Fermi Results. Saas-Fee Adv. Course 2013, 40, 225. [Google Scholar] [CrossRef] [Green Version]
- Sari, R.; Esin, A.A. On the Synchrotron Self-Compton Emission from Relativistic Shocks and Its Implications for Gamma-Ray Burst Afterglows. Astrophys. J. 2001, 548, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Panaitescu, A.; Kumar, P. Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media. Astrophys. J. 2000, 543, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Mészáros, P. Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. Astrophys. J. 2001, 552, L35–L38. [Google Scholar] [CrossRef]
- Nakar, E.; Ando, S.; Sari, R. Klein-Nishina Effects on Optically Thin Synchrotron and Synchrotron Self-Compton Spectrum. Astrophys. J. 2009, 703, 675–691. [Google Scholar] [CrossRef]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-VCH: Weinheim, Germany, 1979. [Google Scholar]
- Stern, B.E.; Poutanen, J. Gamma-ray bursts from synchrotron self-Compton emission. Mon. Not. R. Astron. Soc. 2004, 352, L35–L39. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Zhang, B.; Mészáros, P.; Burrows, D. Inverse Compton X-Ray Flare from Gamma-Ray Burst Reverse Shock. Astrophys. J. 2007, 655, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. Optical and GeV-TeV Flashes from Gamma-Ray Bursts. Astrophys. J. 2005, 618, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. Afterglow Emission from Pair-loaded Blast Waves in Gamma-Ray Bursts. Astrophys. J. 2005, 627, 346–367. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Li, Z.; Mészáros, P. GeV-TeV and X-Ray Flares from Gamma-Ray Bursts. Astrophys. J. 2006, 641, L89–L92. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Toma, K.; Yamazaki, R.; Nagataki, S.; Ioka, K. High-energy emission as a test of the prior emission model for gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 2010, 402, L54–L58. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Toma, K.; Yamazaki, R.; Mészáros, P. On the Implications of Late Internal Dissipation for Shallow-decay Afterglow Emission and Associated High-energy Gamma-ray Signals. Astrophys. J. 2011, 732, 77. [Google Scholar] [CrossRef]
- Beloborodov, A.M.; Hascoët, R.; Vurm, I. On the Origin of GeV Emission in Gamma-Ray Bursts. Astrophys. J. 2014, 788, 36. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Toomey, M.W.; Fang, K.; Oikonomou, F.; Kimura, S.S.; Hotokezaka, K.; Kashiyama, K.; Ioka, K.; Mészáros, P. Double Neutron Star Mergers and Short Gamma-ray Bursts: Long-lasting High-energy Signatures and Remnant Dichotomy. Astrophys. J. 2018, 854, 60. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.T.; Murase, K.; Yuan, C.; Kimura, S.S.; Mészáros, P. External Inverse-Compton Emission Associated with Extended and Plateau Emission of Short Gamma-Ray Bursts: Application to GRB 160821B. Astrophys. J. 2021, 908, L36. [Google Scholar] [CrossRef]
- Panaitescu, A.; Mészáros, P. Radiative Regimes in Gamma-Ray Bursts and Afterglows. Astrophys. J. 1998, 501, 772–779. [Google Scholar] [CrossRef]
- Wang, X.Y.; Dai, Z.G.; Lu, T. The Inverse Compton Emission Spectra in the Very Early Afterglows of Gamma-Ray Bursts. Astrophys. J. 2001, 556, 1010–1016. [Google Scholar] [CrossRef]
- Shaviv, N.J.; Dar, A. Gamma-Ray Bursts from Minijets. Astrophys. J. 1995, 447, 863. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D.; Ghisellini, G.; Celotti, A.; Rees, M.J. Compton-dragged Gamma-Ray Bursts Associated with Supernovae. Astrophys. J. 2000, 529, L17–L20. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D.; Levinson, A. Polarization of Gamma-Ray Bursts via Scattering off a Relativistic Sheath. Astrophys. J. 2003, 596, L147–L150. [Google Scholar] [CrossRef]
- Kimura, S.S.; Murase, K.; Ioka, K.; Kisaka, S.; Fang, K.; Mészáros, P. Upscattered Cocoon Emission in Short Gamma-Ray Bursts as High-energy Gamma-Ray Counterparts to Gravitational Waves. Astrophys. J. 2019, 887, L16. [Google Scholar] [CrossRef]
- Yuan, C.; Murase, K.; Guetta, D.; Pe’er, A.; Bartos, I.; Mészáros, P. GeV Signature of Short Gamma-Ray Bursts in Active Galactic Nuclei. arXiv 2021, arXiv:2112.07653. [Google Scholar]
- Sari, R.; Piran, T. Hydrodynamic Timescales and Temporal Structure of Gamma-Ray Bursts. Astrophys. J. 1995, 455, L143. [Google Scholar] [CrossRef]
- Blandford, R.D.; McKee, C.F. Fluid dynamics of relativistic blast waves. Phys. Fluids 1976, 19, 1130–1138. [Google Scholar] [CrossRef]
- Waxman, E. Angular Size and Emission Timescales of Relativistic Fireballs. Astrophys. J. 1997, 491, L19–L22. [Google Scholar] [CrossRef] [Green Version]
