Open-Source Radiative Modeling Tools for Extragalactic VHE Gamma-ray Sources
Abstract
:1. Introduction
2. Physical Background
2.1. Jetted Extragalactic Sources
2.2. Physical Processes
3. Open-Source Modeling Tools
3.1. naima
3.2. GAMERA
3.3. JetSeT
- Numerical models:
- –
- Jet class, handling both leptonic and hadronic () emission for extragalactic jetted objects, and the JetTimeEvol to perform temporal evolution of a leptonic plasma;
- –
- GalacticBeamed class for galactic jetted objects;
- –
- GalacticUnbeamed class for galactic objects without jets, such as PWN and SNR.
- Analytical models: handling the phenomenological models (e.g., power-law or log-polynomial models) used for the prefit stage. They can be additionally used to define user-defined analytical models to plug, via the model manager, to the fitting routines.
- Template models: used to reproduce template of the galaxy emission or of the BBB, and also used for the computation of the absorption on the EBL (with a dependency on redshift and energy).
3.4. agnpy
3.5. BHJet
3.6. FLAREMODEL
4. Discussion and Conclusions
4.1. Review of the Current Packages
4.2. Desiderata for Future Modeling Packages
- Testing: For such complex numerical models, test suites are mandatory.
- Validation: This constitutes the most fundamental point. If a software has to be provided to a large community of astrophysicists, it is essential to provide a numerical validation against other software, or against reference templates. For example, benchmark SEDs, corresponding to a given physical scenario and a given set of model parameters, can be generated and shared as validation templates. This has already been proposed in [78].
- Interfaceability: As proposed by [111], instead of several different packages, one could envision a library of interfaceable fundamental solvers, specialized, interconnectable, and respecting the single-responsibility principle. An example of combined workflow could be obtaining the particle energy distribution as a result of the time evolution performed with one of these solvers, and then obtaining the corresponding broadband SED using the radiative processes of another solver. This would imply for the tools to be developed on a more fine-grained level, delegating the high-level interface to separate modules. Additionally, these basic blocks should have a minimal data/model interface, to facilitate the exchange of products. For example, particles distributions or radiative fields could use standardized specifications to interface with the classes handling them in the different solvers. Similarly, final products, such as broadband SEDs, could be provided in the form of standardized (e.g., FITS [112] or astropy) tables with quantities (allowing units conversion). Table metadata could be used to store the model parameters (e.g., parameters of the particle distribution, radius of the emission region, magnetic field intensity, etc.). Using standardized inputs and outputs, with a proper interface between the fundamental solvers, will make the validation process smooth and secure. High-level interfaces should finally orchestrate the fundamental solvers, linking the parameters of the basic blocks and facilitating the interface to other frameworks.
- Data access: as already demonstrated by the tools in this review, by living in the same computational ecosystem, modeling and data-analysis tools can be easily interfaced. The interface to specific analysis software, and eventually to online services providing astrophysical data, broadens the horizon of model fitting, allowing, for example, combination of data from different experiments, or from current and future generations of instruments. Moreover, having access to the instrument-reduced data through the data-analysis packages would allow to perform a more accurate fit of the physical model, for example, folding it with the instrument IRF and computing a Poissonian likelihood of the observed and expected counts (as commonly performed in X-ray and gamma-ray astronomy [113] with simple analytical models, PL, log-parabola, etc.). Due to the current limitations, a fit is commonly performed to flux points that are often computed making assumption on the underlying shape of the photon spectrum and never provided with a matrix quantifying their correlations. naima, agnpy, and JetSeT already demonstrate the possibility of forward-fold fit of high-energy astrophysical data through their sherpa and Gammapy wrappers (both sherpa and Gammapy can read the PHA OGIP standard adopted to represent counts and IRF of X-ray [114] and gamma-ray [115] instruments).
- Accessibility: We remark that making the code available online with a license is not sufficient to make it properly accessible. Care has to be taken by developers to write a proper documentation. The latter does not only serve didactic purposes; for example, it can be easily used in hands-on tutorials, but plays the fundamental role of forming future users or developers.
4.3. Conclusions
- 1
- The current packages represent mostly single- or few-developer projects, with a strong commitment and effort from few individuals, who are offering a scientific product to the community, fulfilling the full chain from coding, to documentation and distribution.
