Oxidative Stress Biomarkers as Preclinical Markers of Mild Cognitive Impairment: The Impact of Age and Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Cerebrospinal Fluid Established Biomarkers Analyses
2.4. Reactive Oxygen Species Analysis
2.5. Malondialdehyde Analysis
2.6. Statistical Analyses
2.7. Ethical Considerations
3. Results
3.1. Median Values of CSF Established Biomarkers and Oxidative Stress Biomarkers Within the Study Groups
3.2. Correlations of CSF Established Biomarkers and Oxidative Stress Biomarkers
3.3. Median Values of Oxidative Stress Biomarkers, According to Sex
3.4. Median Values of Oxidative Stress Biomarkers, According to Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | Amyloid-beta |
AD | Alzheimer’s disease |
ATP | Adenosine triphosphate |
BBB | Blood–brain barrier |
BMI | Body mass index |
CSF | Cerebrospinal fluid |
COX-2 | Cyclooxygenase-2 |
DCF | 2′,7′-dichlorodihydrofluoroscein |
ELISA | Enzyme-linked immunosorbent assay |
GAADRD | Greek Association of Alzheimer’s Disease and Related Disorders |
MCI | Mild Cognitive impairment |
MDA | Malondialdehyde |
NF-kB | Nuclear factor kB |
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
p-tau | Phosphorylated tau protein |
ROS | Reactive oxygen species |
SD | Standard deviation |
tau | Tau protein |
t-tau | Total tau protein |
References
- Eshkoor, S.A.; Mun, C.Y.; Ng, C.K.; Hamid, T.A. Mild cognitive impairment and its management in older people. Clin. Interv. Aging 2015, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Wood, P.L.; Romani, A.; Valacchi, G.; Squerzanti, M.; Sanz, J.M.; Ortolani, B.; Zuliani, G. Oxidative challenge in Alzheimer’s disease: State of knowledge and future needs. J. Investig. Med. 2016, 64, 21–32. [Google Scholar] [CrossRef]
- McGrowder, D.A.; Miller, F.; Vaz, K.; Nwokocha, C.; Wilson-Clarke, C.; Anderson-Cross, M.; Brown, J.; Anderson-Jackson, L.; Williams, L.; Latore, L.; et al. Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease: Current Evidence and Future Perspectives. Brain Sci. 2021, 11, 215. [Google Scholar] [CrossRef]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106. [Google Scholar] [CrossRef]
- Lloret, A.; Esteve, D.; Lloret, M.A.; Cervera-Ferri, A.; Lopez, B.; Nepomuceno, M.; Monllor, P. When Does Alzheimer′s Disease Really Start? The Role of Biomarkers. Int. J. Mol. Sci. 2019, 20, 5536. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; von Arnim, C.A.F.; Burnie, N.; Bozeat, S.; Cummings, J. Biomarkers in Alzheimer’s disease: Role in early and differential diagnosis and recognition of atypical variants. Alzheimer’s Res. Ther. 2023, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Mahaman, Y.A.R.; Embaye, K.S.; Huang, F.; Li, L.; Zhu, F.; Wang, J.Z.; Liu, R.; Feng, J.; Wang, X. Biomarkers used in Alzheimer’s disease diagnosis, treatment, and prevention. Ageing Res. Rev. 2022, 74, 101544. [Google Scholar] [CrossRef]
- Jia, J.; Ning, Y.; Chen, M.; Wang, S.; Yang, H.; Li, F.; Ding, J.; Li, Y.; Zhao, B.; Lyu, J.; et al. Biomarker Changes during 20 Years Preceding Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 712–722. [Google Scholar] [CrossRef]
- Yoshikawa, T.; You, F. Oxidative Stress and Bio-Regulation. Int. J. Mol. Sci. 2024, 25, 3360. [Google Scholar] [CrossRef]