- Panaitescu, A.; Mészáros, P. Rings in Fireball Afterglows. Astrophys. J. 1998, 493, L31–L34. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.G.; Lu, T. Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields. Astrophys. J. 2002, 580, 1013–1016. [Google Scholar] [CrossRef]
- Razzaque, S.; Mészáros, P.; Zhang, B. GeV and Higher Energy Photon Interactions in Gamma-Ray Burst Fireballs and Surroundings. Astrophys. J. 2004, 613, 1072–1078. [Google Scholar] [CrossRef]
- Wang, X.Y.; Cheng, K.S.; Dai, Z.G.; Lu, T. Constraining the Origin of TeV Photons from Gamma-Ray Bursts with Delayed MeV-GeV Emission Formed by Interaction with Cosmic Infrared/Microwave Background Photons. Astrophys. J. 2004, 604, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Asano, K.; Nagataki, S. Effects of the Cosmic Infrared Background on Delayed High-Energy Emission from Gamma-Ray Bursts. Astrophys. J. 2007, 671, 1886–1895. [Google Scholar] [CrossRef] [Green Version]
- Ichiki, K.; Inoue, S.; Takahashi, K. Probing the Nature of the Weakest Intergalactic Magnetic Fields with the High-Energy Emission of Gamma-Ray Bursts. Astrophys. J. 2008, 682, 127–134. [Google Scholar] [CrossRef]
- Takahashi, K.; Murase, K.; Ichiki, K.; Inoue, S.; Nagataki, S. Detectability of Pair Echoes from Gamma-Ray Bursts and Intergalactic Magnetic Fields. Astrophys. J. 2008, 687, L5. [Google Scholar] [CrossRef]
- Murase, K.; Zhang, B.; Takahashi, K.; Nagataki, S. Possible effects of pair echoes on gamma-ray burst afterglow emission. Mon. Not. R. Astron. Soc. 2009, 396, 1825–1832. [Google Scholar] [CrossRef] [Green Version]
- Jauch, J.M.; Rohrlich, F. The Theory of Photons and Electrons; Addison-Wesley: Boston, MA, USA, 1959. [Google Scholar]
- Gould, R.J.; Schréder, G.P. Pair Production in Photon-Photon Collisions. Phys. Rev. 1967, 155, 1404–1407. [Google Scholar] [CrossRef]
- Ryu, D.; Kang, H.; Biermann, P.L. Cosmic magnetic fields in large scale filaments and sheets. AASS 1998, 335, 19–25. [Google Scholar]
- Kim, K.T.; Tribble, P.C.; Kronberg, P.P. Detection of Excess Rotation Measure Due to Intracluster Magnetic Fields in Clusters of Galaxies. Astrophys. J. 1991, 379, 80. [Google Scholar] [CrossRef]
- Oikonomou, F.; Murase, K.; Kotera, K. Synchrotron pair halo and echo emission from blazars in the cosmic web: Application to extreme TeV blazars. AASS 2014, 568, A110. [Google Scholar] [CrossRef] [Green Version]
- Plaga, R. Detecting intergalactic magnetic fields using time delays in pulses of γ-rays. Nature 1995, 374, 430–432. [Google Scholar] [CrossRef]
- Dermer, C.D.; Atoyan, A. Ultra-high energy cosmic rays, cascade gamma rays, and high-energy neutrinos from gamma-ray bursts. New J. Phys. 2006, 8, 122. [Google Scholar] [CrossRef]
- Mücke, A.; Rachen, J.P.; Engel, R.; Protheroe, R.J.; Stanev, T. Photohadronic Processes in Astrophysical Environments. PASA 1999, 16, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Waxman, E.; Bahcall, J. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Phys. Rev. Lett. 1997, 78, 2292–2295. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, J.; Bahcall, J.N.; Bai, X.; Bay, R.C.; Becka, T.; Becker, K.H.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; et al. Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astropart. Phys. 2004, 20, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Mena, O.; Mocioiu, I.; Razzaque, S. Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources. Phys. Rev. D 2007, 75, 063003. [Google Scholar] [CrossRef] [Green Version]
- Kashti, T.; Waxman, E. Astrophysical Neutrinos: Flavor Ratios Depend on Energy. Phys. Rev. Lett. 2005, 95, 181101. [Google Scholar] [CrossRef]
- Razzaque, S.; Smirnov, A.Y. Flavor conversion of cosmic neutrinos from hidden jets. J. High Energy Phys. 2010, 2010, 31. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Atoyan, A. High-Energy Neutrinos from Gamma Ray Bursts. Phys. Rev. Lett. 2003, 91, 071102. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, S.; Mészáros, P.; Waxman, E. Neutrino signatures of the supernova: Gamma ray burst relationship. Phys. Rev. D 2004, 69, 023001. [Google Scholar] [CrossRef] [Green Version]
- Asano, K. Cooling of Accelerated Nucleons and Neutrino Emission in Gamma-Ray Bursts. Astrophys. J. 2005, 623, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Kashiyama, K.; Mészáros, P. On the Neutrino Non-detection of GRB 130427A. Astrophys. J. 2013, 772, L4. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophys. J. 2017, 843, 112. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data. Mon. Not. R. Astron. Soc. 2021, 500, 5614–5628. [Google Scholar] [CrossRef]