- 2
- Despite the aforementioned efforts, the attitude to publish scientific articles based on accessible and reproducible models is not yet standard. Closed-source software, if used in scientific publications, should at minimum be accessible in the form of binaries, to allow the astrophysical community to reproduce and validate what has been published.
- 3
- Even though the presented products reach high-quality standards, none of them cover the entire panoply of physical processes, and a large overlap of features among the products is present. In this sense, the most desirable solution would be an effort to produce a library of interfaceable fundamental solvers, with a strong support from the community, the large collaborations, and the editorial boards.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGN | Active galactic nuclei |
GRB | Gamma-ray burst |
MWL | Multi-wavelength |
CTA | Cherenkov Telescope Array |
BH | Black hole |
IR | Infrared |
FSRQ | Flat-spectrum radio quasars |
PL | Power law |
SED | Spectral energy distribution |
IC | Inverse Compton |
SSC | Synchrotron self-Compton |
EC | External Compton |
BLR | Broad line region |
DT | Dust torus |
CMB | Cosmic microwave background |
EBL | Extragalactic background light |
MCMC | Markov chain Monte Carlo |
PWN | Pulsar wind nebula |
ISM | Interstellar medium |
IRF | Instrument response function |
BBB | Big blue bump |
CI | Continuous integration |
CD | Continuous deployment |
BHXB | Black hole X-ray binary |
GRMHD | General-relativistic magnetohydrodynamics |
References
- Madejski, G.; Sikora, M. Gamma-Ray Observations of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys 2016, 54, 725–760. [Google Scholar] [CrossRef]
- Dermer, C.D.; Giebels, B. Active galactic nuclei at gamma-ray energies. C. R. Phys. 2016, 17, 594–616. [Google Scholar] [CrossRef]
- Piron, F. Gamma-ray bursts at high and very high energies. C. R. Phys. 2016, 17, 617–631. [Google Scholar] [CrossRef]
- Nava, L. Gamma-ray burst at the highest energies. Universe 2021, 7, 503. [Google Scholar] [CrossRef]
- Noda, K.; Parsons, R.D. Gamma-Ray Bursts at TeV Energies: Observational Status. Galaxies 2022, 10, 7. [Google Scholar] [CrossRef]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-VCH GmbH: Berlin, Germany, 1986. [Google Scholar]
- Dermer, C.D. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos; Princeton Univerisity Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Cerruti, M. Leptonic and Hadronic Radiative Processes in Supermassive-Black-Hole Jets. Galaxies 2020, 8, 72. [Google Scholar] [CrossRef]
- Böettcher, M. Progress in Multi-wavelength and Multi-Messenger Observations of Blazars and Theoretical Challenges. Galaxies 2019, 7, 20. [Google Scholar] [CrossRef]
- Cerruti, M. The Blazar Hadronic Code Comparison Project. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; p. 979. [Google Scholar]
- Lamanna, G. [CTA Consortium] Cherenkov Telescope Array Data Management. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 947. [Google Scholar]
- Deil, C.; Boisson, C.; Kosack, K.; Perkins, J.; King, J.; Eger, P.; Mayer, M.; Wood, M.; Zabalza, V.; Knödlseder, J.; et al. Open high-level data formats and software for Gamma-ray astronomy. In Proceedings of the 6th International Meeting on High Energy Gamma-ray Astronomy (Gamma2016), Heidelberg, Germany, 11–15 July 2016; Volume 1792, p. 070006. [Google Scholar]
- Nigro, C.; Hassan, T.; Olivera-Nieto, L. Evolution of Data Formats in Very-High-Energy Gamma-Ray Astronomy. Universe 2021, 7, 374. [Google Scholar] [CrossRef]
- Knödlseder, J.; Mayer, M.; Deil, C.; and Cayrou, J.B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.C.; Buehler, R.; Forest, F.; Louge, T. GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data. Astron. Astrophys. 2016, 593, A1. [Google Scholar] [CrossRef]
- Deil, C.; Zanin, R.; Lefaucheur, J.; Boisson, C.; Khelifi, B.; Terrier, R.; Wood, M.; Mohrmann, L.; Chakraborty, N.; Watson, J.; et al. Gammapy—A prototype for the CTA science tools. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 10–20 July 2017; p. 766. [Google Scholar]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Meier, D.L. Black Hole Astrophysics: The Engine Paradigm; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cohen, M.H.; Cannon, W.; Purcell, G.H.; Shaffer, D.B.; Broderick, J.J.; Kellermann, K.I.; Jauncey, D.L. The Small-Scale Structure of Radio Galaxies and Quasi-Stellar Sources at 3.8 Centimeters. Astrophys. J. 1971, 170, 207. [Google Scholar] [CrossRef]
