Determination of the Cosmic-Ray Chemical Composition: Open Issues and Prospects
Abstract
:1. Introduction
2. Physics of Extensive Air Showers
3. Composition Measurements
3.1. Composition from Optical and Radio Detectors
3.2. Composition from Surface Detectors
- obtained from the parameter, measured by Auger, which is obtained from the risetimes of the signal collected by the water-Cherenkov detectors [74]. The data taken by the 750 and 1500 m arrays are considered.
- obtained from the parameter , measured by Auger, which corresponds to the atmospheric depth of the maximum of the muon production depth distribution [75]. It is obtained from the time traces measured by the water-Cherenkov detectors.
- The parameter , measured by Auger, is an estimator of the total number of muons of energy above GeV, obtained from the data provided by the water-Cherenkov detectors [76]. The events considered correspond to inclined showers and are detected in hybrid mode.
- The muon density at 450 m from the shower axis with a muon threshold energy around 1 GeV, measured by the Underground Muon Detectors (UMDs) of Auger [77].
- The density of GeV muons at 600 and 800 m from the shower axis measured by IceCube with the IceTop Array [78].
- obtained through a multiparametric analysis based on the Telescope Array surface detectors data [81]. Note that the is reported for the QGSJet-II.04 and QGSJet-II.03 (and older versions of the QGSJet-II models) but not for EPOS-LHC.
3.3. Combined Analyses
4. High-Energy Photon and Neutrino Searches
5. Future Perspectives on Composition
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Verzi, V. et al. [Pierre Auger Collaboration] Measurement of the energy spectrum of ultra-high energy cosmic rays using the Pierre Auger Observatory. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 450. [Google Scholar]
- Matthews, J.N. et al. [Telescope Array Collaboration] Highlights from the Telescope Array. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; p. 1096. [Google Scholar]
- Finger, M. Reconstruction of Energy Spectra for Different Mass Groups of High-Energy Cosmic Rays. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2011. [Google Scholar]
- Gorbunov, N.; Grebenyuk, V.; Karmanov, D.; Kovalev, I.; Kudryashov, I.; Kurganov, A.; Panov, A.; Podorozhny, D.; Porokhovoy, S.; Sveshnikova, L.; et al. Energy spectra of abundant cosmic-ray nuclei in the NUCLEON experiment. Adv. Space Res. 2019, 64, 2546–2558. [Google Scholar]
- Amenomori, M.; Bi, X.J.; Chen, D.; Cui, S.W.; Danzengluobu; Ding, L.K.; Ding, X.H.; Fan, C.; Feng, C.F.; Feng, Z.Y.; et al. The Tibet ASγ Collaboration, The All-Particle Spectrum of Primary Cosmic Rays in the Wide Energy Range from 1014 to 1017 eV Observed with the Tibet-III Air-Shower Array. Astrophys. J. 2008, 678, 1165–1179. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, R. et al. [HAWC Collaboration] All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV. Phys. Rev. D 2017, 96, 122001. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D 2019, 100, 082002. [Google Scholar] [CrossRef] [Green Version]
- Budnev, N.M.; Chiavassa, A.; Gress, O.A.; Gress, T.I.; Dyachok, A.N.; Karpov, N.I.; Kalmykov, N.N.; Korosteleva, E.E.; Kozhin, V.A.; Kuzmichev, L.A.; et al. The primary cosmic-ray energy spectrum measured with the Tunka-133 array. Astropart. Phys. 2020, 117, 102406. [Google Scholar] [CrossRef]
- Bertaina, M. et al. [KASCADE-Grande Collaboration] KASCADE-Grande energy spectrum of cosmic rays interpreted with post-LHC hadronic interaction models. In Proceedings of the 34th International Cosmic Ray Conference (PoS ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 359. [Google Scholar]
- Carmelo, E. The Cosmic Ray Spectrum. 2021. Available online: https://github.com/carmeloevoli/The_CR_Spectrum (accessed on 29 May 2022).