- Correia, A.S.; Vale, N. Exploring Oxidative Stress in Disease and Its Connection with Adenosine. Oxygen 2024, 4, 325–337. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Twarowski, B.; Herbet, M. Inflammatory Processes in Alzheimer’s Disease—Pathomechanism, Diagnosis and Treatment: A Review. Int. J. Mol. Sci. 2023, 24, 6518. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, B.E.; Obafemi, T.O.; Adewale, O.B.; Obafemi, B.A.; Oyinloye, B.E.; Ekundayo, S.K. Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer’s Disease. Cell Biochem. Biophys. 2024, 82, 457–477. [Google Scholar] [CrossRef]
- Markesbery, W.R.; Kryscio, R.J.; Lovell, M.A.; Morrow, J.D. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann. Neurol. 2005, 58, 730–735. [Google Scholar] [CrossRef]
- Varesi, A.; Carrara, A.; Pires, V.G.; Floris, V.; Pierella, E.; Savioli, G.; Prasad, S.; Esposito, C.; Ricevuti, G.; Chirumbolo, S.; et al. Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells 2022, 11, 1367. [Google Scholar] [CrossRef] [PubMed]
- Erickson, P.; Simrén, J.; Brum, W.S.; Ennis, G.E.; Kollmorgen, G.; Suridjan, I.; Langhough, R.; Jonaitis, E.M.; Van Hulle, C.A.; Betthauser, T.J.; et al. Prevalence and Clinical Implications of a β-Amyloid-Negative, Tau-Positive Cerebrospinal Fluid Biomarker Profile in Alzheimer Disease. JAMA Neurol. 2023, 80, 969–979. [Google Scholar] [CrossRef]
- Simrén, J.; Leuzy, A.; Karikari, T.K.; Hye, A.; Benedet, A.L.; Lantero-Rodriguez, J.; Mattsson-Carlgren, N.; Schöll, M.; Mecocci, P.; Vellas, B.; et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement. 2021, 17, 1145–1156. [Google Scholar] [CrossRef]
- Tao, Q.Q.; Cai, X.; Xue, Y.Y.; Ge, W.; Yue, L.; Li, X.Y.; Lin, R.R.; Peng, G.P.; Jiang, W.; Li, S.; et al. Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. Innovation 2024, 5, 100544. [Google Scholar] [CrossRef]
- Buccellato, F.R.; D’Anca, M.; Galimberti, D.; Fenoglio, C.; Scarpini, E. Role of Oxidative Damage in Alzheimer’s Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants 2021, 10, 1353. [Google Scholar] [CrossRef]
- Arslan, J.; Jamshed, H.; Qureshi, H. Early Detection and Prevention of Alzheimer’s Disease: Role of Oxidative Markers and Natural Antioxidants. Front. Aging Neurosci. 2020, 12, 231. [Google Scholar] [CrossRef]
- Skoumalová, A.; Hort, J. Blood markers of oxidative stress in Alzheimer’s disease. J. Cell. Mol. Med. 2012, 16, 2291. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef]
- Sultana, R.; Perluigi, M.; Butterfield, D.A. Lipid Peroxidation Triggers Neurodegeneration: A Redox Proteomics View into the Alzheimer Disease Brain. Free Radic. Biol. Med. 2012, 62, 157. [Google Scholar] [CrossRef]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2016, 21, 1024. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Sohail, R.; Jaffer, S.R.; Siddique, S.; Kaya, B.; Atowoju, I.; Imran, A.; Wright, W.; Pamulapati, S.; Choudhry, F.; et al. The Role of Estrogen Therapy as a Protective Factor for Alzheimer’s Disease and Dementia in Postmenopausal Women: A Comprehensive Review of the Literature. Cureus 2023, 15, e43053. [Google Scholar] [CrossRef]
- Simpkins, J.W.; Perez, E.; Wang, X.; Yang, S.; Wen, Y.; Singh, M. Review: The potential for estrogens in preventing Alzheimer’s disease and vascular dementia. Ther. Adv. Neurol. Disord. 2009, 2, 31–49. [Google Scholar] [CrossRef]
- Kolahchi, Z.; Henkel, N.; Eladawi, M.A.; Villarreal, E.C.; Kandimalla, P.; Lundh, A.; McCullumsmith, R.E.; Cuevas, E. Sex and Gender Differences in Alzheimer’s Disease: Genetic, Hormonal, and Inflammation Impacts. Int. J. Mol. Sci. 2024, 25, 8485. [Google Scholar] [CrossRef]