- Blandford, R.D.; Rees, M.J. Some comments on radiation mechanisms in Lacertids. In Proceedings of the Pittsburgh Conference on BL Lac Objects, Pittsburgh, PA, USA, 24–26 April 1978; pp. 328–341. [Google Scholar]
- Ulrich, M.; Maraschi, L.; Urry, M.C. Variability of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1997, 35, 445–502. [Google Scholar] [CrossRef]
- Rieger, F. Gamma-Ray Astrophysics in the Time Domain. Galaxies 2019, 7, 28. [Google Scholar] [CrossRef]
- Zhang, H. Blazar Optical Polarimetry: Current Progress in Observations and Theories. Galaxies 2019, 7, 85. [Google Scholar] [CrossRef]
- Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A. On the origin of gamma-rays in Fermi blazars: Beyond the broad-line region. Mon. Not. R. Astron. Soc. 2018, 477, 4749–4767. [Google Scholar] [CrossRef]
- Meyer, M.; Scargle, J.D.; Blandford, R.D. Characterizing the Gamma-Ray Variability of the Brightest Flat Spectrum Radio Quasars Observed with the Fermi LAT. Astrophys. J. 2019, 877, 39. [Google Scholar] [CrossRef]
- Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2015, 561, 1–109. [Google Scholar]
- Matthews, J.H.; Bell, A.R.; Blundell, K.M. Particle acceleration in astrophysical jets. New Astron. Rev. 2020, 89, 101543. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Jones, T.W.; O’Dell, S.L.; Stein, W.A. Physics of Compact Nonthermal Sources. I. Theory of Radiation Processes. Astrophys. J. 1974, 188, 353–368. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R. Transformation Properties of External Radiation Fields, Energy-Loss Rates and Scattered Spectra, and a Model for Blazar Variability. Astrophys. J. 2002, 575, 667–686. [Google Scholar] [CrossRef]
- Sikora, M.; Błażejowski, M.; Moderski, R.; Madejski, G.M. On the Nature of MeV Blazars. Astrophys. J. 2002, 577, 78–84. [Google Scholar] [CrossRef]
- Tavecchio, F.; Ghisellini, G. Spine-sheath layer radiative interplay in subparsec-scale jets and the TeV emission from M87. Mon. Not. R. Astron. Soc. 2008, 385, L98–L102. [Google Scholar] [CrossRef]
- MacDonald, N.R.; Marscher, A.P.; Jorstad, S.G.; Joshi, M. Through the Ring of Fire: Gamma-Ray Variability in Blazars by a Moving Plasmoid Passing a Local Source of Seed Photons. Astrophys. J. 2015, 804, 111. [Google Scholar] [CrossRef]
- Tavecchio, F.; Maraschi, L.; Sambruna, R.M.; Urry, C.M. The X-ray Jet of PKS 0637-752: Inverse Compton Radiation from the Cosmic Microwave Background? Astrophys. J. 2000, 544, L23–L26. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef]
- Cooray, A. Extragalactic background light measurements and applications. R. Soc. Open Sci. 2016, 3, 150555. [Google Scholar] [CrossRef]
- Abdalla, H. [H.E.S.S. Collaboration] Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. Science 2021, 372, 1081–1085. [Google Scholar]
- Acciari, V.A. [MAGIC Collaboration] Observation of inverse Compton emission from a long γ-ray burst. Nature 2019, 575, 459–463. [Google Scholar]
- Razzaque, S. A Leptonic-Hadronic Model for the Afterglow of Gamma-ray Burst 090510. Astrophys. J. 2010, 724, L109–L112. [Google Scholar] [CrossRef]
- Prince, R.; Agarwal, A.; Gupta, N.; Majumdar, P.; Czerny, B.; Cellone, S.A.; Andruchow, I. Multiwavelength analysis and modeling of OJ 287 during 2017–2020. Astron. Astrophys. 2021, 654, A38. [Google Scholar] [CrossRef]
- Abhir, J.; Prince, R.; Joseph, J.; Bose, D.; Gupta, N. Study of Temporal and Spectral variability for Blazar PKS 1830-211 with Multiwavelength Data. Astrophys. J. 2021, 915, 26. [Google Scholar] [CrossRef]
- Tramacere, A.; Sliusar, V.; Walter, R.; Jurysek, J.; Balbo, M. Radio-γ-ray response in blazars as a signature of adiabatic blob expansion. Astron. Astrophys. 2022, 658, A173. [Google Scholar] [CrossRef]
- Zabalza, V. Naima: A Python package for inference of relativistic particle energy distributions from observed nonthermal spectra. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 992. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, T.P. [Astropy Collaboration] Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar]
- Price-Whelan, A.M. [Astropy Collaboration] The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astrophys. J. 2018, 156, 123. [Google Scholar]
- Astropy Collaboration. Affiliated Packages. Available online: https://www.astropy.org/affiliated/#affiliated-packages (accessed on 7 May 2022).