- Aab, A. et al. [Pierre Auger Collaboration] Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8×1018 eV. Science 2017, 357, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Large-scale distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory. Astrophys. J. Suppl. Ser. 2012, 203, 34. [Google Scholar] [CrossRef] [Green Version]
- Harari, D. Ultra-high energy cosmic rays. Phys. Dark Univ. 2014, 4, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Kampert, K.H.; Unger, M. Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys. 2012, 35, 660–678. [Google Scholar] [CrossRef] [Green Version]
- Aloisio, R.; Berezinsky, V.; Gazizov, A. Transition from galactic to extragalactic cosmic rays. Astropart. Phys. 2012, 39–40, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [Pierre Auger Collaboration] The Pierre Auger Observatory Upgrade—Preliminary Design Report. arXiv 2016, arXiv:1604.03637. [Google Scholar]
- Abreu, P. et al. [Pierre Auger Collaboration] Measurement of the Proton-Air Cross Section at s = 57 TeV with the Pierre Auger Observatory. Phys. Rev. Lett. 2012, 109, 062002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, R.U. et al. [Telescope Array Collaboration] Measurement of the proton-air cross section with Telescope Array’s Black Rock Mesa and Long Ridge fluorescence detectors, and surface array in hybrid mode. Phys. Rev. D 2020, 102, 062004. [Google Scholar] [CrossRef]
- Lipari, P. Spectra and composition of ultrahigh-energy cosmic rays and the measurement of the proton-air cross section. Phys. Rev. D 2020, 103, 103009. [Google Scholar] [CrossRef]
- Gaisser, T.K.; Engel, R.; Resconi, E. Cosmic Rays and Particle Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Hooper, D.; Taylor, A.; Sarkar, S. Cosmogenic photons as a test of ultra-high energy cosmic ray composition. Astropart. Phys. 2011, 34, 340–343. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, A.; Batista, R.A.; Hörandel, J.R. Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos. Phys. Rev. D 2019, 100, 021302. [Google Scholar] [CrossRef] [Green Version]
- Heitler, W. The Quantum Theory of Radiation, 3rd ed.; Oxford University Press: London, UK, 1954; p. 386. [Google Scholar]
- Matthews, J. A Heitler model of extensive air showers. Astropart. Phys. 2005, 22, 387–397. [Google Scholar] [CrossRef]
- Linsley, J. Structure of Large Air Showers at Depth 834 g cm−2 Applications. In Proceedings of the International Cosmic Ray Conference (15th ICRC), Plovdiv, Bulgaria, 13–26 August 1977; Volume 12, pp. 89–96. [Google Scholar]
- Heck, D.; Knapp, J.; Capdevielle, J.N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers; Tech. Rep. FZKA-6019; Forschungszentrum Karlsruhe: Karlsruhe, Germany, 1998. [Google Scholar]
- Sciutto, S.J. AIRES: A System for Air Shower Simulations. Available online: http://aires.fisica.unlp.edu.ar (accessed on 30 May 2022).
