Redefining Non-Motor Symptoms in Parkinson’s Disease
Abstract
:1. Introduction
2. Autonomic Dysfunction in Parkinson’s Disease
2.1. Sympathetic Autonomic Nervous System
2.2. Parasympathetic Autonomic Nervous System
2.3. Sialorrhea and Dysphagia
2.4. Constipation
2.5. Neurogenic Sexual Dysfunction
2.6. Urinary Symptoms
2.7. Cardiac Alterations
2.8. Orthostatic Hypotension
2.9. Seborrhea and Seborrheic Dermatitis
2.10. Anhidrosis/Hyperhidrosis
2.11. Thermoregulatory Alterations
3. Sensory Alterations in Parkinson’s Disease
3.1. Hyposmia
3.2. Ageusia
3.3. Visual Disturbances
3.4. Pain
3.5. Paresthesias
4. Sleep-Related Disorders in Parkinson’s Disease
4.1. REM Sleep Behavior Disorder
4.2. Insomnia and Sleep Fragmentation
4.3. Excessive Daytime Sleepiness
4.4. Restless Leg Syndrome and Obstructive Sleep Apnea
4.5. Mechanisms and Implications for Disease Progression
4.6. Clinical Management and Future Directions
5. Neuropsychiatric Manifestations in Parkinson’s Disease
5.1. Depression
5.2. Apathy
5.3. Anxiety
5.4. Visual Hallucinations
5.5. Phantosmia
6. Cognitive Dysfunction in Parkinson’s Disease
6.1. Inattention and Task-Switching Performance
6.2. Bradyphrenia
6.3. Dementia
6.4. Impulse Control Disorders and Impulsive-Compulsive Behaviors
7. Emerging Technologies and the Future of Personalized Care
8. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
α-syn | α-synuclein |
CBT | cognitive behavioral therapy |
CPAP | continuous positive airway pressure |
CSF | cerebrospinal fluid |
CSP | cortical silent period |
DBS | deep brain stimulation |
DMV | dorsal motor nucleus of the vagus |
DRT | dopamine replacement therapy |
EDS | excessive daytime sleepiness |
EEG | electroencephalogram |
FOp | frontal insular operculum |
ICD | impulse control disorder |
MAO-B | monoamine oxidase B |
NBM | nucleus basalis of Meynert |
NPDs | neuropsychiatric disorders |
NSAID | nonsteroidal anti-inflammatory drug |
OB | olfactory bulb |
OFC | orbitofrontal cortex |
OH | orthostatic hypotension |
OSA | obstructive sleep apnea |
PDD | Parkinson’s disease dementia |
PFC | prefrontal cortex |
RBD | REM sleep behavior disorder |
REM | rapid eye movement |
RLS | restless leg syndrome |
SC | spinal cord |
SD | seborrheic dermatitis |
SN | substantia nigra |
SNRI | serotonin–norepinephrine reuptake inhibitor |
SSRI | selective serotonin reuptake inhibitor |
TCA | tricyclic antidepressant |
TMS | transcranial magnetic stimulation |
TNF-α | tumor necrosis factor alpha |
UPDRS | Unified Parkinson’s Disease Rating Scale |
VTA | ventral tegmental area |
References
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Creese, B.; Politis, M.; Chaudhuri, K.R.; Ffytche, D.H.; Weintraub, D.; Ballard, C. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 2017, 13, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Manuel Rojo-Abuin, J.; Rizos, A.; Rodriguez-Blazquez, C.; Trenkwalder, C.; Perkins, L.; Sauerbier, A.; Odin, P.; Antonini, A.; Chaudhuri, K.R. Distribution and impact on quality of life of the pain modalities assessed by the King’s Parkinson’s disease pain scale. NPJ Park.’s Dis. 2017, 3, 8. [Google Scholar] [CrossRef]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef]
- Todorova, A.; Jenner, P.; Ray Chaudhuri, K. Non-motor Parkinson’s: Integral to motor Parkinson’s, yet often neglected. Pract. Neurol. 2014, 14, 310–322. [Google Scholar] [CrossRef]
- Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Braak, H.; Sastre, M.; Del Tredici, K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol. 2007, 114, 231–241. [Google Scholar] [CrossRef]
- Kaufmann, H.; Goldstein, D.S. Autonomic dysfunction in Parkinson disease. Handb. Clin. Neurol. 2013, 117, 259–278. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Zhou, X.; Xiang, Y.; Zhu, L.; Qin, L.; Wang, Y.; Pan, H.; Zhao, Y.; Sun, Q.; et al. Characteristics of Autonomic Dysfunction in Parkinson’s Disease: A Large Chinese Multicenter Cohort Study. Front. Aging Neurosci. 2021, 13, 761044. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, G.; Liu, J. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 2020, 134, 104700. [Google Scholar] [CrossRef]
- Stewart, C.B.; Ledingham, D.; Foster, V.K.; Anderson, K.N.; Sathyanarayana, S.; Galley, D.; Pavese, N.; Pasquini, J. The longitudinal progression of autonomic dysfunction in Parkinson’s disease: A 7-year study. Front. Neurol. 2023, 14, 1155669. [Google Scholar] [CrossRef]
- Jain, S. Multi-organ autonomic dysfunction in Parkinson disease. Park. Relat. Disord. 2011, 17, 77–83. [Google Scholar] [CrossRef]
- Park, J.W.; Okamoto, L.E.; Kim, S.H.; Lee, C.N.; Park, K.W.; Baek, S.H.; Sung, J.H.; Jeon, N.; Koh, S.B.; Gamboa, A.; et al. Sympathetic dysfunction as an early indicator of autonomic involvement in Parkinson’s disease. Clin. Auton. Res. 2024, 34, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Chelimsky, T.C. Pure autonomic failure. Handb. Clin. Neurol. 2019, 161, 413–422. [Google Scholar] [CrossRef]
- Isonaka, R.; Sullivan, P.; Goldstein, D.S. Pathophysiological Significance of α-Synuclein in Sympathetic Nerves: In Vivo Observations. Neurology 2025, 104, e210215. [Google Scholar] [CrossRef]
- Wakabayashi, K. Where and how alpha-synuclein pathology spreads in Parkinson’s disease. Neuropathology 2020, 40, 415–425. [Google Scholar] [CrossRef]
- Fumimura, Y.; Ikemura, M.; Saito, Y.; Sengoku, R.; Kanemaru, K.; Sawabe, M.; Arai, T.; Ito, G.; Iwatsubo, T.; Fukayama, M.; et al. Analysis of the adrenal gland is useful for evaluating pathology of the peripheral autonomic nervous system in lewy body disease. J. Neuropathol. Exp. Neurol. 2007, 66, 354–362. [Google Scholar] [CrossRef]
- Shen, L.; Yang, X.; Lu, W.; Chen, W.; Ye, X.; Wu, D. 24-hour ambulatory blood pressure alterations in patients with Parkinson’s disease. Brain Behav. 2022, 12, e2428. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Marinus, J.; Stiggelbout, A.M.; Van Hilten, J.J. Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. 2004, 19, 1306–1312. [Google Scholar] [CrossRef]