- Domínguez, A.; Primack, J.R.; Rosario, D.J.; Prada, F.; Gilmore, R.C.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Pérez-Torres, M.A.; Pérez-González, P.; et al. Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon. Not. R. Astron. Soc. 2011, 410, 2556–2578. [Google Scholar] [CrossRef]
- Freeman, P.; Doe, S.; Siemiginowska, A. Sherpa: A mission-independent data analysis application. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Astronomical Data Analysis Conference, San Diego, CA, USA, 2–3 August 2001; Volume 4477, pp. 76–87. [Google Scholar]
- Doe, S.; Nguyen, D.; Stawarz, C.; Refsdal, B.; Siemiginowska, A.; Burke, D.; Evans, I.; Evans, J.; McDowell, J.; Houck, J.; et al. Developing Sherpa with Python. In Proceedings of the Astronomical Data Analysis Software and Systems (ADASS) XVI, Tucson, AZ, USA, 15–18 October 2006; Volume 376, p. 543. [Google Scholar]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. Emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Acciari, V.A. [MAGIC Collaboration] Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017. Astron. Astrophys. 2021, 655, A89. [Google Scholar]
- Romoli, C. GRB Modelling Using NAIMA Toolbox. Available online: https://github.com/Carlor87/GRBmodelling (accessed on 7 May 2022).
- naima. GitHub Repository. Available online: https://github.com/zblz/naima (accessed on 7 May 2022).
- naima. Online Documentation. Available online: https://naima.readthedocs.io/en/latest/ (accessed on 7 May 2022).
- Hahn, J. GAMERA—A Modular Framework For Spectral Modeling In VHE Astronomy. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 917. [Google Scholar]
- Torres, D.F.; Cillis, A.; Martín, J.; de Oña Wilhelmi, E. Time-dependent modeling of TeV-detected, young pulsar wind nebulae. J. High Energy Astrophys. 2014, 1, 31–62. [Google Scholar] [CrossRef]
- Matthews, J.H.; Taylor, A.M. Particle acceleration in radio galaxies with flickering jets: GeV electrons to ultrahigh energy cosmic rays. Mon. Not. R. Astron. Soc. 2021, 503, 5948–5964. [Google Scholar] [CrossRef]
- GAMERA. GitHub Repository. Available online: https://github.com/libgamera/GAMERA (accessed on 7 May 2022).
- GAMERA. Online Documentation. Available online: https://libgamera.github.io/GAMERA/docs/main_page.html (accessed on 7 May 2022).
- Tramacere, A.; Giommi, P.; Perri, M.; Verrecchia, F.; Tosti, G. Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission. Astron. Astrophys. 2009, 501, 879–898. [Google Scholar] [CrossRef]
- Tramacere, A.; Massaro, E.; Taylor, A.M. Stochastic Acceleration and the Evolution of Spectral Distributions in Synchro-Self-Compton Sources: A Self-consistent Modeling of Blazars’ Flares. Astrophys. J. 2011, 739, 66. [Google Scholar] [CrossRef]
- Tramacere, A. JetSeT: Numerical modeling and SED fitting tool for relativistic jets. Astrophys. Source Code Libr. 2020, ascl:2009.001. Available online: https://ascl.net/2009.001 (accessed on 7 May 2022).