- Bergmann, T.; Engel, R.; Heck, D.; Kalmykov, N.N.; Ostapchenko, S.; Pierog, T.; Thouw, T.; Werner, K. One-dimensional hybrid approach to extensive air shower simulation. Astropart. Phys. 2007, 26, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Pierog, T.; Karpenko, I.; Katzy, J.M.; Yatsenko, E.; Werner, K. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C 2015, 92, 034906. [Google Scholar] [CrossRef] [Green Version]
- Riehn, F.; Engel, R.; Fedynitch, A.; Gaisser, T.; Stanev, T. Hadronic interaction model SIBYLL 2.3d and extensive air showers. Phys. Rev. D 2020, 102, 063002. [Google Scholar] [CrossRef]
- Ostapchenko, S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I QGSJET-II model. Phys. Rev. D 2011, 83, 014018. [Google Scholar] [CrossRef] [Green Version]
- Montanus, J.M.C. An extended Heitler-Matthews model for the full hadronic cascade in cosmic air showers. Astropart. Phys. 2014, 59, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allekotte1, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; et al. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2013, 2, 26. [Google Scholar]
- Cazon, L.; Conceição, R.; Riehn, F. Probing the energy spectrum of hadrons in proton air interactions at ultrahigh energies through the fluctuations of the muon content of extensive air showers. Phys. Lett. B 2018, 784, 68–76. [Google Scholar] [CrossRef]
- Supanitsky, A.D.; Etchegoyen, A.; Medina-Tanco, G.; Allekotte, I.; Berisso, M.G.; Medina, M.C. Underground muon counters as a tool for composition analyses. Astropart. Phys. 2008, 29, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Supanitsky, A.D.; Etchegoyen, A.; Medina-Tanco, G. On the possibility of primary identification of individual cosmic ray showers. Astropart. Phys. 2009, 31, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Colalillo, R. et al. [Pierre Auger Collaboration] Downward Terrestrial Gamma-ray Flashes at the Pierre Auger Observatory? In Proceedings of the 37th International. Cosmic Ray Conference (PoS ICRC2021), Berlin, Germany, 12–23 July 2021; p. 395. [Google Scholar]
- Belz, J.W. et al. [Telescope Array Collaboration] Observations of the Origin of Downward Terrestrial Gamma-Ray Flashes. J. Geophys. Res. Atmos. 2020, 125, e2019JD031940. [Google Scholar] [CrossRef]
- Beisembaev, R.; Beznosko, D.; Beisembaeva, E.; Dalkarov, O.D.; Mossunov, V.; Ryabov, V.; Shaulov, S.; Vildanova, M.; Zhukov, V.; Baigarin, K.; et al. Spatial and Temporal Characteristics of EAS with Delayed Particles. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 195. [Google Scholar]
- Baltrusaitis, R.M.; Cady, R.; Cassiday, G.L.; Cooper, R.; Elbert, J.W.; Gerhardy, P.R.; Ko, S.; Loh, E.C.; Salamon, M.; Steck, D.; et al. The Utah Fly’s Eye detector. Nucl. Instrum. Methods Phys. Res. Sect. A 1985, 240, 410–428. [Google Scholar] [CrossRef]
- Abu-Zayyad, T.; Al-Seady, M.; Belov, K.; Chen, G.; Dai, H.Y.; Huang, M.A.; Jui, C.C.H.; Kieda, D.B.; Loh, E.C.; Matthews, J.N.; et al. The prototype high-resolution Fly’s Eye cosmic ray detector. Nucl. Instrum. Methods Phys. Res. Sect. A 2000, 450, 253–269. [Google Scholar] [CrossRef]
- Aab, A. et al. [Pierre Auger Collaboration] The Pierre Auger Cosmic Ray Observatory. Nucl. Instrum. Methods Phys. Res. A 2015, 798, 172–213. [Google Scholar] [CrossRef]
- Fukushima, M. Telescope Array Project for Extremely High Energy Cosmic Rays. Prog. Theor. Phys. Suppl. 2003, 151, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [Pierre Auger Collaboration] Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory. Phys. Rev. D 2019, 100, 082003. [Google Scholar] [CrossRef] [Green Version]
- Abraham, J. et al. [Pierre Auger Collaboration] The fluorescence detector of the Pierre Auger Observatory. Nucl. Instrum. Meth. A 2010, 620, 227–251. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.; Knurenko, S.; Sleptsov, I. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: The energy spectrum of cosmic rays. New J. Phys. 2009, 11, 065008. [Google Scholar] [CrossRef]