- Schestatsky, P.; Valls-Solé, J.; Ehlers, J.A.; Rieder, C.R.; Gomes, I. Hyperhidrosis in Parkinson’s disease. Mov. Disord. 2006, 21, 1744–1748. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.C.; Cuenca-Bermejo, L.; Fernandez-Villalba, E.; Martin-Balbuena, S.; da Silva Fernandes, M.J.; Scorza, C.A.; Herrero, M.T. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson’s Disease. Neuroscientist 2022, 28, 530–542. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakamura, T.; Hirayama, M.; Ueda, M.; Katsuno, M.; Sobue, G. Cardiac parasympathetic dysfunction in the early phase of Parkinson’s disease. J. Neurol. 2017, 264, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Palma, J.A.; Kaufmann, H. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov. Disord. 2018, 33, 372–390. [Google Scholar] [CrossRef]
- van Wamelen, D.J.; Leta, V.; Johnson, J.; Ocampo, C.L.; Podlewska, A.M.; Rukavina, K.; Rizos, A.; Martinez-Martin, P.; Chaudhuri, K.R. Drooling in Parkinson’s Disease: Prevalence and Progression from the Non-motor International Longitudinal Study. Dysphagia 2020, 35, 955–961. [Google Scholar] [CrossRef]
- Polychronis, S.; Nasios, G.; Dardiotis, E.; Messinis, L.; Pagano, G. Pathophysiology and Symptomatology of Drooling in Parkinson’s Disease. Healthcare 2022, 10, 516. [Google Scholar] [CrossRef]
- Isaacson, J.; Patel, S.; Torres-Yaghi, Y.; Pagán, F. Sialorrhea in Parkinson’s Disease. Toxins 2020, 12, 691. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Ge, N.N.; Zhu, H.H.; Sha, Z.T.; Jiang, T.; Zhang, Y.D.; Tian, Y.Y. Dihydroergotoxine mesylate for the treatment of sialorrhea in Parkinson’s disease. Park. Relat. Disord. 2019, 58, 70–73. [Google Scholar] [CrossRef]
- Suttrup, I.; Warnecke, T. Dysphagia in Parkinson’s Disease. Dysphagia 2016, 31, 24–32. [Google Scholar] [CrossRef]
- Umemoto, G.; Furuya, H. Management of Dysphagia in Patients with Parkinson’s Disease and Related Disorders. Intern. Med. 2020, 59, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Labeit, B.; Berkovich, E.; Claus, I.; Roderigo, M.; Schwake, A.L.; Izgelov, D.; Mimrod, D.; Ahring, S.; Oelenberg, S.; Muhle, P.; et al. Dysphagia for medication in Parkinson’s disease. NPJ Park.’s Dis. 2022, 8, 156. [Google Scholar] [CrossRef]
- Cosentino, G.; Avenali, M.; Schindler, A.; Pizzorni, N.; Montomoli, C.; Abbruzzese, G.; Antonini, A.; Barbiera, F.; Benazzo, M.; Benarroch, E.E.; et al. A multinational consensus on dysphagia in Parkinson’s disease: Screening, diagnosis and prognostic value. J. Neurol. 2022, 269, 1335–1352. [Google Scholar] [CrossRef] [PubMed]
- López-Liria, R.; Parra-Egeda, J.; Vega-Ramírez, F.A.; Aguilar-Parra, J.M.; Trigueros-Ramos, R.; Morales-Gázquez, M.J.; Rocamora-Pérez, P. Treatment of Dysphagia in Parkinson’s Disease: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4104. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.L.; Huang, J.P.; Tan, Y.C.; Wang, T.T.; Zhang, H.; Qu, Y. The effectiveness and safety of botulinum toxin injections for the treatment of sialorrhea with Parkinson’s disease: A systematic review and meta-analysis. BMC Pharmacol. Toxicol. 2023, 24, 52. [Google Scholar] [CrossRef]
- Safarpour, D.; Stover, N.; Shprecher, D.R.; Hamedani, A.G.; Pfeiffer, R.F.; Parkman, H.P.; Quigley, E.M.; Cloud, L.J. Consensus practice recommendations for management of gastrointestinal dysfunction in Parkinson disease. Park. Relat. Disord. 2024, 124, 106982. [Google Scholar] [CrossRef]
- Savica, R.; Boeve, B.F.; Mielke, M.M. When Do α-Synucleinopathies Start? An Epidemiological Timeline: A Review. JAMA Neurol. 2018, 75, 503–509. [Google Scholar] [CrossRef]
- Stocchi, F.; Torti, M. Constipation in Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 134, 811–826. [Google Scholar] [CrossRef]
- Yu, Q.J.; Yu, S.Y.; Zuo, L.J.; Lian, T.H.; Hu, Y.; Wang, R.D.; Piao, Y.S.; Guo, P.; Liu, L.; Jin, Z.; et al. Parkinson disease with constipation: Clinical features and relevant factors. Sci. Rep. 2018, 8, 567. [Google Scholar] [CrossRef]
- Frazzitta, G.; Ferrazzoli, D.; Folini, A.; Palamara, G.; Maestri, R. Severe Constipation in Parkinson’s Disease and in Parkinsonisms: Prevalence and Affecting Factors. Front. Neurol. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa Carrasco, A.J.; Timmermann, L.; Pedrosa, D.J. Management of constipation in patients with Parkinson’s disease. NPJ Park.’s Dis. 2018, 4, 6. [Google Scholar] [CrossRef]
- Raciti, L.; De Cola, M.C.; Ortelli, P.; Corallo, F.; Lo Buono, V.; Morini, E.; Quattrini, F.; Filoni, S.; Calabrò, R.S. Sexual Dysfunction in Parkinson Disease: A Multicenter Italian Cross-sectional Study on a Still Overlooked Problem. J. Sex. Med. 2020, 17, 1914–1925. [Google Scholar] [CrossRef] [PubMed]
- Benigno, M.D.S.; Amaral Domingues, C.; Araujo Leite, M.A. Sexual Dysfunction in Parkinson’s Disease: A Systematic Review of the Arizona Sexual Experience Scale Sexual Dysfunction in Parkinson Disease: A Systematic Review of the Arizona Sexual Experience Scale. J. Geriatr. Psychiatry Neurol. 2023, 36, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Haktanır, D.; Yılmaz, S. Sexual Dysfunction and Related Factors in Patients with Parkinson’s Disease. J. Psychosoc. Nurs. Ment. Health Serv. 2023, 61, 45–55. [Google Scholar] [CrossRef]
- Codling, D.; Shaw, P.; David, A.S. Hypersexuality in Parkinson’s Disease: Systematic Review and Report of 7 New Cases. Mov. Disord. Clin. Pract. 2015, 2, 116–126. [Google Scholar] [CrossRef]
- Jost, W.H. Autonomic dysfunctions in idiopathic Parkinson’s disease. J. Neurol. 2003, 250 (Suppl. 1), I28–I30. [Google Scholar] [CrossRef]
- Robinson, B.W.; Mishkin, M. Penile erection evoked from forebrain structures in Macaca mulatta. Arch. Neurol. 1968, 19, 184–198. [Google Scholar] [CrossRef]
- Temel, Y.; Visser-Vandewalle, V.; Ackermans, L.; Beuls, E.A. Thalamus and penile erection. Int. J. Impot. Res. 2004, 16, 505–511. [Google Scholar] [CrossRef]
- Pavy-Le Traon, A.; Cotterill, N.; Amarenco, G.; Duerr, S.; Kaufmann, H.; Lahrmann, H.; Tison, F.; Wenning, G.K.; Goetz, C.G.; Poewe, W.; et al. Clinical Rating Scales for Urinary Symptoms in Parkinson Disease: Critique and Recommendations. Mov. Disord. Clin. Pract. 2018, 5, 479–491. [Google Scholar] [CrossRef]
- Li, F.F.; Cui, Y.S.; Yan, R.; Cao, S.S.; Feng, T. Prevalence of lower urinary tract symptoms, urinary incontinence and retention in Parkinson’s disease: A systematic review and meta-analysis. Front. Aging Neurosci. 2022, 14, 977572. [Google Scholar] [CrossRef] [PubMed]
- Valentino, F.; Bartolotta, T.V.; Cosentino, G.; Mastrilli, S.; Arnao, V.; Aridon, P.; Scurria, S.; Pavone, A.; Pavone, C.; D’Amelio, M. Urological dysfunctions in patients with Parkinson’s disease: Clues from clinical and non-invasive urological assessment. BMC Neurol. 2018, 18, 148. [Google Scholar] [CrossRef] [PubMed]
- Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef]
- Nam, D.; Lee, J.Y.; Lee, M.; Kim, J.; Seol, W.; Son, I.; Ho, D.H. Detection and Assessment of α-Synuclein Oligomers in the Urine of Parkinson’s Disease Patients. J. Park’s Dis. 2020, 10, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Cui, X.; Yoshimura, N.; Mao, W.; Xu, E.; Wang, Q.; Ou, T. Assessment and Management of Urinary Dysfunction in 187 Patients with Parkinson’s Disease. J. Park’s Dis. 2020, 10, 993–1001. [Google Scholar] [CrossRef]
- Yeo, L.; Singh, R.; Gundeti, M.; Barua, J.M.; Masood, J. Urinary tract dysfunction in Parkinson’s disease: A review. Int. Urol. Nephrol. 2012, 44, 415–424. [Google Scholar] [CrossRef]
- Li, S.T.; Dendi, R.; Holmes, C.; Goldstein, D.S. Progressive loss of cardiac sympathetic innervation in Parkinson’s disease. Ann. Neurol. 2002, 52, 220–223. [Google Scholar] [CrossRef]
- Cuenca-Bermejo, L.; Almela, P.; Navarro-Zaragoza, J.; Fernández Villalba, E.; González-Cuello, A.M.; Laorden, M.L.; Herrero, M.T. Cardiac Changes in Parkinson’s Disease: Lessons from Clinical and Experimental Evidence. Int. J. Mol. Sci. 2021, 22, 13488. [Google Scholar] [CrossRef]
- Scorza, F.A.; Fiorini, A.C.; Scorza, C.A.; Finsterer, J. Cardiac abnormalities in Parkinson’s disease and Parkinsonism. J. Clin. Neurosci. 2018, 53, 1–5. [Google Scholar] [CrossRef]
- Satoh, A.; Serita, T.; Seto, M.; Tomita, I.; Satoh, H.; Iwanaga, K.; Takashima, H.; Tsujihata, M. Loss of 123I-MIBG uptake by the heart in Parkinson’s disease: Assessment of cardiac sympathetic denervation and diagnostic value. J. Nucl. Med. 1999, 40, 371–375. [Google Scholar]
- Orimo, S.; Uchihara, T.; Nakamura, A.; Mori, F.; Kakita, A.; Wakabayashi, K.; Takahashi, H. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain 2008, 131, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Denfeld, Q.E.; Turrise, S.; MacLaughlin, E.J.; Chang, P.S.; Clair, W.K.; Lewis, E.F.; Forman, D.E.; Goodlin, S.J. Preventing and Managing Falls in Adults with Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e000108. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.F. Autonomic Dysfunction in Parkinson’s Disease. Neurotherapeutics 2020, 17, 1464–1479. [Google Scholar] [CrossRef]
- Lamotte, G.; Lenka, A. Orthostatic Hypotension in Parkinson Disease: What Is New? Neurol. Clin. Pract. 2022, 12, e112–e115. [Google Scholar] [CrossRef] [PubMed]
- Cutsforth-Gregory, J.K.; Low, P.A. Neurogenic Orthostatic Hypotension in Parkinson Disease: A Primer. Neurol. Ther. 2019, 8, 307–324. [Google Scholar] [CrossRef]
- Fathy, Y.Y.; Jonker, A.J.; Oudejans, E.; de Jong, F.J.J.; van Dam, A.W.; Rozemuller, A.J.M.; van De Berg, W.D.J. Differential insular cortex subregional vulnerability to α-synuclein pathology in Parkinson’s disease and dementia with Lewy bodies. Neuropathol. Appl. Neurobiol. 2019, 45, 262–277. [Google Scholar] [CrossRef]
- Xing, Y.; Li, Q.; Xu, E.; Zeng, J.; Li, Q.; Mei, S.; Hua, Y. Impaired Cerebral Autoregulation in Parkinson’s Disease: An Orthostatic Hypotension Analysis. Front. Neurol. 2022, 13, 811698. [Google Scholar] [CrossRef]
- Goldstein, D.S. Dysautonomia in Parkinson’s disease: Neurocardiological abnormalities. Lancet Neurol. 2003, 2, 669–676. [Google Scholar] [CrossRef]
- Fujita, H.; Ogaki, K.; Shiina, T.; Sakuramoto, H.; Nozawa, N.; Suzuki, K. Impact of autonomic symptoms on the clinical course of Parkinson’s disease. Neurol. Sci. 2024, 45, 3799–3807. [Google Scholar] [CrossRef]
- Tulbă, D.; Cozma, L.; Bălănescu, P.; Buzea, A.; Băicuș, C.; Popescu, B.O. Blood Pressure Patterns in Patients with Parkinson’s Disease: A Systematic Review. J. Pers. Med. 2021, 11, 129. [Google Scholar] [CrossRef]
- Velseboer, D.C.; de Haan, R.J.; Wieling, W.; Goldstein, D.S.; de Bie, R.M. Prevalence of orthostatic hypotension in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2011, 17, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Sano, U. Finding the Balance: Review of Pharmacological Management of Orthostatic Hypotension in Patients with Parkinson’s Disease. J. Gerontol. Nurs. 2024, 50, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Tomic, S.; Kuric, I.; Kuric, T.G.; Popovic, Z.; Kragujevic, J.; Zubonja, T.M.; Rajkovaca, I.; Matosa, S. Seborrheic Dermatitis Is Related to Motor Symptoms in Parkinson’s Disease. J. Clin. Neurol. 2022, 18, 628–634. [Google Scholar] [CrossRef]
- Sinclair, E.; Trivedi, D.K.; Sarkar, D.; Walton-Doyle, C.; Milne, J.; Kunath, T.; Rijs, A.M.; de Bie, R.M.A.; Goodacre, R.; Silverdale, M.; et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 2021, 12, 1592. [Google Scholar] [CrossRef] [PubMed]
- Laurence, M.; Benito-León, J.; Calon, F. Malassezia and Parkinson’s Disease. Front. Neurol. 2019, 10, 758. [Google Scholar] [CrossRef]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef]
- Clark, G.W.; Pope, S.M.; Jaboori, K.A. Diagnosis and treatment of seborrheic dermatitis. Am. Fam. Physician 2015, 91, 185–190. [Google Scholar]
- Schestatsky, P.; Ehlers, J.A.; Rieder, C.R.; Gomes, I. Evaluation of sympathetic skin response in Parkinson’s disease. Park. Relat. Disord. 2006, 12, 486–491. [Google Scholar] [CrossRef]
- Swinn, L.; Schrag, A.; Viswanathan, R.; Bloem, B.R.; Lees, A.; Quinn, N. Sweating dysfunction in Parkinson’s disease. Mov. Disord. 2003, 18, 1459–1463. [Google Scholar] [CrossRef]
- Greaney, J.L.; Alexander, L.M.; Kenney, W.L. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J. Appl. Physiol. 2015, 119, 771–782. [Google Scholar] [CrossRef]
- Dabby, R.; Djaldetti, R.; Shahmurov, M.; Treves, T.A.; Gabai, B.; Melamed, E.; Sadeh, M.; Avinoach, I. Skin biopsy for assessment of autonomic denervation in Parkinson’s disease. J. Neural Transm. 2006, 113, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, M. Sweating dysfunctions in Parkinson’s disease. J. Neurol. 2006, 253 (Suppl. 7), vii42–vii47. [Google Scholar] [CrossRef]
- Benson, R.A.; Palin, R.; Holt, P.J.; Loftus, I.M. Diagnosis and management of hyperhidrosis. Br. Med. J. 2013, 347, f6800. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology 2009, 72, S1–S136. [Google Scholar] [CrossRef] [PubMed]
- Coon, E.A.; Low, P.A. Thermoregulation in Parkinson disease. Handb. Clin. Neurol. 2018, 157, 715–725. [Google Scholar] [CrossRef]