- Asano, K.; Inoue, S.; Mészáros, P. Prompt High-Energy Emission from Proton-Dominated Gamma-Ray Bursts. Astrophys. J. 2009, 699, 953–957. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Guiriec, S.; Mészáros, P. Hadronic Models for the Extra Spectral Component in the Short GRB 090510. Astrophys. J. 2009, 705, L191–L194. [Google Scholar] [CrossRef]
- Murase, K.; Asano, K.; Terasawa, T.; Mészáros, P. The Role of Stochastic Acceleration in the Prompt Emission of Gamma-Ray Bursts: Application to Hadronic Injection. Astrophys. J. 2012, 746, 164. [Google Scholar] [CrossRef] [Green Version]
- Bethe, H.A.; Maximon, L.C. Theory of Bremsstrahlung and Pair Production. I. Differential Cross Section. Phys. Rev. 1954, 93, 768–784. [Google Scholar] [CrossRef]
- Chodorowski, M.J.; Zdziarski, A.A.; Sikora, M. Reaction Rate and Energy-Loss Rate for Photopair Production by Relativistic Nuclei. Astrophys. J. 1992, 400, 181. [Google Scholar] [CrossRef]
- Crumley, P.; Kumar, P. Hadronic models for Large Area Telescope prompt emission observed in Fermi gamma-ray bursts. Mon. Not. R. Astron. Soc. 2013, 429, 3238–3251. [Google Scholar] [CrossRef] [Green Version]
- Schneid, E.J.; Bertsch, D.L.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; Kniffen, D.A.; Kwok, P.W.; Lin, Y.C.; Mattox, J.R.; et al. EGRET detection of high energy gamma rays from the gamma-ray burst of 3 May 1991. AASS 1992, 255, L13. [Google Scholar]
- Hurley, K.; Dingus, B.L.; Mukherjee, R.; Sreekumar, P.; Kouveliotou, C.; Meegan, C.; Fishman, G.J.; Band, D.; Ford, L.; Bertsch, D.; et al. Detection of a γ-ray burst of very long duration and very high energy. Nature 1994, 372, 652–654. [Google Scholar] [CrossRef]
- Dingus, B.L. Observations of the highest energy gamma-rays from gamma-ray bursts. In High Energy Gamma-Ray Astronomy: International Symposium; American Institute of Physics Conference Series; Aharonian, F.A., Völk, H.J., Eds.; American Institute of Physics: College Park, MD, USA, 2001; Volume 558, pp. 383–391. [Google Scholar] [CrossRef]
- González, M.M.; Dingus, B.L.; Kaneko, Y.; Preece, R.D.; Dermer, C.D.; Briggs, M.S. A γ-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model. Nature 2003, 424, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.W.; Peng, F.K.; Wang, X.Y.; Tam, P.H.T. Measuring the Bulk Lorentz Factors of Gamma-ray Bursts with Fermi. Astrophys. J. 2015, 806, 194. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; et al. Fermi Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission. Astrophys. J. 2009, 706, L138–L144. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Fermi Observations of GRB 090510: A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies. Astrophys. J. 2010, 716, 1178–1190. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Detection of a Spectral Break in the Extra Hard Component of GRB 090926A. Astrophys. J. 2011, 729, 114. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bellazzini, R.; Blandford, R.D.; Bonamente, E.; et al. Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow. Astrophys. J. 2013, 763, 71. [Google Scholar] [CrossRef] [Green Version]
- Nava, L.; Vianello, G.; Omodei, N.; Ghisellini, G.; Ghirlanda, G.; Celotti, A.; Longo, F.; Desiante, R.; Barniol Duran, R. Clustering of LAT light curves: A clue to the origin of high-energy emission in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2014, 443, 3578–3585. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Ghirlanda, G.; Nava, L.; Celotti, A. GeV emission from gamma-ray bursts: A radiative fireball? Mon. Not. R. Astron. Soc. 2010, 403, 926–937. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, N.; Razzaque, S. Gamma-ray bursts in the swift-Fermi era. Front. Phys. 2013, 8, 661–678. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.C.; Fan, Y.Z.; Piran, T. The possible high-energy emission from GRB 080319B and origins of the GeV emission of GRBs 080514B, 080916C and 081024B. Mon. Not. R. Astron. Soc. 2009, 396, 1163–1170. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Barniol Duran, R. On the generation of high-energy photons detected by the Fermi Satellite from gamma-ray bursts. Mon. Not. R. Astron. Soc. 2009, 400, L75–L79. [Google Scholar] [CrossRef]