- Budnev, N.M.; Chernov, D.V.; Gress, O.A.; Gress, T.I.; Korosteleva, E.E.; Kuzmichev, L.A.; Lubsandorzhiev, B.K.; Pankov, L.V.; Parfenov, Y.V.; Prosin, V.V.; et al. Cosmic Ray Energy Spectrum and Mass Composition from 1015 eV to 1017 eV by Data of the Tunka EAS Cherenkov Array. In Proceedings of the 29th International Cosmic Ray Conference, Pune, India, 3–11 August 2005; Volume 6, pp. 257–260. [Google Scholar]
- Omura, Y. et al. [Telescope Array Collaboration] Energy spectrum and the shower maxima of cosmic rays above the knee region measured with the NICHE detectors at the TA site. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 329. [Google Scholar]
- Dyakonov, M.N.; Knurenko, S.P.; Kolosov, V.A.; Krasilnikov, D.D.; Lischenyuk, F.F.; Sleptsov, I.E. The use of Cherenkov detectors at the Yakutsk cosmic ray air shower array. Nucl. Instrum. Meth. A 1986, 248, 224–226. [Google Scholar] [CrossRef]
- Knurenko, S.; Petrov, S. Mass composition of cosmic rays above 0.1 EeV by the Yakutsk array data. Adv. Space Res. 2019, 64, 2570–2577. [Google Scholar] [CrossRef] [Green Version]
- Hillas, A. The sensitivity of Cherenkov radiation pulses to the longitudinal development of cosmic ray showers. J. Phys. G Nucl. Phys. 1982, 8, 1475–1492. [Google Scholar] [CrossRef]
- Patterson, J.; Hillas, A. The relation of the lateral distribution of Cerenkov light from cosmic-ray showers to the distance of maximum development. J. Phys. G Nucl. Phys. 1983, 9, 1433–1452. [Google Scholar] [CrossRef]
- Huege, T. Radio detection of cosmic ray air showers in the digital era. Phys. Rep. 2016, 620, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Schröder, F. Radio detection of cosmic-ray air showers and high-energy neutrinos. Prog. Part. Nucl. Phys. 2017, 93, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Bezyazeekov, P.A. et al. [Tunka-Rex Collaboration] Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex. J. Cosmol. Astropart. Phys. 2016, 1, 052. [Google Scholar]
- Pont, B. et al. [Pierre Auger Collaboration] The depth of the shower maximum of air showers measured with AERA. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 387. [Google Scholar]
- Petrov, I.; Knurenko, S.; Petrov, Z. Ultra-High Energy Cosmic Ray Study Results by Radio Emission Technique at Yakutsk Array. Phys. At. Nucl. 2019, 82, 795–799. [Google Scholar] [CrossRef]
- Bezyazeekov, P.A. et al. [Tunka-Rex Collaboration] Reconstruction of cosmic ray air showers with Tunka-Rex data using template fitting of radio pulses. Phys. Rev. D 2018, 97, 122004. [Google Scholar] [CrossRef] [Green Version]
- Corstanje, A.; Buitink, S.; Falcke, H.; Hare, B.M.; Hörandel, J.R.; Huege, T.; Krampah, G.K.; Mitra, P.; Mulrey, K.; Nelles, A.; et al. Depth of shower maximum and mass composition of cosmic rays from 50 PeV to 2 EeV measured with the LOFAR radio telescope. Phys. Rev. D 2021, 103, 102006. [Google Scholar] [CrossRef]
- Yushkov, A. et al. [Pierre Auger and Telescope Array Collaborations] Depth of maximum of air-shower profiles: Testing the compatibility of measurements performed at the Pierre Auger Observatory and the Telescope Array experiment. EPJ Web Conf. 2019, 210, 01009. [Google Scholar] [CrossRef]
- Yushkov, A. et al. [Pierre Auger Collaboration] Mass composition of cosmic rays with energies above 1017.2 eV from the hybrid data of the Pierre Auger Observatory. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 482. [Google Scholar]
- Peixoto, C. [Pierre Auger Collaboration]. Estimating the Depth of Shower Maximum using the Surface Detectors of the Pierre Auger Observatory. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 440. [Google Scholar]
- Abbasi, R. et al. [Telescope Array Collaboration] Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode. Astrphys. J. 2018, 858, 76. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R. et al. [Telescope Array Collaboration] The Cosmic-Ray Composition between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode. Astrphys. J. 2021, 909, 178. [Google Scholar] [CrossRef]
