Accretion of Galaxies around Supermassive Black Holes and a Theoretical Model of the Tully-Fisher and M-Sigma Relations
Abstract
:1. Introduction
2. Disk Galaxies and the Tully-Fisher Relation
3. Elliptical Galaxies and the Faber-Jackson Relation
4. Epoch of Exponential Growth of Galaxies and the M-Sigma Relation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tully, R.B.; Fisher, J.R. A new method of determining distance to galaxies. Astron. Astrophys. 1977, 54, 661–673. [Google Scholar]
- Faber, S.M.; Jackson, R.E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 1976, 204, 668–683. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Cariddi, S.; Chiosi, C.; Chiosi, E.; Marziani, P. On the origin of the fundamental plane and Faber-Jackson relations: Implications for the star formation problem. Astrophys. J. 2017, 838, 163–177. [Google Scholar] [CrossRef]
- Sales, L.V.; Navarro, J.F.; Oman, K.; Fattahi, A.; Ferrero, I.; Abadi, M.; Bower, R.; Crain, R.A.; Frenk, C.S.; Sawala, T.; et al. The low-mass end of the baryonic Tully-Fisher relation. Mon. Not. R. Astron. Soc. 2017, 464, 2419–2428. [Google Scholar] [CrossRef]
- Makarov, D.I.; Zaitseva, N.A.; Bizyaev, D.V. The Tully–Fisher relation for flat galaxies. Mon. Not. R. Astron. Soc. 2018, 479, 3373–3380. [Google Scholar] [CrossRef]
- Ferrero, I.; Navarro, J.F.; Abadi, M.G.; Benavides, J.A.; Mast, D. A unified scenario for the origin of spiral and elliptical galaxy structural scaling laws. Astron. Astrophys. 2021, 648, A124. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics—Implications for galaxies. Astrophys. J. 1983, 270, 371–383. [Google Scholar] [CrossRef]
- Crosta, M.; Giammaria, M.; Lattanzi, M.G.; Poggio, E. On testing CDM and geometry-driven Milky Way rotation curve models with Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 496, 2107–2122. [Google Scholar] [CrossRef]
- Balasin, H.; Grumiller, D. Non-Newtonian behavior in weak field general relativity for extended rotating sources. Int. J. Mod. Phys. 2008, D17, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Gorkavyi, N.; Vasilkov, A. A repulsive force in the Einstein theory. Mon. Not. R. Astron. Soc. 2016, 461, 2929–2933. [Google Scholar] [CrossRef] [Green Version]
- Merritt, D. Black Holes and Galaxy Evolution. In Dynamics of Galaxies: From the Early Universe to the Present; Combes, F., Mamon, G.A., Charmandaris, V., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1999; Volume 197, pp. 221–232. [Google Scholar]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. 2000, 539, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Beifiori, A.; Courteau, S.; Corsini, E.M.; Zhu, Y. On the correlations between galaxy properties and supermassive black hole mass. Mon. Not. R. Astron. Soc. 2012, 419, 2497–2528. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Bureau, M.; Davis, T.A.; Cappellari, M.; Liu, L.; Onishi, K.; Iguchi, S.; North, E.V.; Sarzi, M. WISDOM project—VI. Exploring the relation between supermassive black hole mass and galaxy rotation with molecular gas. Mon. Not. R. Astron. Soc. 2021, 500, 1933–1952. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef] [Green Version]
- van den Bosch, R.C.E.; Gebhardt, K.; Gultekin, K.; Van De Ven, G.; Van Der Wel, A.; Walsh, J.L. An over-massive black hole in the compact lenticular galaxy NGC1277. Nature 2012, 491, 729–731. [Google Scholar] [CrossRef]
- Carr, B.J.; Coley, A.A. Persistence of black holes through a cosmological bounce. Int. J. Mod. Phys. D 2011, 20, 2733–2738. [Google Scholar] [CrossRef] [Green Version]
- Gorkavyi, N.; Vasilkov, A.; Mather, J. A Possible Solution for the Cosmological Constant Problem. In Proceedings of the 2nd World Summit on Exploring the Dark Side of the Universe (EDSU2018): Point a Pitre, Guadeloupe, France, 25–29 June 2018. [Google Scholar] [CrossRef]
- Dolgov, A.D. Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics. Phys. Uspekhi 2018, 61, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Gorkavyi, N.N.; Tyul’bashev, S.A. Black holes and neutron stars in an oscillating Universe. Astrophys. Bull. 2021, 76, 229–247. [Google Scholar] [CrossRef]
- Cowen, R. Small galaxy harbours super-hefty black hole. Nature 2012, 491. [Google Scholar] [CrossRef]
- Cherepashchuk, A.M. Black holes in binary stellar systems and galactic nuclei. Phys. Uspekhi 2014, 57, 359–376. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Zel’dovich, Y.B.; Novikov, I.D. The Structure and Evolution of the Universe; University Chicago Press: Chicago, IL, USA; London, UK, 1983. [Google Scholar]