- Franceschini, A.; Rodighiero, G.; Vaccari, M. Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 2008, 438, 837–852. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
- Dembinski, H.; Ongmongkolkul, P.; Deil, C.; Schreiner, H.; Feickert, M.; Andrew; Burr, C.; Watson, J.; Rost, F.; Pearce, A.; et al. scikit-hep/iminuit. Zenodo 2022. Available online: https://doi.org/10.5281/zenodo.3949207 (accessed on 7 May 2022).
- Ramaty, R. Energetic particles in solar flares. In Proceedings of the Workshop Particle Acceleration Mechanisms in Astrophysics, La Jolla, CA, USA, 3–5 January 1979; pp. 135–154. [Google Scholar]
- Becker, P.A.; Le, T.; Dermer, C.D. Time-dependent Stochastic Particle Acceleration in Astrophysical Plasmas: Exact Solutions Including Momentum-dependent Escape. Astrophys. J. 2006, 647, 539–551. [Google Scholar] [CrossRef]
- Chang, J.S.; Cooper, G. A Practical Difference Scheme for Fokker-Planck Equations. J. Comput. Phys. 1970, 6, 1–16. [Google Scholar] [CrossRef]
- Park, B.T.; Petrosian, V. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods. Astrophys. J. Suppl. Ser. 1996, 103, 255. [Google Scholar] [CrossRef]
- Rodi, J.; Tramacere, A.; Onori, F.; Bruni, G.; Sánchez-Fernández, C.; Fiocchi, M.; Natalucci, L.; Ubertini, P. A Broadband View on Microquasar MAXI J1820+070 during the 2018 Outburst. Astrophys. J. 2021, 910, 21. [Google Scholar] [CrossRef]
- JetSeT. GitHub Repository. Available online: https://github.com/andreatramacere/jetset (accessed on 7 May 2022).
- JetSeT. Online Documentation. Available online: https://jetset.readthedocs.io/en/latest/ (accessed on 7 May 2022).
- JetSeT. Software Releases. Available online: https://github.com/andreatramacere/jetset/releases (accessed on 7 May 2022).
- JetSeT. Installer Tool. Available online: https://github.com/andreatramacere/jetset-installer (accessed on 7 May 2022).
- Nigro, C.; Sitarek, J.; Gliwny, P.; Sanchez, D.; Tramacere, A.; Craig, M. agnpy: An open-source python package modeling the radiative processes of jetted active galactic nuclei. Astron. Astrophys. 2022, 660, A18. [Google Scholar] [CrossRef]
- Finke, J.D.; Dermer, C.D.; Böttcher, M. Synchrotron Self-Compton Analysis of TeV X-Ray-Selected BL Lacertae Objects. Astrophys. J. 2008, 686, 181–194. [Google Scholar] [CrossRef]
- Dermer, C.D.; Finke, J.D.; Krug, H.; Böttcher, M. Gamma-Ray Studies of Blazars: Synchro-Compton Analysis of Flat Spectrum Radio Quasars. Astrophys. J. 2009, 692, 32–46. [Google Scholar] [CrossRef]
- Finke, J.D. External Compton Scattering in Blazar Jets and the Location of the Gamma-Ray Emitting Region. Astrophys. J. 2016, 830, 94. [Google Scholar] [CrossRef]
- Acciari, V.A. [MAGIC Collaboration] VHE gamma-ray detection of FSRQ QSO B1420+326 and modeling of its enhanced broadband state in 2020. Astron. Astrophys. 2021, 647, A163. [Google Scholar]
- Acciari, V.A. [MAGIC Collaboration] Multiwavelength study of the gravitationally lensed blazar QSO B0218+357 between 2016 and 2020. Mon. Not. R. Astron. Soc. 2022, 510, 2344–2362. [Google Scholar] [CrossRef]
- Albert, A. [HAWC Collaboration] Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC. Astrophys. J. 2022, 929, 125. [Google Scholar] [CrossRef]
- agnpy. GitHub Repository. Available online: https://github.com/cosimoNigro/agnpy (accessed on 7 May 2022).
- agnpy. Online Documentation. Available online: https://agnpy.readthedocs.io/en/latest/ (accessed on 7 May 2022).