- Savioli, G.; Ceresa, I.F.; Bavestrello Piccini, G.; Gri, N.; Nardone, A.; La Russa, R.; Saviano, A.; Piccioni, A.; Ricevuti, G.; Esposito, C. Hypothermia: Beyond the Narrative Review—The Point of View of Emergency Physicians and Medico-Legal Considerations. J. Pers. Med. 2023, 13, 1690. [Google Scholar] [CrossRef]
- Krämer, H.H.; Lautenschläger, G.; de Azevedo, M.; Doppler, K.; Schänzer, A.; Best, C.; Oertel, W.H.; Reuter, I.; Sommer, C.; Birklein, F. Reduced central sympathetic activity in Parkinson’s disease. Brain Behav. 2019, 9, e01463. [Google Scholar] [CrossRef]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef]
- Nolano, M.; Provitera, V.; Estraneo, A.; Selim, M.M.; Caporaso, G.; Stancanelli, A.; Saltalamacchia, A.M.; Lanzillo, B.; Santoro, L. Sensory deficit in Parkinson’s disease: Evidence of a cutaneous denervation. Brain 2008, 131, 1903–1911. [Google Scholar] [CrossRef]
- Haehner, A.; Hummel, T.; Reichmann, H. Olfactory loss in Parkinson’s disease. Park.’s Dis. 2011, 2011, 450939. [Google Scholar] [CrossRef]
- Ansari, K.A.; Johnson, A. Olfactory function in patients with Parkinson’s disease. J. Chronic Dis. 1975, 28, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 2012, 8, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Haehner, A.; Boesveldt, S.; Berendse, H.W.; Mackay-Sim, A.; Fleischmann, J.; Silburn, P.A.; Johnston, A.N.; Mellick, G.D.; Herting, B.; Reichmann, H.; et al. Prevalence of smell loss in Parkinson’s disease—A multicenter study. Park. Relat. Disord. 2009, 15, 490–494. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, E.J.; Zhang, W.; Lu, Y.; Liu, R.; Huang, X.; Ciesielski-Jones, A.J.; Justice, M.A.; Cousins, D.S.; Peddada, S. Meta-analyses on prevalence of selected Parkinson’s nonmotor symptoms before and after diagnosis. Transl. Neurodegener. 2015, 4, 1. [Google Scholar] [CrossRef]
- Fullard, M.E.; Morley, J.F.; Duda, J.E. Olfactory Dysfunction as an Early Biomarker in Parkinson’s Disease. Neurosci. Bull. 2017, 33, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zhou, C.; Li, J.; Chen, L.; Yang, X.; Li, F. Hyposmia as a Predictive Marker of Parkinson’s Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2019, 2019, 3753786. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Roos, D.S.; Twisk, J.W.R.; Raijmakers, P.; Doty, R.L.; Berendse, H.W. Hyposmia as a marker of (non-)motor disease severity in Parkinson’s disease. J. Neural Transm. 2019, 126, 1471–1478. [Google Scholar] [CrossRef]
- He, R.; Zhao, Y.; He, Y.; Zhou, Y.; Yang, J.; Zhou, X.; Zhu, L.; Zhou, X.; Liu, Z.; Xu, Q.; et al. Olfactory Dysfunction Predicts Disease Progression in Parkinson’s Disease: A Longitudinal Study. Front. Neurosci. 2020, 14, 569777. [Google Scholar] [CrossRef]
- Fang, T.C.; Chang, M.H.; Yang, C.P.; Chen, Y.H.; Lin, C.H. The Association of Olfactory Dysfunction with Depression, Cognition, and Disease Severity in Parkinson’s Disease. Front. Neurol. 2021, 12, 779712. [Google Scholar] [CrossRef]
- Fujita, H.; Shiina, T.; Sakuramoto, H.; Nozawa, N.; Ogaki, K.; Suzuki, K. Sleep and Autonomic Manifestations in Parkinson’s Disease Complicated with Probable Rapid Eye Movement Sleep Behavior Disorder. Front. Neurosci. 2022, 16, 874349. [Google Scholar] [CrossRef]
- Sengoku, R.; Matsushima, S.; Bono, K.; Sakuta, K.; Yamazaki, M.; Miyagawa, S.; Komatsu, T.; Mitsumura, H.; Kono, Y.; Kamiyama, T.; et al. Olfactory function combined with morphology distinguishes Parkinson’s disease. Park. Relat. Disord. 2015, 21, 771–777. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Kim, J.Y.; Park, J.H.; Lee, J.E.; Park, S.I.; Yim, Y. Clinical significance of MRI-measured olfactory bulb height as an imaging biomarker of idiopathic Parkinson’s disease. PLoS ONE 2024, 19, e0312728. [Google Scholar] [CrossRef]
- Stefani, A.; Iranzo, A.; Holzknecht, E.; Perra, D.; Bongianni, M.; Gaig, C.; Heim, B.; Serradell, M.; Sacchetto, L.; Garrido, A.; et al. Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain 2021, 144, 1118–1126. [Google Scholar] [CrossRef]
- Srivastava, A.; Wang, Q.; Orrù, C.D.; Fernandez, M.; Compta, Y.; Ghetti, B.; Zanusso, G.; Zou, W.Q.; Caughey, B.; Beauchemin, C.A.A. Enhanced quantitation of pathological α-synuclein in patient biospecimens by RT-QuIC seed amplification assays. PLoS Pathog. 2024, 20, e1012554. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Lee, S.; Jeong, S.H.; Ye, B.S.; Sohn, Y.H.; Yun, M.; Lee, P.H. Clinical and Dopamine Depletion Patterns in Hyposmia- and Dysautonomia-Dominant Parkinson’s Disease. J. Park.’s Dis. 2021, 11, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.; Zhang, Y.; Lim, K.L.; Tanaka, Y.; Huang, H.; Gao, J.; Ross, C.A.; Dawson, V.L.; Dawson, T.M. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nat. Med. 2001, 7, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, J.; Zhao, X.; Nie, W.; Xu, X.; Liu, M.; Zhang, X. Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease. Neural Regen. Res. 2024, 19, 583–590. [Google Scholar] [CrossRef]
- Shah, M.; Deeb, J.; Fernando, M.; Noyce, A.; Visentin, E.; Findley, L.J.; Hawkes, C.H. Abnormality of taste and smell in Parkinson’s disease. Park. Relat. Disord. 2009, 15, 232–237. [Google Scholar] [CrossRef]
- Kashihara, K.; Hanaoka, A.; Imamura, T. Frequency and characteristics of taste impairment in patients with Parkinson’s disease: Results of a clinical interview. Intern. Med. 2011, 50, 2311–2315. [Google Scholar] [CrossRef]
- Cossu, G.; Melis, M.; Sarchioto, M.; Melis, M.; Melis, M.; Morelli, M.; Tomassini Barbarossa, I. 6-n-propylthiouracil taste disruption and TAS2R38 nontasting form in Parkinson’s disease. Mov. Disord. 2018, 33, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Jagota, P.; Chotechuang, N.; Anan, C.; Kitjawijit, T.; Boonla, C.; Bhidayasiri, R. Umami and Other Taste Perceptions in Patients with Parkinson’s Disease. J. Mov. Disord. 2022, 15, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Oppo, V.; Melis, M.; Melis, M.; Tomassini Barbarossa, I.; Cossu, G. "Smelling and Tasting" Parkinson’s Disease: Using Senses to Improve the Knowledge of the Disease. Front. Aging Neurosci. 2020, 12, 43. [Google Scholar] [CrossRef]
- Crowley, S.J.; Kanel, P.; Roytman, S.; Bohnen, N.I.; Hampstead, B.M. Basal forebrain integrity, cholinergic innervation and cognition in idiopathic Parkinson’s disease. Brain 2024, 147, 1799–1808. [Google Scholar] [CrossRef]