- Kumar, P.; Barniol Duran, R. External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi. Mon. Not. R. Astron. Soc. 2010, 409, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Granot, J. Interaction of a highly magnetized impulsive relativistic flow with an external medium. Mon. Not. R. Astron. Soc. 2012, 421, 2442–2466. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; et al. A limit on the variation of the speed of light arising from quantum gravity effects. Nature 2009, 462, 331–334. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science 2009, 323, 1688. [Google Scholar] [CrossRef]
- Mészáros, P.; Rees, M.J.; Wijers, R.A.M.J. Viewing Angle and Environment Effects in Gamma-Ray Bursts: Sources of Afterglow Diversity. Astrophys. J. 1998, 499, 301–308. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Madau, P. Relativistic Winds from Compact Gamma-Ray Sources. II. Pair Loading and Radiative Acceleration in Gamma-Ray Bursts. Astrophys. J. 2000, 538, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Mészáros, P.; Ramirez-Ruiz, E.; Rees, M.J. e+/- Pair Cascades and Precursors in Gamma-Ray Bursts. Astrophys. J. 2001, 554, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. Radiation Front Sweeping the Ambient Medium of Gamma-Ray Bursts. Astrophys. J. 2002, 565, 808–828. [Google Scholar] [CrossRef]
- Kumar, P.; Panaitescu, A. Creation of electron-positron wind in gamma-ray bursts and its effect on the early afterglow emission. Mon. Not. R. Astron. Soc. 2004, 354, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C. Deceleration of a Relativistic, Photon-rich Shell: End of Preacceleration, Damping of Magnetohydrodynamic Turbulence, and the Emission Mechanism of Gamma-Ray Bursts. Astrophys. J. 2006, 651, 333–365. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, S. A Leptonic-Hadronic Model for the Afterglow of Gamma-ray Burst 090510. Astrophys. J. 2010, 724, L109–L112. [Google Scholar] [CrossRef]
- Asano, K.; Mészáros, P. Delayed Onset of High-energy Emissions in Leptonic and Hadronic Models of Gamma-Ray Bursts. Astrophys. J. 2012, 757, 115. [Google Scholar] [CrossRef] [Green Version]
- Bošnjak, Ž.; Daigne, F.; Dubus, G. Prompt high-energy emission from gamma-ray bursts in the internal shock model. AASS 2009, 498, 677–703. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Mészáros, P. Spectral-Temporal Simulations of Internal Dissipation Models of Gamma-Ray Bursts. Astrophys. J. 2011, 739, 103. [Google Scholar] [CrossRef]
- Guiriec, S.; Briggs, M.S.; Connaugthon, V.; Kara, E.; Daigne, F.; Kouveliotou, C.; van der Horst, A.J.; Paciesas, W.; Meegan, C.A.; Bhat, P.N.; et al. Time-resolved Spectroscopy of the Three Brightest and Hardest Short Gamma-ray Bursts Observed with the Fermi Gamma-ray Burst Monitor. Astrophys. J. 2010, 725, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Arimoto, M.; Asano, K.; Ohno, M.; Veres, P.; Axelsson, M.; Bissaldi, E.; Tachibana, Y.; Kawai, N. High-energy Non-thermal and Thermal Emission from GRB 141207A Detected by Fermi. Astrophys. J. 2016, 833, 139. [Google Scholar] [CrossRef] [Green Version]
- Ajello, M.; Arimoto, M.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow. Astrophys. J. 2020, 890, 9. [Google Scholar] [CrossRef]
- Guiriec, S.; Connaughton, V.; Briggs, M.S.; Burgess, M.; Ryde, F.; Daigne, F.; Mészáros, P.; Goldstein, A.; McEnery, J.; Omodei, N.; et al. Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B. Astrophys. J. 2011, 727, L33. [Google Scholar] [CrossRef]
- Guiriec, S.; Kouveliotou, C.; Daigne, F.; Zhang, B.; Hascoët, R.; Nemmen, R.S.; Thompson, D.J.; Bhat, P.N.; Gehrels, N.; Gonzalez, M.M.; et al. Toward a Better Understanding of the GRB Phenomenon: A New Model for GRB Prompt Emission and its Effects on the New LiNT- Epeak,irest,NT Relation. Astrophys. J. 2015, 807, 148. [Google Scholar] [CrossRef] [Green Version]
- Guiriec, S.; Kouveliotou, C.; Hartmann, D.H.; Granot, J.; Asano, K.; Mészáros, P.; Gill, R.; Gehrels, N.; McEnery, J. A Unified Model for GRB Prompt Emission from Optical to γ-Rays: Exploring GRBs as Standard Candles. Astrophys. J. 2016, 831, L8. [Google Scholar] [CrossRef] [Green Version]
- Kouveliotou, C.; Granot, J.; Racusin, J.L.; Bellm, E.; Vianello, G.; Oates, S.; Fryer, C.L.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; et al. NuSTAR Observations of GRB 130427A Establish a Single Component Synchrotron Afterglow Origin for the Late Optical to Multi-GeV Emission. Astrophys. J. 2013, 779, L1. [Google Scholar] [CrossRef] [Green Version]
- Piran, T. Gamma-ray bursts and the fireball model. Phys. Rep. 1999, 314, 575–667. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. 1986, 308, L47. [Google Scholar] [CrossRef]
- Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 1986, 308, L43–L46. [Google Scholar] [CrossRef]
- Rees, M.J.; Meszaros, P. Relativistic fireballs—Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.C.; Fan, Y.Z.; Piran, T. A Revised Limit of the Lorentz Factors of Gamma-ray Bursts with Two Emitting Regions. Astrophys. J. 2011, 726, L2. [Google Scholar] [CrossRef] [Green Version]
- Hascoët, R.; Daigne, F.; Mochkovitch, R.; Vennin, V. Do Fermi Large Area Telescope observations imply very large Lorentz factors in gamma-ray burst outflows? Mon. Not. R. Astron. Soc. 2012, 421, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. Prompt GeV Emission from Residual Collisions in Gamma-Ray Burst Outflows: Evidence from Fermi Observations of Grb 080916c. Astrophys. J. 2010, 709, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Aoi, J.; Murase, K.; Takahashi, K.; Ioka, K.; Nagataki, S. Can We Probe the Lorentz Factor of Gamma-ray Bursts from GeV-TeV Spectra Integrated Over Internal Shocks? Astrophys. J. 2010, 722, 440–451. [Google Scholar] [CrossRef]
- Preece, R.; Burgess, J.M.; von Kienlin, A.; Bhat, P.N.; Briggs, M.S.; Byrne, D.; Chaplin, V.; Cleveland, W.; Collazzi, A.C.; Connaughton, V.; et al. The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks. Science 2014, 343, 51–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maselli, A.; Melandri, A.; Nava, L.; Mundell, C.G.; Kawai, N.; Campana, S.; Covino, S.; Cummings, J.R.; Cusumano, G.; Evans, P.A.; et al. GRB 130427A: A Nearby Ordinary Monster. Science 2014, 343, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Levan, A.J.; Cenko, S.B.; Perley, D.A.; Tanvir, N.R. GRB 130427A: Gemini-north redshift. GRB Coord. Netw. 2013, 14455, 1. [Google Scholar]
- von Kienlin, A. GRB 130427A: Fermi GBM observation. GRB Coord. Netw. 2013, 14473, 1. [Google Scholar]
- Verrecchia, F.; Pittori, C.; Giuliani, A.; Marisaldi, M.; Longo, F.; Lucarelli, F.; Del, M.E.; Lazzarotto, F.; Donnarumma, I.; Evangelista, Y.; et al. GRB 130427A: High energy gamma-ray detection by AGILE. GRB Coord. Netw. 2013, 14515, 1. [Google Scholar]
- Golenetskii, S.; Aptekar, R.; Frederiks, D.; Mazets, E.; Pal’Shin, V.; Oleynik, P.; Ulanov, M.; Svinkin, D.; Cline, T. Konus-wind observation of GRB 130427A. GRB Coord. Netw. 2013, 14487, 1. [Google Scholar]
- Smith, D.M.; Csillaghy, A.; Hurley, K.; Hudson, H.; Boggs, S.; Inglis, A. GRB 130427A: RHESSI observations. GRB Coord. Netw. 2013, 14590, 1. [Google Scholar]
- Maselli, A.; Beardmore, A.P.; Lien, A.Y.; Mangano, V.; Mountford, C.J.; Page, K.L.; Palmer, D.M.; Siegel, M.H. GRB 130427A: Swift detection of a very bright burst with a likely bright optical counterpart. GRB Coord. Netw. 2013, 14448, 1. [Google Scholar]
- Perley, D.A.; Cenko, S.B.; Corsi, A.; Tanvir, N.R.; Levan, A.J.; Kann, D.A.; Sonbas, E.; Wiersema, K.; Zheng, W.; Zhao, X.H.; et al. The Afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 2014, 781, 37. [Google Scholar] [CrossRef] [Green Version]
- de Jager, O.C.; Harding, A.K.; Michelson, P.F.; Nel, H.I.; Nolan, P.L.; Sreekumar, P.; Thompson, D.J. Gamma-Ray Observations of the Crab Nebula: A Study of the Synchro-Compton Spectrum. Astrophys. J. 1996, 457, 253. [Google Scholar] [CrossRef]
- Kirk, J.G.; Reville, B. Radiative Signatures of Relativistic Shocks. Astrophys. J. 2010, 710, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.Z.; Tam, P.H.T.; Zhang, F.W.; Liang, Y.F.; He, H.N.; Zhou, B.; Yang, R.Z.; Jin, Z.P.; Wei, D.M. High-energy Emission of GRB 130427A: Evidence for Inverse Compton Radiation. Astrophys. J. 2013, 776, 95. [Google Scholar] [CrossRef] [Green Version]
- Aliu, E.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Biteau, J.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. Constraints on Very High Energy Emission from GRB 130427A. Astrophys. J. 2014, 795, L3. [Google Scholar] [CrossRef] [Green Version]
- Lyutikov, M. A high-sigma model of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 2010, 405, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Guetta, D.; Granot, J. High-Energy Emission from the Prompt Gamma-Ray Burst. Astrophys. J. 2003, 585, 885–889. [Google Scholar] [CrossRef]