- Abdo, A.A. [Fermi-LAT and MAGIC Collaborations] Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution. Astrophys. J. 2011, 736, 131. [Google Scholar] [CrossRef]
- Markoff, S.; Falcke, H.; Fender, R. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the Low/Hard spectral state. Astron. Astrophys. 2001, 372, L25–L28. [Google Scholar] [CrossRef]
- Markoff, S.; Nowak, M.A.; Wilms, J. Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? Astrophys. J. 2005, 635, 1203–1216. [Google Scholar] [CrossRef]
- Lucchini, M.; Ceccobello, C.; Markoff, S.; Kini, Y.; Chhotray, A.; Connors, R.M.T.; Crumley, P.; Falcke, H.; Kantzas, D.; Maitra, D. Bhjet: A public multi-zone, steady state jet + thermal corona spectral model. arXiv 2021, arXiv:2108.12011. [Google Scholar]
- Falcke, H.; Biermann, P.L. The jet-disk symbiosis. I. Radio to X-ray emission models for quasars. Astron. Astrophys. 1995, 293, 665–682. [Google Scholar]
- Falcke, H.; Malkan, M.A.; Biermann, P.L. The jet-disk symbiosis. II. Interpreting the radio/UV correlations in quasars. Astron. Astrophys. 1995, 298, 375. [Google Scholar]
- Falcke, H.; Biermann, P.L. The jet/disk symbiosis. III. What the radio cores in GRS 1915+105, NGC 4258, M 81 and SGR A* tell us about accreting black holes. Astron. Astrophys. 1999, 342, 49–56. [Google Scholar]
- Arnaud, K.A. XSPEC: The First Ten Years. In Proceedings of the Astronomical Data Analysis Software and Systems (ADASS) V, Tucson, AZ, USA, 22–25 October 1995; Volume 101, p. 17. [Google Scholar]
- National Aeronautics and Space Administration (NASA); High Energy Astrophysics Science Archive Research Center (HEASARC). compPS: Comptonization, Poutanen & Svensson. Available online: https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelCompps.html (accessed on 7 May 2022).
- BHJet. GitHub Repository. Available online: https://github.com/matteolucchini1/BHJet (accessed on 7 May 2022).
- Dallilar, Y.; von Fellenberg, S.; Bauboeck, M.; de Zeeuw, P.T.; Drescher, A.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Habibi, M.; Ott, T. Flaremodel: An open-source Python package for one-zone numerical modeling of synchrotron sources. Astron. Astrophys. 2022, 658, A111. [Google Scholar] [CrossRef]
- Newville, M.; Otten, R.; Nelson, A.; Ingargiola, A.; Stensitzki, T.; Allan, D.; Fox, A.; Carter, F.; Michał; Osborn, R. lmfit. Zenodo 2022. Available online: https://doi.org/10.5281/zenodo.5570790 (accessed on 7 May 2022).
- Pandya, A.; Zhang, Z.; Chandra, M.; Gammie, C.F. Polarized Synchrotron Emissivities and Absorptivities for Relativistic Thermal, Power-law, and Kappa Distribution Functions. Astrophys. J. 2016, 822, 34. [Google Scholar] [CrossRef]
- Band, D.L.; Grindlay, J.E. The synchrotron-self-Compton process in spherical geometries. I—Theoretical framework. Astrophys. J. 1985, 298, 128–146. [Google Scholar] [CrossRef]
- Abuter, R. [GRAVITY Collaboration] Constraining particle acceleration in Sgr A* with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations. Astron. Astrophys. 2021, 654, A22. [Google Scholar]
- FLAREMODEL. GitHub Repository. Available online: https://github.com/ydallilar/flaremodel (accessed on 7 May 2022).
- FLAREMODEL. Online Documentation. Available online: https://flaremodel.readthedocs.io/en/latest/index.html (accessed on 7 May 2022).