- Mantovani, E.; Zanini, A.; Cecchini, M.P.; Tamburin, S. The Association Between Neurocognitive Disorders and Gustatory Dysfunction: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2024, 34, 192–213. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Esparcia, P.; Schlüter, A.; Carmona, M.; Moreno, J.; Ansoleaga, B.; Torrejón-Escribano, B.; Gustincich, S.; Pujol, A.; Ferrer, I. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: Novel putative chemoreceptors in the human brain. J. Neuropathol. Exp. Neurol. 2013, 72, 524–539. [Google Scholar] [CrossRef]
- van der Lijn, I.; de Haan, G.A.; Huizinga, F.; van der Feen, F.E.; Rutgers, A.W.F.; Stellingwerf, C.; van Laar, T.; Heutink, J. Self-Reported Visual Complaints in People with Parkinson’s Disease: A Systematic Review. J. Park’s Dis. 2022, 12, 785–806. [Google Scholar] [CrossRef]
- van der Lijn, I.; de Haan, G.A.; van der Feen, F.E.; Huizinga, F.; Stellingwerf, C.; van Laar, T.; Heutink, J. Prevalence and nature of self-reported visual complaints in people with Parkinson’s disease—Outcome of the Screening Visual Complaints questionnaire. PLoS ONE 2023, 18, e0283122. [Google Scholar] [CrossRef]
- Brown, T.; Kanel, P.; Griggs, A.; Carli, G.; Vangel, R.; Albin, R.L.; Bohnen, N.I. Regional cerebral cholinergic vesicular transporter correlates of visual contrast sensitivity in Parkinson’s disease: Implications for visual and cognitive function. Park. Relat. Disord. 2025, 131, 107229. [Google Scholar] [CrossRef]
- Hely, M.A.; Reid, W.G.; Adena, M.A.; Halliday, G.M.; Morris, J.G. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008, 23, 837–844. [Google Scholar] [CrossRef]
- Beach, T.G.; Carew, J.; Serrano, G.; Adler, C.H.; Shill, H.A.; Sue, L.I.; Sabbagh, M.N.; Akiyama, H.; Cuenca, N. Phosphorylated α-synuclein-immunoreactive retinal neuronal elements in Parkinson’s disease subjects. Neurosci. Lett. 2014, 571, 34–38. [Google Scholar] [CrossRef]
- Ortuño-Lizarán, I.; Beach, T.G.; Serrano, G.E.; Walker, D.G.; Adler, C.H.; Cuenca, N. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson’s disease pathology severity. Mov. Disord. 2018, 33, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Ortuño-Lizarán, I.; Sánchez-Sáez, X.; Lax, P.; Serrano, G.E.; Beach, T.G.; Adler, C.H.; Cuenca, N. Dopaminergic Retinal Cell Loss and Visual Dysfunction in Parkinson Disease. Ann. Neurol. 2020, 88, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Li, J.; Zhou, L.; Liu, X.; Xiao, Z.; He, R.; Chu, H.; Tang, Y.; Liu, P.; Lu, X. Retinopathy in Parkinson’s disease: A potential biomarker for early diagnosis and clinical assessment. Neuroscience 2025, 565, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Eslami, F.; Ghiasian, M.; Mohamadrahimi, B.; Jiriaee, N.; Eslamighayour, A. Optical coherence tomography (OCT) findings in patients with Parkinson’s disease presenting to Farshchian Hospital (Sina) in 2019 compared to the normal population. J. Fr. Ophtalmol. 2025, 48, 104379. [Google Scholar] [CrossRef]
- Bilgin, Ş.; Uysal, H.A.; Bilgin, S.; Yaka, E.C.; Küsbeci, Ö.Y.; Şener, U. Assessment of Changes in Vascular Density in the Layers of the Eye in Patients with Parkinson’s Disease. Ann. Neurosci. 2024, 09727531241259841. [Google Scholar] [CrossRef]
- Erdem, M.; Soker, E.B.; Ozdogru, D.; Balal, M.; Ciloglu, E. Evaluation of retinal microvascular changes with OCT-A in Parkinson disease and essential tremor. Medicine 2024, 103, e40752. [Google Scholar] [CrossRef]
- Hamedani, A.G.; Abraham, D.S.; Maguire, M.G.; Willis, A.W. Visual Impairment Is More Common in Parkinson’s Disease and Is a Risk Factor for Poor Health Outcomes. Mov. Disord. 2020, 35, 1542–1549. [Google Scholar] [CrossRef]
- Mylius, V.; Perez Lloret, S.; Cury, R.G.; Teixeira, M.J.; Barbosa, V.R.; Barbosa, E.R.; Moreira, L.I.; Listik, C.; Fernandes, A.M.; de Lacerda Veiga, D.; et al. The Parkinson disease pain classification system: Results from an international mechanism-based classification approach. Pain 2021, 162, 1201–1210. [Google Scholar] [CrossRef]
- Nogueira, A.C.R.; Pereira, K.C.; Rodrigues, V.F.; Alves, D.P.A.; Marques, J.B.; Monteiro, E.R.; Jesus, I.R.T. Pain characterization in patients with Parkinson’s disease. Pain Pract. 2024, 24, 786–797. [Google Scholar] [CrossRef]
- Shalash, A.; Mohamed, S.R.; Badr, M.Y.; Elgamal, S.; Elaidy, S.A.; Elhamrawy, E.A.; Abdel-Tawab, H.; Elshebawy, H.; Abdelraheem, H.S.; Roushdy, T.; et al. Pain Characteristics of Parkinson’s Disease Using Validated Arabic Versions of the King’s Parkinson’s Disease Pain Scale and Questionnaire: A Multicenter Egyptian Study. J. Mov. Disord. 2024, 17, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, D.; Gambioli, F.; De Bartolo, M.I.; Mancinelli, R.; Biagioni, F.; Carotti, S.; Falato, E.; Leodori, G.; Puglisi-Allegra, S.; Vivacqua, G.; et al. Pain in Parkinson’s disease: A neuroanatomy-based approach. Brain Commun. 2024, 6, fcae210. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.T.; Lin, C.H. Pain in early-stage Parkinson’s disease: Implications from clinical features to pathophysiology mechanisms. J. Formos. Med. Assoc. 2017, 116, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.C.; Lin, C.H. An overview of pain in Parkinson’s disease. Clin. Park. Relat. Disord. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Cattaneo, C.; Jost, W.H. Pain in Parkinson’s Disease: Pathophysiology, Classification and Treatment. J. Integr. Neurosci. 2023, 22, 132. [Google Scholar] [CrossRef]
- Gandolfi, M.; Geroin, C.; Antonini, A.; Smania, N.; Tinazzi, M. Understanding and Treating Pain Syndromes in Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 134, 827–858. [Google Scholar] [CrossRef]
- Roversi, K.; Callai-Silva, N.; Roversi, K.; Griffith, M.; Boutopoulos, C.; Prediger, R.D.; Talbot, S. Neuro-Immunity and Gut Dysbiosis Drive Parkinson’s Disease-Induced Pain. Front. Immunol. 2021, 12, 759679. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Zhou, J.; Zou, H.; Ma, L.; Liu, C.; Xiao, Z.; Liu, X.; Tan, X.; Yu, T.; et al. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn. J. Neuroinflam. 2022, 19, 123. [Google Scholar] [CrossRef]
- Thompson, T.; Gallop, K.; Correll, C.U.; Carvalho, A.F.; Veronese, N.; Wright, E.; Stubbs, B. Pain perception in Parkinson’s disease: A systematic review and meta-analysis of experimental studies. Ageing Res. Rev. 2017, 35, 74–86. [Google Scholar] [CrossRef]