- Budnev, N. et al. [TAIGA Collaboration] TAIGA—An advanced hybrid detector complex for astroparticle physics, cosmic ray physics and gamma-ray astronomy. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 731. [Google Scholar]
- Batista, R.A.; Biteau, J.; Bustamante, M.; Dolag, K.; Engel, R.; Fang, K.; Kampert, K.; Kostunin, D.; Mostafa, M.; Murase, K.; et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies. Front. Astron. Space Sci. 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Bellido, J. et al. [Pierre Auger Collaboration] Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above 1017.2 eV and Composition Implications. In Proceedings of the 35th International Cosmic Ray Conference, Bexco, Busan, Korea, 10–20 July 2017; p. 506. [Google Scholar]
- Sokolsky, P.; D’Avignon, R. The Unreasonable Effectiveness of the Air-Fluorescence Technique in Determining the EAS Shower Maximum. arXiv 2021, arXiv:2110.09588. [Google Scholar] [CrossRef]
- Watson, A. Further evidence for an increase of the mean mass of the highest-energy cosmic-rays with energy. J. High Energy Phys. 2022, 33, 14–19. [Google Scholar] [CrossRef]
- Aab, A. et al. [Pierre Auger Collaboration] Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005. [Google Scholar] [CrossRef] [Green Version]
- Dembinski, H.P.; Arteaga-Velázquez, J.C.; Cazon, L.; Conceição, R.; Gonzalez, J.; Itow, Y.; Ivanov, D.; Kalmykov, N.N.; Karpikov, I.; Müller, S.; et al. Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers. EPJ Web Conf. 2019, 210, 02004. [Google Scholar] [CrossRef]
- Gesualdi, F.; Dembinski, H.; Shinozaki, K.; Supanitsky, D.; Pierog, T.; Cazon, L.; Soldin, D.; Conceição, R. On the muon scale of air showers and its application to the AGASA data. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 473. [Google Scholar]
- Supanitsky, A.D. ITeDA (CNEA-CONICET-UNSAM), San Martin, Prov. de Buenos Aires, Argentina. 2022; manuscript in preparation. [Google Scholar]
- Aab, A. et al. [Pierre Auger Collaboration] Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017, 96, 122003. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [Pierre Auger Collaboration] Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth. Phys. Rev. D 2014, 90, 012012. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [Pierre Auger Collaboration] Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events. Phys. Rev. D 2015, 91, 032003. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [Pierre Auger Collaboration] Direct measurement of the muonic content of extensive air showers between 2 × 1017 and 2 × 1018 eV at the Pierre Auger Observatory. Eur. Phys. J. C 2020, 80, 751. [Google Scholar] [CrossRef]
- Abbasi, R. et al. [IceCube Collaboration] Density of GeV muons in air showers measured with IceTop. arXiv 2022, arXiv:2201.12635. [Google Scholar]
- Gesualdi, F.; Supanitsky, A.D.; Etchegoyen, A. Muon deficit in air shower simulations estimated from AGASA muon measurements. Phys. Rev. D 2020, 101, 083025. [Google Scholar] [CrossRef]
- Gesualdi, F.; Supanitsky, A.D.; Etchegoyen, A. Muon deficit in simulations of air showers inferred from AGASA data. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 326. [Google Scholar]
- Zhezher, Y. et al. [Telescope Array Collaboration] Cosmic-ray mass composition with the TA SD 12-year data. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 300. [Google Scholar]
- Ivanov, D. et al. [Pierre Auger and the Telescope Array Collaborations] Report of the Telescope Array–Pierre Auger Observatory working group on energy spectrum. In Proceedings of the 35th International Cosmic Ray Conference, Bexco, Busan, Korea, 10–20 July 2017; p. 498. [Google Scholar]
- Albrecht, J.; Cazon, L.; Dembinski, H.; Fedynitch, A.; Kampert, K.; Pierog, T.; Rhode, W.; Soldin, D.; Spaan, B.; Ulrich, R.; et al. The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider. Astrophys. Space Sci. 2022, 367, 27. [Google Scholar] [CrossRef]
- Soldin, D. et al. [EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array, and Yakutsk EAS Array Collaborations] Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 349. [Google Scholar]