- Christensen, L.L.; Poulsen, H.E.; Andersen, M.S.; Glintborg, D. Whole-body oxidative stress reduction during testosterone therapy in aging men: A randomized placebo-controlled trial. Andrology 2024, 12, 115–122. [Google Scholar] [CrossRef]
- Babcock, M.C.; Dubose, L.E.; Witten, T.L.; Stauffer, B.L.; Hildreth, K.L.; Schwartz, R.S.; Kohrt, W.M.; Moreau, K.L. Oxidative Stress and Inflammation Are Associated with Age-Related Endothelial Dysfunction in Men with Low Testosterone. J. Clin. Endocrinol. Metab. 2022, 107, E500–E514. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Chung, W. Effect of Aging on Educational Differences in the Risk of Cognitive Impairment: A Gender-Specific Analysis Using Korean Longitudinal Study of Aging (2006–2016). Healthcare 2022, 10, 1062. [Google Scholar] [CrossRef]
- Rocca, W.A.; Mielke, M.M.; Vemuri, P.; Miller, V.M. Sex and gender differences in the causes of dementia: A narrative review. Maturitas 2014, 79, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Rocca, W.A. Time, Sex, Gender, History, and Dementia. Alzheimer Dis. Assoc. Disord. 2017, 31, 76–79. [Google Scholar] [CrossRef]
- O’Donovan, G.; Hamer, M.; Sarmiento, O.L.; Hessel, P. Education in early life markedly reduces the probability of cognitive impairment in later life in Colombia. Sci. Rep. 2020, 10, 17685. [Google Scholar] [CrossRef]
- 2024 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024, 20, 3708–3821. [CrossRef] [PubMed]
- Ahmed, T.; Braidy, N. Editorial: From Oxidative Stress to Cognitive Decline—Towards Novel Therapeutic Approaches. Front. Mol. Neurosci. 2021, 14, 650498. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Romani, A.; Seripa, D.; Cremonini, E.; Bosi, C.; Magon, S.; Bergamini, C.M.; Valacchi, G.; Pilotto, A.; Zuliani, G. Systemic Oxidative Stress and Conversion to Dementia of Elderly Patients with Mild Cognitive Impairment. Biomed. Res. Int. 2014, 2014, 309507. [Google Scholar] [CrossRef]
- Hajjar, I.; Hayek, S.S.; Goldstein, F.C.; Martin, G.; Jones, D.P.; Quyyumi, A. Oxidative stress predicts cognitive decline with aging in healthy adults: An observational study. J. Neurinflamm. 2018, 15, 1–7. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild Cognitive Impairment. Continuum 2016, 22, 404–418. [Google Scholar] [CrossRef]
- Moore, J.T.; Bobula, J.A.; Short, T.B.; Mischel, M. A Functional Dementia Scale. J. Fam. Pract. 1983, 16, 499–503. [Google Scholar]
- Sharp, R. The Hamilton Rating Scale for Depression. Occup. Med. 2015, 65, 340. [Google Scholar] [CrossRef] [PubMed]
- Cullell, N.; Caruana, G.; Elias-Mas, A.; Delgado-Sanchez, A.; Artero, C.; Buongiorno, M.T.; Almería, M.; Ray, N.J.; Correa, S.A.L.; Krupinski, J. Glymphatic system clearance and Alzheimer’s disease risk: A CSF proteome-wide study. Alzheimer’s Res. Ther. 2025, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.T.; Mielke, M.M. Sex Differences in Alzheimer’s Disease. Neurol. Clin. 2023, 41, 343–358. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Praticò, D.; Clark, C.M.; Liun, F.; Lee, V.Y.M.; Trojanowski, J.Q. Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of Alzheimer disease. Arch. Neurol. 2002, 59, 972–976. [Google Scholar] [CrossRef] [PubMed]