- Kafexhiu, E.; Aharonian, F.; Taylor, A.M.; Vila, G.S. Parametrization of gamma-ray production cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D 2014, 90, 123014. [Google Scholar] [CrossRef]
- Kelner, S.; Aharonian, F.; Bugayov, V. Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D 2006, 74, 034018. [Google Scholar] [CrossRef]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets—I. A uniform conical jet model. Mon. Not. R. Astron. Soc. 2012, 423, 756–765. [Google Scholar] [CrossRef]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets—II. An accelerating jet model with a geometry set by observations of M87. Mon. Not. R. Astron. Soc. 2013, 429, 1189–1205. [Google Scholar] [CrossRef]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets—III. Compton-dominant blazars. Mon. Not. R. Astron. Soc. 2013, 431, 1840–1852. [Google Scholar] [CrossRef]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets—IV. BL Lac type blazars and the physical basis for the blazar sequence. Mon. Not. R. Astron. Soc. 2013, 436, 304–314. [Google Scholar] [CrossRef]
- Ohm, S. Starburst galaxies as seen by gamma-ray telescopes. C. R. Phys. 2016, 17, 585–593. [Google Scholar] [CrossRef]
- Portegies Zwart, S. Computational astrophysics for the future. Science 2018, 361, 979–980. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.C.; Greisen, E.W.; Harten, R.H. FITS—A Flexible Image Transport System. Astron. Astrophys. Suppl. 1981, 44, 363. [Google Scholar]
- Piron, F.; Djannati-Atai, A.; Punch, M.; Tavernet, J.P.; Barrau, A.; Bazer-Bachi, R.; Chounet, L.M.; Debiais, G.; Degrange, B.; Dezalay, J.P.; et al. Temporal and spectral gamma-ray properties of Mkn 421 above 250 GeV from CAT observations between 1996 and 2000. Astron. Astrophys. 2001, 374, 895–906. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA); High Energy Astrophysics Science Archive Research Center (HEASARC). The OGIP standard PHA file format. Available online: https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007/node5.html (accessed on 7 May 2022).
- Data Formats for Gamma-Ray Astronomy. 1D Counts Spectra. Available online: https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/ogip/index.html (accessed on 7 May 2022).
Software | Sources | Approach | Particles | Processes | Temp. ev. | Emission Region | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thermal | Non-Thermal | Leptonic | Hadronic | Absorption | |||||||||
e | p | Synch. | SSC | EC | Brems. | pp | |||||||
naima | PWN, SNR, GRB | numerical | ✗ | ✓ | ✓ | ✓ | ✓ | ✓(CMB) | ✓ | ✓ | ✓(EBL) | ✗ | not specified |
GAMERA | PWN, SNR, AGN | numerical | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | multiple uniform |
microquasars | (only cool.) | ||||||||||||
JetSeT | jetted AGN, PWN | numerical | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓(EBL) | ✓ | multiple uniform |
microquasars, SNR | (acc. + cool.) | acc. + rad. | |||||||||||
agnpy | jetted AGN | numerical | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | single uniform |
BHJet | binaries, AGN | numerical | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | whole jet |
semi-analytical | |||||||||||||
FLAREMODEL | synch. sources | numerical | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | single |
ray-tracing | (only cool.) | radial dep. |
Software | Language | License | Documentation | Installation | CI or Test Units | CD |
---|---|---|---|---|---|---|
naima | python | BSD-3 | Read the Docs | pip, conda | yes | no |
GAMERA | C++, python | not specified | GitHub Pages | make file | minimal | no |
JetSeT | C, python | BSD-3 | Read the Docs | pip, conda | yes | yes |
agnpy | python | BSD-3 | Read the Docs | pip, conda | yes | yes |
BHJet | C++ | MIT | no | make file | no | no |
FLAREMODEL | C, python | BSD-3 | Read The Docs | pip | yes | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigro, C.; Tramacere, A. Open-Source Radiative Modeling Tools for Extragalactic VHE Gamma-ray Sources. Galaxies 2022, 10, 85. https://doi.org/10.3390/galaxies10040085
Nigro C, Tramacere A. Open-Source Radiative Modeling Tools for Extragalactic VHE Gamma-ray Sources. Galaxies. 2022; 10(4):85. https://doi.org/10.3390/galaxies10040085
Chicago/Turabian StyleNigro, Cosimo, and Andrea Tramacere. 2022. "Open-Source Radiative Modeling Tools for Extragalactic VHE Gamma-ray Sources" Galaxies 10, no. 4: 85. https://doi.org/10.3390/galaxies10040085
APA StyleNigro, C., & Tramacere, A. (2022). Open-Source Radiative Modeling Tools for Extragalactic VHE Gamma-ray Sources. Galaxies, 10(4), 85. https://doi.org/10.3390/galaxies10040085