- Aab, A. et al. [Pierre Auger Collaboration] Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory. Phys. Rev. Lett. 2016, 117, 192001. [Google Scholar]
- Apel, W.D. et al. [KASCADE-Grande Collaboration] Probing the evolution of the EAS muon content in the atmosphere with KASCADE-Grande. Astropart. Phys. 2017, 95, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Glushkov, A.V.; Saburov, A.V. Mass Composition of Cosmic Rays with Energies above 1017 eV According to the Data from the Muon Detectors of the Yakutsk EAS Array. JETP Lett. 2019, 109, 559–563. [Google Scholar] [CrossRef]
- Cazon, L. Probing High-Energy Hadronic Interactions with Extensive Air Showers. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 005. [Google Scholar]
- Apel, W.D. et al. [KASCADE-Grande Collaboration] Kneelike Structure in the Spectrum of the Heavy Component of Cosmic Rays Observed with KASCADE-Grande. Phys. Rev. Lett. 2011, 107, 171104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apel, W.D. et al. [KASCADE-Grande Collaboration] Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande. Phys. Rev. D 2013, 87, 081101. [Google Scholar] [CrossRef] [Green Version]
- Kang, D. et al. [KASCADE-Grande Collaboration] Results from the KASCADE-Grande Data Analysis. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 313. [Google Scholar]
- Vícha, J. et al. [Pierre Auger Collaboration] Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 310. [Google Scholar]
- Aab, A. et al. [Pierre Auger Collaboration] Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum. Phys. Lett. B 2016, 762, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Aloisio, R.; Berezinsky, V.; Blasi, P. Ultra high energy cosmic rays: Implications of Auger data for source spectra and chemical composition. J. Cosmol. Astropart. Phys. 2014, 10, 020. [Google Scholar] [CrossRef] [Green Version]
- Mollerach, S.; Roulet, E. Extragalactic cosmic rays diffusing from two populations of sources. Phys. Rev. D 2020, 101, 103024. [Google Scholar] [CrossRef]
- Unger, M.; Farrar, G.R.; Anchordoqui, L.A. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it. Phys. Rev. D 2015, 92, 123001. [Google Scholar] [CrossRef] [Green Version]
- Globus, N.; Allard, D.; Mochkovitch, R.; Parizot, E. UHECR acceleration at GRB internal shocks. Mon. Not. R. Astron. Soc. 2015, 451, 751–790. [Google Scholar] [CrossRef] [Green Version]
- Globus, N.; Allard, D.; Parizot, E. A complete model of the cosmic ray spectrum and composition across the Galactic to extragalactic transition. Phys. Rev. D 2015, 92, 021302. [Google Scholar] [CrossRef] [Green Version]
- Kachelrieß, M.; Kalashev, O.; Ostapchenko, S.; Semikoz, D.V. Minimal model for extragalactic cosmic rays and neutrinos. Phys. Rev. D 2017, 96, 083006. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Murase, K. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures. Nat. Phys. 2018, 14, 396–398. [Google Scholar] [CrossRef] [Green Version]
- Supanitsky, A.D.; Cobos, A.; Etchegoyen, A. Origin of the light cosmic ray component below the ankle. Phys. Rev. D 2018, 98, 103016. [Google Scholar] [CrossRef] [Green Version]
- Abraham, J. et al. [Pierre Auger Collaboration] Observation of the Suppression of the Flux of Cosmic Rays above 4 × 1019 eV. Phys. Rev. Lett. 2008, 101, 061101. [Google Scholar] [CrossRef] [Green Version]
- Rautenberg, J. et al. [Pierre Auger Collaboration] Limits on ultra-high energy photons with the Pierre Auger Observatory. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 398. [Google Scholar]
- Savina, P. et al. [Pierre Auger Collaboration] A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower Universality. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 373. [Google Scholar]
- Abbasi, R.U. et al. [Telescope Array Collaboration] Constraints on the diffuse photon flux with energies above 1018 eV using the surface detector of the Telescope Array experiment. Astropart. Phys. 2019, 110, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kalashev, O.E. et al. [Telescope Array Collaboration] Telescope Array search for EeV photons. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 864. [Google Scholar]