- López, N.; Tormo, C.; De Blas, I.; Llinares, I.; Alom, J. Oxidative stress in Alzheimer’s disease and mild cognitive impairment with high sensitivity and specificity. J. Alzheimer’s Dis. 2013, 33, 823–829. [Google Scholar] [CrossRef]
- Cervellati, C.; Cremonini, E.; Bosi, C.; Magon, S.; Zurlo, A.; Bergamini, C.M.; Zuliani, G. Systemic Oxidative Stress in Older Patients with Mild Cognitive Impairment or Late Onset Alzheimer’s Disease. Curr. Alzheimer Res. 2013, 10, 365–372. [Google Scholar] [CrossRef]
- Burgetova, A.; Dusek, P.; Uher, T.; Vaneckova, M.; Vejrazka, M.; Burgetova, R.; Horakova, D.; Srpova, B.; Krasensky, J.; Lambert, L. Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics 2022, 12, 1365. [Google Scholar] [CrossRef]
- Akarsu, S.; Yilmaz, S.; Ozan, S.; Benzer, F.; Kurt, A.N.C.; Kurt, A. Effects of meningitis and encephalitis on oxidative state of blood and cerebrospinal fluid. J. Pediatr. Infect. Dis. 2008, 3, 189–194. [Google Scholar]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Estrogens in the Regulation of Liver Lipid Metabolism. Adv. Exp. Med. Biol. 2017, 1043, 227. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, Y.; Che, Z.; Tan, X.; Wu, B.; Wang, C.; Xu, C.; Xiao, J. The Hepatoprotective and Hepatotoxic Roles of Sex and Sex-Related Hormones. Front. Immunol. 2022, 13, 939631. [Google Scholar] [CrossRef]
- Son, S.W.; Lee, J.S.; Kim, H.G.; Kim, D.W.; Ahn, Y.C.; Son, C.G. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 2016, 136, 106–117. [Google Scholar] [CrossRef]
- Holmes, S.; Singh, M.; Su, C.; Cunningham, R.L. Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line. Endocrinology 2016, 157, 2824–2835. [Google Scholar] [CrossRef]
- Cunningham, R.L.; Singh, M.; O’Bryant, S.E.; Hall, J.R.; Barber, R.C. Oxidative stress, testosterone, and cognition among Caucasian and Mexican-American men with and without Alzheimer’s disease. J. Alzheimer’s Dis. 2014, 40, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Iakovou, E.; Kourti, M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front. Aging Neurosci. 2022, 14, 827900. [Google Scholar] [CrossRef] [PubMed]
- Yavuzer, H.; Yavuzer, S.; Cengiz, M.; Erman, H.; Doventas, A.; Balci, H.; Erdincler, D.S.; Uzun, H. Biomarkers of lipid peroxidation related to hypertension in aging. Hypertens. Res. 2016, 39, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, S.; Chen, Y. Superoxide Dismutase Modified the Association of Serum Malondialdehyde Levels with Cognitive Decline Among Older Adults: Findings from the Chinese Longitudinal Healthy Longevity Survey. J. Alzheimer’s Dis. 2024, 99, 657–665. [Google Scholar] [CrossRef]
- Yu, S.; Qian, L.; Ma, J. The influence of gender and wealth inequality on Alzheimer’s disease among the elderly: A global study. Heliyon 2023, 9, e14677. [Google Scholar] [CrossRef]
- Grimm, A.; Lim, Y.A.; Mensah-Nyagan, A.G.; Götz, J.; Eckert, A. Alzheimer’s disease, oestrogen and mitochondria: An ambiguous relationship. Mol. Neurobiol. 2012, 46, 151–160. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Tu, X.; Shen, H.; Qiu, H.; Chen, H.; He, J. High Serum Levels of Malondialdehyde and 8-OHdG are both Associated with Early Cognitive Impairment in Patients with Acute Ischaemic Stroke. Sci. Rep. 2017, 7, 9493. [Google Scholar] [CrossRef] [PubMed]
MCI (A−) n = 38 | MCI (A+) n = 38 | Controls n = 38 | |
---|---|---|---|
Sex (%) | |||
Men | 50.00 | 47.37 | 44.74 |
Women | 50.00 | 52.63 | 55.26 |