- Fridman, A.M.; Gorkavyi, N.N. Physics of Planetary Rings. Celestial Mechanics of a Continuous Media; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Cappelluti, N.; Hasinger, G.; Natarajan, P. Exploring the High-redshift PBH-ΛCDM Universe: Early Black Hole Seeding, the First Stars and Cosmic Radiation Backgrounds. Astrophys. J. 2022, 926, 205. [Google Scholar] [CrossRef]
- Noordermeer, E.; Verheijen, M.A.W. The high-mass end of the Tully–Fisher relation. Mon. Not. R. Astron. Soc. 2007, 381, 1463–1472. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.E. Orbital Motion; Adam Hilger: Bristol, UK, 1978. [Google Scholar]
- Aaronson, M.; Huchra, J.; Mould, J. The infrared luminosity/H I velocity-width relation and its application to the distance scale. Astrophys. J. 1979, 229, 1–13. [Google Scholar] [CrossRef]
- McGaugh, S.S. Testing galaxy formation and dark matter with low surface brightness galaxies. Stud. Hist. Philos. Sci. 2021, 88, 220–236. [Google Scholar] [CrossRef]
- Spitzer, L.; Schwarzschild, M. The Possible Influence of Interstellar Clouds on Stellar Velocities. Astrophys. J. 1951, 114, 385–397. [Google Scholar] [CrossRef]
- Spitzer, L.; Schwarzschild, M. The Possible Influence of Interstellar Clouds on Stellar Velocities. II. Astrophys. J. 1953, 118, 106–112. [Google Scholar] [CrossRef]
- van den Bergh, S. A new classification system for galaxies. Astrophys. J. 1976, 206, 883–887. [Google Scholar] [CrossRef]
- Boselli, A.; Gavazzi, G. Environmental Effects on Late-Type Galaxies in Nearby Clusters. Publ. Astron. Soc. Pac. 2006, 118, 517–559. [Google Scholar] [CrossRef]
- Blanton, M.R.; Moustakas, J. Physical Properties and Environments of Nearby Galaxies. Annu. Rev. Astron. Astroph. 2009, 47, 159–210. [Google Scholar] [CrossRef] [Green Version]
- Amirkhanyan, V.R. Anisotropy of the space orientation of radio sources. I: The catalog. Astrophys. Bull. 2009, 64, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Amirkhanyan, V.R. Anisotropy of the space orientation of radio sources. II: The axis distribution function. Astrophys. Bull. 2009, 64, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Davies, R.G.; Efstathiou, G.; Fall, S.M.; Illingworth, G.; Schechter, P.L. The kinematic properties of faint elliptical galaxies. Astrophys. J. 1983, 266, 41–57. [Google Scholar] [CrossRef]
- Lelli, F.; Di Teodoro, E.M.; Fraternali, F.; Man, A.W.S.; Zhang, Z.-Y.; De Breuck, C.; Davis, T.A.; Maiolino, R. A massive stellar bulge in a regularly rotating galaxy 1.2 billion years after the Big Bang. Science 2021, 371, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Gorkavyi, N.N. Formation of satellite systems: Prograde and retrograde satellites of Jupiter and Saturn. Astron. Lett. 1993, 19, 448–456. [Google Scholar]
- Gorkavyi, N.N.; Taidakova, T.A. The Model for Formation of Jupiter, Saturn and Neptune Satellite Systems. Astron. Lett. 1995, 21, 939–945. [Google Scholar]
- Kashlinsky, A. LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies. Astrophys. J. 2016, 823, L25. [Google Scholar] [CrossRef]
- Bird, S.; Cholis, I.; Muňoz, J.B.; Ali-Haïmoud, Y.; Kamionkowski, M.; Kovetz, E.D.; Raccanelli, A.; Riess, A.G. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 2016, 116, 201301. [Google Scholar] [CrossRef]
- Taylor, M.A.; Puzia, T.H.; Gomez, M.; Woodley, K.A. Observational Evidence for a Dark Side to NGC 5128’s Globular Cluster System. Astrophys. J. 2015, 805, 65. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Walter, F.; Venemans, B.P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E.P.; Mazzucchelli, C.; Riechers, D.; et al. An ALMA [C ii] Survey of 27 Quasars at z > 5.94. Astrophys. J. 2018, 854, 97. [Google Scholar] [CrossRef] [Green Version]
- Portail, M.; Gerhard, O.; Wegg, C.; Ness, M. Dynamical modelling of the galactic bulge and bar: The Milky Way’s pattern speed, stellar and dark matter mass distribution. Mon. Not. R. Astron. Soc. 2017, 465, 1621–1644. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorkavyi, N. Accretion of Galaxies around Supermassive Black Holes and a Theoretical Model of the Tully-Fisher and M-Sigma Relations. Galaxies 2022, 10, 73. https://doi.org/10.3390/galaxies10030073
Gorkavyi N. Accretion of Galaxies around Supermassive Black Holes and a Theoretical Model of the Tully-Fisher and M-Sigma Relations. Galaxies. 2022; 10(3):73. https://doi.org/10.3390/galaxies10030073
Chicago/Turabian StyleGorkavyi, Nick. 2022. "Accretion of Galaxies around Supermassive Black Holes and a Theoretical Model of the Tully-Fisher and M-Sigma Relations" Galaxies 10, no. 3: 73. https://doi.org/10.3390/galaxies10030073
APA StyleGorkavyi, N. (2022). Accretion of Galaxies around Supermassive Black Holes and a Theoretical Model of the Tully-Fisher and M-Sigma Relations. Galaxies, 10(3), 73. https://doi.org/10.3390/galaxies10030073