- Kalashev, O.E.; Kuznetsov, M.Y. Constraining heavy decaying dark matter with the high energy gamma-ray limits. Phys. Rev. D 2016, 94, 063535. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, P.; Sigl, G. Origin and propagation of extremely high-energy cosmic rays. Phys. Rep. 2000, 327, 109–247. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D 2018, 98, 062003. [Google Scholar] [CrossRef] [Green Version]
- Aab, A. et al. [Pierre Auger Collaboration] Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2019, 10, 022. [Google Scholar]
- Gorham, P.W. et al. [ANITA Collaboration] Constraints on the ultrahigh-energy cosmic neutrino flux from the fourth flight of ANITA. Phys. Rev. D 2019, 99, 122001. [Google Scholar] [CrossRef] [Green Version]
- Batista, R.A.; de Almeida, R.M.; Lago, B.; Kotera, K. Cosmogenic photon and neutrino fluxes in the Auger era. J. Cosmol. Astropart. Phys. 2019, 01, 002. [Google Scholar] [CrossRef] [Green Version]
- Bergman, D.R. et al. [Telescope Array Collaboration] Telescope Array Combined Fit to Cosmic Ray Spectrum and Composition. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 338. [Google Scholar]
- Aab, A. et al. [Pierre Auger Collaboration] Deep-learning based reconstruction of the shower maximum Xmax using the water-Cherenkov detectors of the Pierre Auger Observatory. J. Instrum. 2021, 16, P07019. [Google Scholar] [CrossRef]
- Aab, A. et al. [Pierre Auger Collaboration] Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks. J. Instrum. 2021, 16, P07016. [Google Scholar] [CrossRef]
- Castellina, A. et al. [Pierre Auger Collaboration] AugerPrime: The Pierre Auger Observatory Upgrade. EPJ Web Conf. 2019, 210, 06002. [Google Scholar] [CrossRef]
- Kido, E. et al. [Telescope Array Collaboration] Current status and prospects of surface detector of the TAx4 experiment. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 203. [Google Scholar]
- Abbasi, R. et al. [IceCube Collaboration] Cosmic-Ray Studies with the Surface Instrumentation of IceCube. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 336. [Google Scholar]
- Aartsen, M.G. et al. [IceCube-Gen2 Collaboration] IceCube-Gen2: The Window to the Extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
- Olinto, A.V. et al. [POEMMA Collaboration] The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. J. Cosmol. Astropart. Phys. 2021, 06, 007. [Google Scholar]
- Kotera, K. et al. [GRAND Collaboration] The Giant Radio Array for Neutrino Detection (GRAND) Project. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 1181. [Google Scholar]
- Hörandel, J.R. et al. [GCOS Collaboration] GCOS—The Global Cosmic Ray Observatory. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 027. [Google Scholar]
- Aab, A. et al. [Pierre Auger Collaboration] Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory. Phys. Rev. Lett. 2021, 126, 152002. [Google Scholar] [CrossRef]
- Béjar Alonso, I.; Brüning, O.; Fessia, P.; Rossi, L.; Tavian, L.; Zerlauth, M. High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 1.0; Number CERN-2020-010, in CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supanitsky, A.D. Determination of the Cosmic-Ray Chemical Composition: Open Issues and Prospects. Galaxies 2022, 10, 75. https://doi.org/10.3390/galaxies10030075
Supanitsky AD. Determination of the Cosmic-Ray Chemical Composition: Open Issues and Prospects. Galaxies. 2022; 10(3):75. https://doi.org/10.3390/galaxies10030075
Chicago/Turabian StyleSupanitsky, Alberto Daniel. 2022. "Determination of the Cosmic-Ray Chemical Composition: Open Issues and Prospects" Galaxies 10, no. 3: 75. https://doi.org/10.3390/galaxies10030075
APA StyleSupanitsky, A. D. (2022). Determination of the Cosmic-Ray Chemical Composition: Open Issues and Prospects. Galaxies, 10(3), 75. https://doi.org/10.3390/galaxies10030075