Age, mean ± SD (years) | 73.00 ± 6.00 | 75.00 ± 5.00 | 61.00 ± 8.00 |
BMI (kg/m2) | 27.6 | 26.2 | 27.7 |
Family history (%) | |||
Yes | 65.79 | 47.37 | 44.74 |
No | 34.21 | 52.63 | 55.26 |
Median Values | ||||
---|---|---|---|---|
Cerebrospinal Fluid Biomarkers | MCI (A−) n = 38 | MCI (A+) n = 38 | Controls (A−) n = 38 | p-Values |
Aβ42 (pg/mL) | 900.00 | 581.00 | 1211.00 | <0.001 |
Aβ40 (pg/mL) | 10,865.50 | 12,387.50 | 11,994.00 | 0.156 |
Aβ42/Aβ40 ratio | 0.09 | 0.04 | 0.11 | <0.001 |
p-tau (pg/mL) | 35.65 | 104.15 | 32.10 | <0.001 |
t-tau (pg/mL) | 297.00 | 639.00 | 249.00 | <0.001 |
MDA (ng/mL) | 126.50 | 82.00 | 56.00 | <0.050 |
ROS (mM) | 6.66 | 6.26 | 6.84 | 0.700 |
Serum Biomarkers | ||||
MDA (ng/mL) | 79.00 | 211.00 | 108.00 | 0.103 |
ROS (mM) | 7.71 | 8.07 | 7.02 | <0.050 |
Cerebrospinal Fluid Biomarkers | Aβ42 | Aβ40 | Aβ42/Aβ40 Ratio | p-tau | t-tau |
---|---|---|---|---|---|
MDA (ng/mL) | −0.102 | −0.151 | −0.051 | −0.007 | 0.032 |
ROS (mM) | 0.086 | 0.173 | −0.018 | 0.164 | 0.122 |
Serum Biomarkers | |||||
MDA (ng/mL) | −0.214 | −0.071 | −0.221 | 0.063 | 0.073 |
ROS (mM) | −0.095 | 0.139 | −0.170 | 0.129 | 0.128 |
Median Values | ||||||
---|---|---|---|---|---|---|
MCI (A−) n = 38 | MCI (A+) n = 38 | Controls (A−) n = 38 | ||||
Oxidative stress Biomarkers | Males n = 19 | Females n = 19 | Males n = 18 | Females n = 20 | Males n = 17 | Females n = 21 |
CSF | ||||||
MDA (ng/mL) | 133.00 | 80.50 | 157.00 * | 65.00 * | 56.50 | 68.00 |
ROS (mM) | 6.42 | 6.84 | 6.00 | 7.02 | 7.02 | 6.74 |
Serum | ||||||
MDA (ng/mL) | 136.00 | 62.50 | 236.50 | 162.50 | 53.50 | 134.00 |
ROS (mM) | 8.10 | 7.45 | 8.07 | 8.05 | 7.18 | 6.78 |
Median Values | ||||||
---|---|---|---|---|---|---|
MCI (A−) n = 38 | MCI (A+) n = 38 | Controls (A−) n = 38 | ||||
Oxidative Stress Biomarkers | Aged < 75 n = 19 | Aged ≥ 75 n = 19 | Aged < 75 n = 18 | Aged ≥ 75 n = 20 | Aged < 75 n = 21 | Aged ≥ 75 n = 17 |
CSF | ||||||
MDA (ng/mL) | 149.00 | 81.50 | 100.00 | 65.50 | 55.25 | 97.00 |
ROS (mM) | 6.76 | 6.54 | 6.20 | 6.97 | 6.82 | 7.31 |
Serum | ||||||
MDA (ng/mL) | 99.50 | 66.85 | 165.00 * | 240.00 * | 102.50 | 193.00 |
ROS (mM) | 7.45 | 8.13 | 8.58 | 8.01 | 6.99 | 7.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, S.; Tsolaki, M.; Ginoudis, A.; Tamvakis, A.; Tsolaki, A.; Makedou, K.; Lymperaki, E. Oxidative Stress Biomarkers as Preclinical Markers of Mild Cognitive Impairment: The Impact of Age and Sex. J. Pers. Med. 2025, 15, 171. https://doi.org/10.3390/jpm15050171
Ioannidou S, Tsolaki M, Ginoudis A, Tamvakis A, Tsolaki A, Makedou K, Lymperaki E. Oxidative Stress Biomarkers as Preclinical Markers of Mild Cognitive Impairment: The Impact of Age and Sex. Journal of Personalized Medicine. 2025; 15(5):171. https://doi.org/10.3390/jpm15050171
Chicago/Turabian StyleIoannidou, Stavroula, Magda Tsolaki, Argyrios Ginoudis, Androniki Tamvakis, Anthoula Tsolaki, Kali Makedou, and Evgenia Lymperaki. 2025. "Oxidative Stress Biomarkers as Preclinical Markers of Mild Cognitive Impairment: The Impact of Age and Sex" Journal of Personalized Medicine 15, no. 5: 171. https://doi.org/10.3390/jpm15050171
APA StyleIoannidou, S., Tsolaki, M., Ginoudis, A., Tamvakis, A., Tsolaki, A., Makedou, K., & Lymperaki, E. (2025). Oxidative Stress Biomarkers as Preclinical Markers of Mild Cognitive Impairment: The Impact of Age and Sex. Journal of Personalized Medicine, 15(5), 171. https://doi.org/10.3390/jpm15050171