- Pe’er, A.; Waxman, E. Prompt Gamma-Ray Burst Spectra: Detailed Calculations and the Effect of Pair Production. Astrophys. J. 2004, 613, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Zhang, B. Prompt emission of high-energy photons from gamma ray bursts. Mon. Not. R. Astron. Soc. 2007, 380, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Pe’Er, A.; Zhang, B.B.; Ryde, F.; McGlynn, S.; Zhang, B.; Preece, R.D.; Kouveliotou, C. The connection between thermal and non-thermal emission in gamma-ray bursts: General considerations and GRB 090902B as a case study. Mon. Not. R. Astron. Soc. 2012, 420, 468–482. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Chiang, J.; Mitman, K.E. Beaming, Baryon Loading, and the Synchrotron Self-Compton Component in Gamma-Ray Bursts. Astrophys. J. 2000, 537, 785–795. [Google Scholar] [CrossRef]
- Stecker, F.W.; Malkan, M.A.; Scully, S.T. Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays. Astrophys. J. 2006, 648, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Atkins, R.; Benbow, W.; Berley, D.; Chen, M.L.; Coyne, D.G.; Dingus, B.L.; Dorfan, D.E.; Ellsworth, R.W.; Evans, D.; Falcone, A.; et al. Evidence for TEV Emission from GRB 970417A. Astrophys. J. 2000, 533, L119–L122. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, S.; Mena, O.; Dermer, C.D. Prompt TeV Emission from Cosmic Rays Accelerated by Gamma-Ray Bursts Interacting with a Surrounding Stellar Wind. Astrophys. J. 2009, 691, L37–L40. [Google Scholar] [CrossRef]
- Weekes, T.C.; Badran, H.; Biller, S.D.; Bond, I.; Bradbury, S.; Buckley, J.; Carter-Lewis, D.; Catanese, M.; Criswell, S.; Cui, W.; et al. VERITAS: The Very Energetic Radiation Imaging Telescope Array System. Astropart. Phys. 2002, 17, 221–243. [Google Scholar] [CrossRef]
- Ferenc, D.; MAGIC Collaboration. The MAGIC gamma-ray observatory. Nucl. Instrum. Methods Phys. Res. A 2005, 553, 274–281. [Google Scholar] [CrossRef]
- Hinton, J.A.; HESS Collaboration. The status of the HESS project. New Astron. Rev. 2004, 48, 331–337. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar] [CrossRef]
- Ursi, A.; Tavani, M.; Frederiks, D.D.; Romani, M.; Verrecchia, F.; Marisaldi, M.; Aptekar, R.L.; Antonelli, L.A.; Argan, A.; Bulgarelli, A.; et al. AGILE and Konus-Wind Observations of GRB 190114C: The Remarkable Prompt and Early Afterglow Phases. Astrophys. J. 2020, 904, 133. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Observation of inverse Compton emission from a long γ-ray burst. Nature 2019, 575, 459–463. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J.A.; et al. MAGIC Observations of the Nearby Short Gamma-Ray Burst GRB 160821B. Astrophys. J. 2021, 908, 90. [Google Scholar] [CrossRef]
- Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature 2019, 575, 464–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HSSS Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; et al. Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. Science 2021, 372, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Fukami, S.; Berti, A.; Loporchio, S.; Suda, Y.; Nava, L.; Noda, K.; Bošnjak, Z.; Asano, K.; Longo, F.; Acciari, V.A.; et al. Very-high-energy gamma-ray emission from GRB 201216C detected by MAGIC. PoS 2021, ICRC2021, 788. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, R.Y.; Zhang, H.M.; Xi, S.Q.; Zhang, B. Synchrotron Self-Compton Emission from External Shocks as the Origin of the Sub-TeV Emission in GRB 180720B and GRB 190114C. Astrophys. J. 2019, 884, 117. [Google Scholar] [CrossRef]
- Zhang, H.; Christie, I.M.; Petropoulou, M.; Rueda-Becerril, J.M.; Giannios, D. Inverse Compton signatures of gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 2020, 496, 974–986. [Google Scholar] [CrossRef]
- Joshi, J.C.; Razzaque, S. Modelling synchrotron and synchrotron self-Compton emission of gamma-ray burst afterglows from radio to very-high energies. Mon. Not. R. Astron. Soc. 2021, 505, 1718–1729. [Google Scholar] [CrossRef]
- Yamasaki, S.; Piran, T. Analytic Modeling of Synchroton-Self-Compton Spectra: Application to GRB 190114C. arXiv 2021, arXiv:2112.06945. [Google Scholar]
- Jacovich, T.E.; Beniamini, P.; van der Horst, A.J. Modelling synchrotron self-Compton and Klein–Nishina effects in gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 2021, 504, 528–542. [Google Scholar] [CrossRef]
- Asano, K.; Murase, K.; Toma, K. Probing Particle Acceleration through Broadband Early Afterglow Emission of MAGIC Gamma-Ray Burst GRB 190114C. Astrophys. J. 2020, 905, 105. [Google Scholar] [CrossRef]
- Derishev, E.; Piran, T. GRB Afterglow Parameters in the Era of TeV Observations: The Case of GRB 190114C. Astrophys. J. 2021, 923, 135. [Google Scholar] [CrossRef]