- Corrà, M.F.; Vila-Chã, N.; Sardoeira, A.; Hansen, C.; Sousa, A.P.; Reis, I.; Sambayeta, F.; Damásio, J.; Calejo, M.; Schicketmueller, A.; et al. Peripheral neuropathy in Parkinson’s disease: Prevalence and functional impact on gait and balance. Brain 2023, 146, 225–236. [Google Scholar] [CrossRef]
- Gibbons, C.H.; Garcia, J.; Wang, N.; Shih, L.C.; Freeman, R. The diagnostic discrimination of cutaneous α-synuclein deposition in Parkinson disease. Neurology 2016, 87, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Doppler, K.; Jentschke, H.M.; Schulmeyer, L.; Vadasz, D.; Janzen, A.; Luster, M.; Höffken, H.; Mayer, G.; Brumberg, J.; Booij, J.; et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol. 2017, 133, 535–545. [Google Scholar] [CrossRef] [PubMed]
- León-Bejarano, F.; Méndez, M.O.; Alba, A.; Rodríguez-Leyva, I.; González, F.J.; Rodríguez-Aranda, M.D.C.; Guevara, E.; Guirado-López, R.A.; Ramírez-Elías, M.G. Raman Spectroscopy Study of Skin Biopsies from Patients with Parkinson’s Disease: Trends in Alpha-Synuclein Aggregation from the Amide I Region. Appl. Spectrosc. 2022, 76, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Duan, S.; Yang, J.; Zheng, H.; Yuan, Y.; Tang, M.; Wang, Y.; Liu, Y.; Xia, Z.; Luo, H.; et al. Detection of skin α-synuclein using RT-QuIC as a diagnostic biomarker for Parkinson’s disease in the Chinese population. Eur. J. Med. Res. 2024, 29, 114. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Sun, L.; Zhi, Y.; Ding, J.; Yuan, Y.S.; Shen, F.F.; Li, X.; Ji, P.; Wang, Z.; et al. Phosphorylated α-synuclein deposits in sural nerve deriving from Schwann cells: A biomarker for Parkinson’s disease. Park. Relat. Disord. 2019, 60, 57–63. [Google Scholar] [CrossRef]
- Nolano, M.; Provitera, V.; Manganelli, F.; Iodice, R.; Stancanelli, A.; Caporaso, G.; Saltalamacchia, A.; Califano, F.; Lanzillo, B.; Picillo, M.; et al. Loss of cutaneous large and small fibers in naive and l-dopa-treated PD patients. Neurology 2017, 89, 776–784. [Google Scholar] [CrossRef]
- Vacchi, E.; Senese, C.; Chiaro, G.; Disanto, G.; Pinton, S.; Morandi, S.; Bertaina, I.; Bianco, G.; Staedler, C.; Galati, S.; et al. Alpha-synuclein oligomers and small nerve fiber pathology in skin are potential biomarkers of Parkinson’s disease. NPJ Park.’s Dis. 2021, 7, 119. [Google Scholar] [CrossRef]
- Melli, G.; Vacchi, E.; Biemmi, V.; Galati, S.; Staedler, C.; Ambrosini, R.; Kaelin-Lang, A. Cervical skin denervation associates with alpha-synuclein aggregates in Parkinson disease. Ann. Clin. Transl. Neurol. 2018, 5, 1394–1407. [Google Scholar] [CrossRef]
- Arias-Carrion, O.; Ortega-Robles, E.; Ortuno-Sahagun, D.; Ramirez-Bermudez, J.; Hamid, A.; Shalash, A. Sleep-Related Disorders in Parkinson’s Disease: Mechanisms, Diagnosis, and Therapeutic Approaches. CNS Neurol. Disord. Drug Targets 2025, 24, 132–143. [Google Scholar] [CrossRef]
- Duan, X.; Liu, H.; Hu, X.; Yu, Q.; Kuang, G.; Liu, L.; Zhang, S.; Wang, X.; Li, J.; Yu, D.; et al. Insomnia in Parkinson’s Disease: Causes, Consequences, and Therapeutic Approaches. Mol. Neurobiol. 2025, 62, 2292–2313. [Google Scholar] [CrossRef]
- Stefani, A.; Högl, B. Sleep in Parkinson’s disease. Neuropsychopharmacology 2020, 45, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, F.; Liu, X.; Zu, J.; Zhang, W.; Zhou, S.; Zhu, J.; Zhang, T.; Cui, G.; Xu, C. Association between serum neurofilament light chain levels and sleep disorders in patients with Parkinson’s disease. Neurosci. Lett. 2023, 812, 137394. [Google Scholar] [CrossRef] [PubMed]
- Burchill, E.; Watson, C.J.; Fanshawe, J.B.; Badenoch, J.B.; Rengasamy, E.; Ghanem, D.A.; Holle, C.; Conti, I.; Sadeq, M.A.; Saini, A.; et al. The impact of psychiatric comorbidity on Parkinson’s disease outcomes: A systematic review and meta-analysis. Lancet Reg. Health Eur. 2024, 39, 100870. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, D.; Sousa, M.; Maradan-Gachet, M.E.; Debove, I.; Lhommée, E.; Krack, P. Psychiatric and cognitive symptoms of Parkinson’s disease: A life’s tale. Rev. Neurol. 2025, 181, 265–283. [Google Scholar] [CrossRef]
- Macías-García, P.; Rashid-López, R.; Cruz-Gómez, Á.J.; Lozano-Soto, E.; Sanmartino, F.; Espinosa-Rosso, R.; González-Rosa, J.J. Neuropsychiatric Symptoms in Clinically Defined Parkinson’s Disease: An Updated Review of Literature. Behav. Neurol. 2022, 2022, 1213393. [Google Scholar] [CrossRef]
- Cong, S.; Xiang, C.; Zhang, S.; Zhang, T.; Wang, H.; Cong, S. Prevalence and clinical aspects of depression in Parkinson’s disease: A systematic review and meta-analysis of 129 studies. Neurosci. Biobehav. Rev. 2022, 141, 104749. [Google Scholar] [CrossRef]
- Qin, Y.; Li, J.; Quan, W.; Song, J.; Xu, J.; Chen, J. Risk of Parkinson’s disease and depression severity in different populations: A two-sample Mendelian randomization analysis. Brain Behav. 2024, 14, e3642. [Google Scholar] [CrossRef]
- Badenoch, J.B.; Paris, A.; Jacobs, B.M.; Noyce, A.J.; Marshall, C.R.; Waters, S. Neuroanatomical and prognostic associations of depression in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2024, 95, 966–973. [Google Scholar] [CrossRef]
- Pasquini, J.; Ceravolo, R.; Brooks, D.J.; Bonuccelli, U.; Pavese, N. Progressive loss of raphe nuclei serotonin transporter in early Parkinson’s disease: A longitudinal (123) I-FP-CIT SPECT study. Park. Relat. Disord. 2020, 77, 170–175. [Google Scholar] [CrossRef]
- Brazdis, R.M.; von Zimmermann, C.; Lenz, B.; Kornhuber, J.; Mühle, C. Peripheral Upregulation of Parkinson’s Disease-Associated Genes Encoding α-Synuclein, β-Glucocerebrosidase, and Ceramide Glucosyltransferase in Major Depression. Int. J. Mol. Sci. 2024, 25, 3219. [Google Scholar] [CrossRef]
- Sandoval-Rincon, M.; Saenz-Farret, M.; Miguel-Puga, A.; Micheli, F.; Arias-Carrion, O. Rational pharmacological approaches for cognitive dysfunction and depression in Parkinson’s disease. Front. Neurol. 2015, 6, 71. [Google Scholar] [CrossRef]
- den Brok, M.G.; van Dalen, J.W.; van Gool, W.A.; Moll van Charante, E.P.; de Bie, R.M.; Richard, E. Apathy in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2015, 30, 759–769. [Google Scholar] [CrossRef]
- Lee, S.; Song, E.; Zhu, M.; Appel-Cresswell, S.; McKeown, M.J. Apathy scores in Parkinson’s disease relate to EEG components in an incentivized motor task. Brain Commun. 2024, 6, fcae025. [Google Scholar] [CrossRef] [PubMed]