- Zhang, B.T.; Murase, K.; Veres, P.; Mészáros, P. External Inverse-Compton Emission from Low-luminosity Gamma-Ray Bursts: Application to GRB 190829A. Astrophys. J. 2021, 920, 55. [Google Scholar] [CrossRef]
- Sahu, S.; Fortín, C.E.L. Origin of Sub-TeV Afterglow Emission from Gamma-Ray Bursts GRB 190114C and GRB 180720B. Astrophys. J. 2020, 895, L41. [Google Scholar] [CrossRef]
- Sahu, S.; Valadez Polanco, I.A.; Rajpoot, S. Very High-energy Afterglow Emission of GRB 190829A: Evidence for Its Hadronic Origin? Astrophys. J. 2022, 929, 70. [Google Scholar] [CrossRef]
- Eichler, D.; Waxman, E. The Efficiency of Electron Acceleration in Collisionless Shocks and Gamma-Ray Burst Energetics. Astrophys. J. 2005, 627, 861–867. [Google Scholar] [CrossRef]
- Sagiv, A.; Waxman, E.; Loeb, A. Probing the Magnetic Field Structure in Gamma-Ray Bursts through Dispersive Plasma Effects on the Afterglow Polarization. Astrophys. J. 2004, 615, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Toma, K.; Ioka, K.; Nakamura, T. Probing the Efficiency of Electron-Proton Coupling in Relativistic Collisionless Shocks through the Radio Polarimetry of Gamma-Ray Burst Afterglows. Astrophys. J. 2008, 673, L123. [Google Scholar] [CrossRef] [Green Version]
- Giannios, D.; Spitkovsky, A. Signatures of a Maxwellian component in shock-accelerated electrons in GRBs. Mon. Not. R. Astron. Soc. 2009, 400, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Ressler, S.M.; Laskar, T. Thermal Electrons in Gamma-Ray Burst Afterglows. Astrophys. J. 2017, 845, 150. [Google Scholar] [CrossRef] [Green Version]
- Warren, D.C.; Dainotti, M.; Barkov, M.V.; Ahlgren, B.; Ito, H.; Nagataki, S. A Semianalytic Afterglow with Thermal Electrons and Synchrotron Self-Compton Emission. Astrophys. J. 2022, 924, 40. [Google Scholar] [CrossRef]
- Misra, K.; Resmi, L.; Kann, D.A.; Marongiu, M.; Moin, A.; Klose, S.; Bernardi, G.; de Ugarte Postigo, A.; Jaiswal, V.K.; Schulze, S.; et al. Low frequency view of GRB 190114C reveals time varying shock micro-physics. Mon. Not. R. Astron. Soc. 2021, 504, 5685–5701. [Google Scholar] [CrossRef]
- Fraija, N.; Dichiara, S.; Pedreira, A.C.C.d.E.S.; Galvan-Gamez, A.; Becerra, R.L.; Montalvo, A.; Montero, J.; Betancourt Kamenetskaia, B.; Zhang, B.B. Modeling the Observations of GRB 180720B: From Radio to Sub-TeV Gamma-Rays. Astrophys. J. 2019, 885, 29. [Google Scholar] [CrossRef] [Green Version]
- Salafia, O.S.; Ravasio, M.E.; Yang, J.; An, T.; Orienti, M.; Ghirlanda, G.; Nava, L.; Giroletti, M.; Mohan, P.; Spinelli, R.; et al. Multi-wavelength view of the close-by GRB~190829A sheds light on gamma-ray burst physics. arXiv 2021, arXiv:2106.07169. [Google Scholar]
- Dichiara, S.; Troja, E.; Lipunov, V.; Ricci, R.; Oates, S.R.; Butler, N.R.; Liuzzo, E.; Ryan, G.; O’Connor, B.; Cenko, S.B.; et al. The early afterglow of GRB 190829A. arXiv 2021, arXiv:2111.14861. [Google Scholar] [CrossRef]
- Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; et al. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S. Astrophys. J. 2017, 850, L22. [Google Scholar] [CrossRef] [Green Version]
- Galván, A.; Fraija, N.; González, M.M. Search for very-high-energy emission with HAWC from GW170817 event. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 1 August 2019; Volume 36, p. 681. [Google Scholar]
- Acharya, B.S.; Actis, M.; Aghajani, T.; Agnetta, G.; Aguilar, J.; Aharonian, F.; Ajello, M.; Akhperjanian, A.; Alcubierre, M.; Aleksić, J.; et al. Introducing the CTA concept. Astropart. Phys. 2013, 43, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Kneiske, T.M.; Bretz, T.; Mannheim, K.; Hartmann, D.H. Implications of cosmological gamma-ray absorption. II. Modification of gamma-ray spectra. AASS 2004, 413, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, A.; Rodighiero, G.; Vaccari, M. Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. AASS 2008, 487, 837–852. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, S.; Dermer, C.D.; Finke, J.D. The Stellar Contribution to the Extragalactic Background Light and Absorption of High-Energy Gamma Rays. Astrophys. J. 2009, 697, 483–492. [Google Scholar] [CrossRef]
- Gilmore, R.C.; Madau, P.; Primack, J.R.; Somerville, R.S.; Haardt, F. GeV gamma-ray attenuation and the high-redshift UV background. Mon. Not. R. Astron. Soc. 2009, 399, 1694–1708. [Google Scholar] [CrossRef] [Green Version]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe. Astrophys. J. 2010, 723, 1082–1096. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Primack, J.R.; Rosario, D.J.; Prada, F.; Gilmore, R.C.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Pérez-Torres, M.A.; Pérez-González, P.; et al. Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon. Not. R. Astron. Soc. 2011, 410, 2556–2578. [Google Scholar] [CrossRef] [Green Version]
- Hauser, M.G.; Dwek, E. The Cosmic Infrared Background: Measurements and Implications. Annu. Rev. Astron. Astrophys. 2001, 39, 249–307. [Google Scholar] [CrossRef] [Green Version]
- Kronberg, P.P. Extragalactic magnetic fields. Rep. Prog. Phys. 1994, 57, 325–382. [Google Scholar] [CrossRef]
- Grasso, D.; Rubinstein, H.R. Magnetic fields in the early Universe. Phys. Rep. 2001, 348, 163–266. [Google Scholar] [CrossRef] [Green Version]
- Widrow, L.M. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 2002, 74, 775–823. [Google Scholar] [CrossRef] [Green Version]
- Kulsrud, R.M.; Zweibel, E.G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 2008, 71, 046901. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Ghisellini, G.; Foschini, L.; Bonnoli, G.; Ghirlanda, G.; Coppi, P. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES0229+200. Mon. Not. R. Astron. Soc. 2010, 406, L70–L74. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Takahashi, K.; Inoue, S.; Ichiki, K.; Nagataki, S. Probing Intergalactic Magnetic Fields in the GLAST Era through Pair Echo Emission from TeV Blazars. Astrophys. J. 2008, 686, L67. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Coppi, P.S.; Voelk, H.J. Very High Energy Gamma Rays from Active Galactic Nuclei: Cascading on the Cosmic Background Radiation Fields and the Formation of Pair Halos. Astrophys. J. 1994, 423, L5. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science 2010, 328, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. Astrophys. J. Suppl. Ser. 2018, 237, 32. [Google Scholar] [CrossRef] [Green Version]
- Veres, P.; Dermer, C.D.; Dhuga, K.S. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts. Astrophys. J. 2017, 847, 39. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.R.; Xi, S.Q.; Liu, R.Y.; Xue, R.; Wang, X.Y. Constraints on the intergalactic magnetic field from γ -ray observations of GRB 190114C. Phys. Rev. D 2020, 101, 083004. [Google Scholar] [CrossRef] [Green Version]
- Dzhatdoev, T.A.; Podlesnyi, E.I.; Vaiman, I.A. Can we constrain the extragalactic magnetic field from very high energy observations of GRB 190114C? Phys. Rev. D 2020, 102, 123017. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, D. Modern Tests of Lorentz Invariance. Living Rev. Relativ. 2005, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Astrophysical Tests of Lorentz and CPT Violation with Photons. Astrophys. J. 2008, 689, L1. [Google Scholar] [CrossRef] [Green Version]
- Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Couturier, C.; Granot, J.; Stecker, F.W.; Cohen-Tanugi, J.; Longo, F. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D 2013, 87, 122001. [Google Scholar] [CrossRef] [Green Version]
- Vasileiou, V.; Granot, J.; Piran, T.; Amelino-Camelia, G. A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation. Nat. Phys. 2015, 11, 344–346. [Google Scholar] [CrossRef]
- Vurm, I.; Hascoët, R.; Beloborodov, A.M. Pair-dominated GeV-Optical Flash in GRB 130427A. Astrophys. J. 2014, 789, L37. [Google Scholar] [CrossRef] [Green Version]
- Dorner, D.; Mostafá, M.; Satalecka, K. High-Energy Alerts in the Multi-Messenger Era. Universe 2021, 7, 393. [Google Scholar] [CrossRef]
- Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannash, R.; Belolaptikov, I.A.; Brudanin, V.B.; Budnev, N.M.; Domogatsky, G.V.; Doroshenko, A.A.; Dvornicky, R.; et al. Baikal-GVD: First results and prospects. Eur. Phys. J. Web Conf. 2019, 209, 01015. [Google Scholar] [CrossRef] [Green Version]
- Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G Nucl. Phys. 2016, 43, 084001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, R.; Granot, J. Gamma-Ray Bursts at TeV Energies: Theoretical Considerations. Galaxies 2022, 10, 74. https://doi.org/10.3390/galaxies10030074
Gill R, Granot J. Gamma-Ray Bursts at TeV Energies: Theoretical Considerations. Galaxies. 2022; 10(3):74. https://doi.org/10.3390/galaxies10030074
Chicago/Turabian StyleGill, Ramandeep, and Jonathan Granot. 2022. "Gamma-Ray Bursts at TeV Energies: Theoretical Considerations" Galaxies 10, no. 3: 74. https://doi.org/10.3390/galaxies10030074
APA StyleGill, R., & Granot, J. (2022). Gamma-Ray Bursts at TeV Energies: Theoretical Considerations. Galaxies, 10(3), 74. https://doi.org/10.3390/galaxies10030074