- Wee, N.; Kandiah, N.; Acharyya, S.; Chander, R.J.; Ng, A.; Au, W.L.; Tan, L.C. Baseline predictors of worsening apathy in Parkinson’s disease: A prospective longitudinal study. Park. Relat. Disord. 2016, 23, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.; MacAskill, M.; Pascoe, M.; Anderson, T.; Heron, C.L. Dimensions of apathy in Parkinson’s disease. Brain Behav. 2023, 13, e2862. [Google Scholar] [CrossRef]
- Robert, P.; Lanctôt, K.L.; Agüera-Ortiz, L.; Aalten, P.; Bremond, F.; Defrancesco, M.; Hanon, C.; David, R.; Dubois, B.; Dujardin, K.; et al. Is it time to revise the diagnostic criteria for apathy in brain disorders? The 2018 international consensus group. Eur. Psychiatry 2018, 54, 71–76. [Google Scholar] [CrossRef]
- Ou, R.; Lin, J.; Liu, K.; Jiang, Z.; Wei, Q.; Hou, Y.; Zhang, L.; Cao, B.; Zhao, B.; Song, W.; et al. Evolution of Apathy in Early Parkinson’s Disease: A 4-Years Prospective Cohort Study. Front. Aging Neurosci. 2020, 12, 620762. [Google Scholar] [CrossRef]
- Le Heron, C.; Horne, K.L.; MacAskill, M.R.; Livingstone, L.; Melzer, T.R.; Myall, D.; Pitcher, T.; Dalrymple-Alford, J.; Anderson, T.; Harrison, S. Cross-Sectional and Longitudinal Association of Clinical and Neurocognitive Factors with Apathy in Patients with Parkinson Disease. Neurology 2024, 102, e209301. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Cao, X.; Wang, L.; Gan, C.; Sun, H.; Shan, A.; Yuan, Y.; Zhang, K. Association between the functional connectivity of ventral tegmental area-prefrontal network and pure apathy in Parkinson’s disease: A cross-sectional study. Quant. Imaging Med. Surg. 2024, 14, 4735–4748. [Google Scholar] [CrossRef]
- Lucas-Jiménez, O.; Ojeda, N.; Peña, J.; Cabrera-Zubizarreta, A.; Díez-Cirarda, M.; Gómez-Esteban, J.C.; Gómez-Beldarrain, M.; Ibarretxe-Bilbao, N. Apathy and brain alterations in Parkinson’s disease: A multimodal imaging study. Ann. Clin. Transl. Neurol. 2018, 5, 803–814. [Google Scholar] [CrossRef]
- Martinez-Horta, S.; Sampedro, F.; Pagonabarraga, J.; Fernandez-Bobadilla, R.; Marin-Lahoz, J.; Riba, J.; Kulisevsky, J. Non-demented Parkinson’s disease patients with apathy show decreased grey matter volume in key executive and reward-related nodes. Brain Imaging Behav. 2017, 11, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yu, S.Y.; Zuo, L.J.; Cao, C.J.; Hu, Y.; Chen, Z.J.; Piao, Y.S.; Wang, Y.J.; Wang, X.M.; Chen, S.D.; et al. Excessive Iron and α-Synuclein Oligomer in Brain are Relevant to Pure Apathy in Parkinson Disease. J. Geriatr. Psychiatry Neurol. 2016, 29, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.P.; McDonald, K.R.; Allsop, D.; Diggle, P.J.; Leroi, I. Apathy as a behavioural marker of cognitive impairment in Parkinson’s disease: A longitudinal analysis. J. Neurol. 2020, 267, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Mele, B.; Van, S.; Holroyd-Leduc, J.; Ismail, Z.; Pringsheim, T.; Goodarzi, Z. Diagnosis, treatment and management of apathy in Parkinson’s disease: A scoping review. BMJ Open 2020, 10, e037632. [Google Scholar] [CrossRef]
- Broen, M.P.; Narayen, N.E.; Kuijf, M.L.; Dissanayaka, N.N.; Leentjens, A.F. Prevalence of anxiety in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2016, 31, 1125–1133. [Google Scholar] [CrossRef]
- Jia, M.; Yang, S.; Li, S.; Chen, S.; Wu, L.; Li, J.; Wang, H.; Wang, C.; Liu, Q.; Wu, K. Early identification of Parkinson’s disease with anxiety based on combined clinical and MRI features. Front. Aging Neurosci. 2024, 16, 1414855. [Google Scholar] [CrossRef]
- Carey, G.; Lopes, R.; Viard, R.; Betrouni, N.; Kuchcinski, G.; Devignes, Q.; Defebvre, L.; Leentjens, A.F.G.; Dujardin, K. Anxiety in Parkinson’s disease is associated with changes in the brain fear circuit. Park. Relat. Disord. 2020, 80, 89–97. [Google Scholar] [CrossRef]
- Torres, E.R.S.; Stanojlovic, M.; Zelikowsky, M.; Bonsberger, J.; Hean, S.; Mulligan, C.; Baldauf, L.; Fleming, S.; Masliah, E.; Chesselet, M.F.; et al. Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson’s disease. Neurobiol. Dis. 2021, 158, 105478. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, G.; Li, Y.; Arkin, E.; Zheng, Y.; Feng, T. Erythrocytic α-Synuclein Species for Parkinson’s Disease Diagnosis and the Correlations with Clinical Characteristics. Front. Aging Neurosci. 2022, 14, 827493. [Google Scholar] [CrossRef]
- Lian, T.; Zhang, W.; Li, D.; Guo, P.; He, M.; Zhang, Y.; Li, J.; Guan, H.; Zhang, W.; Luo, D.; et al. Parkinson’s disease with anxiety: Clinical characteristics and their correlation with oxidative stress, inflammation, and pathological proteins. BMC Geriatr. 2024, 24, 433. [Google Scholar] [CrossRef]
- Shi, Y.; Dobkin, R.; Weintraub, D.; Cho, H.R.; Caspell-Garcia, C.; Bock, M.; Brown, E.; Aarsland, D.; Dahodwala, N. Association of Baseline Depression and Anxiety with Longitudinal Health Outcomes in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2024, 11, 1103–1112. [Google Scholar] [CrossRef]
- Yao, N.; Shek-Kwan Chang, R.; Cheung, C.; Pang, S.; Lau, K.K.; Suckling, J.; Rowe, J.B.; Yu, K.; Ka-Fung Mak, H.; Chua, S.E.; et al. The default mode network is disrupted in Parkinson’s disease with visual hallucinations. Hum. Brain Mapp. 2014, 35, 5658–5666. [Google Scholar] [CrossRef]
- Clegg, B.J.; Duncan, G.W.; Khoo, T.K.; Barker, R.A.; Burn, D.J.; Yarnall, A.J.; Lawson, R.A. Categorising Visual Hallucinations in Early Parkinson’s Disease. J. Park’s Dis. 2018, 8, 447–453. [Google Scholar] [CrossRef]
- Fénelon, G.; Mahieux, F.; Huon, R.; Ziégler, M. Hallucinations in Parkinson’s disease: Prevalence, phenomenology and risk factors. Brain 2000, 123 Pt 4, 733–745. [Google Scholar] [CrossRef]
- Murphy, N.; Killen, A.; Gupta, R.K.; Graziadio, S.; Rochester, L.; Firbank, M.; Baker, M.R.; Allan, C.; Collerton, D.; Taylor, J.P.; et al. Exploring Bottom-Up Visual Processing and Visual Hallucinations in Parkinson’s Disease with Dementia. Front. Neurol. 2020, 11, 579113. [Google Scholar] [CrossRef]
- Ignatavicius, A.; Matar, E.; Lewis, S.J.G. Visual hallucinations in Parkinson’s disease: Spotlight on central cholinergic dysfunction. Brain 2025, 148, 376–393. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, B.; Lu, L.; Lan, W.; Pan, Y.; Zhang, L.; Dong, J.; Wang, M.; Zhang, L. Prevalence and risk factors for visual hallucinations in Chinese patients with Parkinson’s disease. J. Neurol. Sci. 2017, 372, 471–476. [Google Scholar] [CrossRef]
- d’Angremont, E.; van der Zee, S.; Slingerland, S.; Slomp, A.C.; de Vries, E.F.J.; van Laar, T.; Sommer, I.E. Cholinergic deficiency in Parkinson’s disease patients with visual hallucinations. Brain 2024, 147, 3370–3378. [Google Scholar] [CrossRef]
- Firbank, M.J.; Parikh, J.; Murphy, N.; Killen, A.; Allan, C.L.; Collerton, D.; Blamire, A.M.; Taylor, J.P. Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology 2018, 91, e675–e685. [Google Scholar] [CrossRef]
- Thomas, G.E.C.; Zeidman, P.; Sultana, T.; Zarkali, A.; Razi, A.; Weil, R.S. Changes in both top-down and bottom-up effective connectivity drive visual hallucinations in Parkinson’s disease. Brain Commun. 2023, 5, fcac329. [Google Scholar] [CrossRef]
- Zarkali, A.; McColgan, P.; Leyland, L.A.; Lees, A.J.; Weil, R.S. Longitudinal thalamic white and grey matter changes associated with visual hallucinations in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2022, 93, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzakis, M.E.; Christian, L.M.; Moran, L.B.; Graeber, M.B.; Pearce, R.K.; Gentleman, S.M. Dementia and visual hallucinations associated with limbic pathology in Parkinson’s disease. Park. Relat. Disord. 2009, 15, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Ikeda, T.; Ishida, C.; Komai, K.; Yamada, M. Delusions and visual hallucinations in a patient with Parkinson’s disease with dementia showing pronounced Lewy body pathology in the nucleus basalis of Meynert. Neuropathology 2019, 39, 319–323. [Google Scholar] [CrossRef]
- Williams, D.R.; Warren, J.D.; Lees, A.J. Using the presence of visual hallucinations to differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry 2008, 79, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Gillette, B.; Reid, J.A.; Shermetaro, C. Phantosmia. In StatPearls; StatPearls Publishing: Treasure Island, Finland, 2024. [Google Scholar]
- Solla, P.; Masala, C.; Pinna, I.; Ercoli, T.; Loy, F.; Orofino, G.; Fadda, L.; Defazio, G. Frequency and Determinants of Olfactory Hallucinations in Parkinson’s Disease Patients. Brain Sci. 2021, 11, 841. [Google Scholar] [CrossRef]
- Bannier, S.; Berdagué, J.L.; Rieu, I.; de Chazeron, I.; Marques, A.; Derost, P.; Ulla, M.; Llorca, P.M.; Durif, F. Prevalence and phenomenology of olfactory hallucinations in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1019–1021. [Google Scholar] [CrossRef]
- Landis, B.N.; Burkhard, P.R. Phantosmias and Parkinson disease. Arch. Neurol. 2008, 65, 1237–1239. [Google Scholar] [CrossRef]
- Ercoli, T.; Bagella, C.F.; Frau, C.; Ruiu, E.; Othmani, S.; Gusinu, G.; Masala, C.; Sechi, L.A.; Solla, P.; Defazio, G. Phantosmia in Parkinson’s Disease: A Systematic Review of the Phenomenology of Olfactory Hallucinations. Neurol. Int. 2023, 16, 20–32. [Google Scholar] [CrossRef]
- Wallace, E.R.; Segerstrom, S.C.; van Horne, C.G.; Schmitt, F.A.; Koehl, L.M. Meta-Analysis of Cognition in Parkinson’s Disease Mild Cognitive Impairment and Dementia Progression. Neuropsychol. Rev. 2022, 32, 149–160. [Google Scholar] [CrossRef]
- Lanni, K.E.; Ross, J.M.; Higginson, C.I.; Dressler, E.M.; Sigvardt, K.A.; Zhang, L.; Malhado-Chang, N.; Disbrow, E.A. Perceived and performance-based executive dysfunction in Parkinson’s disease. J. Clin. Exp. Neuropsychol. 2014, 36, 342–355. [Google Scholar] [CrossRef]
- Dirnberger, G.; Frith, C.D.; Jahanshahi, M. Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage 2005, 25, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y.; Mayeux, R.; Côté, L. Reaction time and vigilance in Parkinson’s disease. Possible role of altered norepinephrine metabolism. Arch. Neurol. 1984, 41, 1086–1089. [Google Scholar] [CrossRef]
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Cognitive impairment in Parkinson’s disease: The dual syndrome hypothesis. Neurodegener. Dis. 2013, 11, 79–92. [Google Scholar] [CrossRef]
- Salazar, R.D.; Ren, X.; Ellis, T.D.; Toraif, N.; Barthelemy, O.J.; Neargarder, S.; Cronin-Golomb, A. Dual tasking in Parkinson’s disease: Cognitive consequences while walking. Neuropsychology 2017, 31, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Proud, E.; Morris, M.E.; Bilney, B.; Miller, K.J.; Nijkrake, M.J.; Munneke, M.M.; McGinley, J.L. Effects of dual-task interference on dexterity performance in people with mild to moderately severe Parkinson’s disease: An observational analysis. J. Hand Ther. 2025, 38, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Kay, K.R.; Uc, E.Y. Real-life consequences of cognitive dysfunction in Parkinson’s disease. Prog. Brain Res. 2022, 269, 113–136. [Google Scholar] [CrossRef]
- Föcker, J.; Cole, D.; Beer, A.L.; Bavelier, D. Neural bases of enhanced attentional control: Lessons from action video game players. Brain Behav. 2018, 8, e01019. [Google Scholar] [CrossRef]
- Arabacı, G.; Parris, B.A. Inattention and task switching performance: The role of predictability, working memory load and goal neglect. Psychol. Res. 2020, 84, 2090–2110. [Google Scholar] [CrossRef]
- Li, S.; Ou, R.; Yuan, X.; Liu, H.; Hou, Y.; Wei, Q.; Song, W.; Cao, B.; Chen, Y.; Shang, H. Executive dysfunctions and behavioral changes in early drug-naïve patients with Parkinson’s disease. J. Affect. Disord. 2019, 243, 525–530. [Google Scholar] [CrossRef]
- Pont-Sunyer, C.; Hotter, A.; Gaig, C.; Seppi, K.; Compta, Y.; Katzenschlager, R.; Mas, N.; Hofeneder, D.; Brücke, T.; Bayés, A.; et al. The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov. Disord. 2015, 30, 229–237. [Google Scholar] [CrossRef]
- Melugin, P.R.; Nolan, S.O.; Kandov, E.; Ferrara, C.F.; Farahbakhsh, Z.Z.; Siciliano, C.A. Medial prefrontal dopamine dynamics reflect allocation of selective attention. bioRxiv 2024. [Google Scholar] [CrossRef]
- Arias-Carrion, O.; Poppel, E. Dopamine, learning, and reward-seeking behavior. Acta Neurobiol. Exp. 2007, 67, 481–488. [Google Scholar] [CrossRef]
- Woodward, T.S.; Bub, D.N.; Hunter, M.A. Task switching deficits associated with Parkinson’s disease reflect depleted attentional resources. Neuropsychologia 2002, 40, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Yousaf, J.; Ahmad, H. Frontal-subcortical defects correlate with task switching deficits in Parkinson`s disease. Neurosciences 2017, 22, 224–227. [Google Scholar] [CrossRef]
- Bin Yoo, H.; Concha, E.O.; De Ridder, D.; Pickut, B.A.; Vanneste, S. The Functional Alterations in Top-Down Attention Streams of Parkinson’s disease Measured by EEG. Sci. Rep. 2018, 8, 10609. [Google Scholar] [CrossRef]
- Katsuki, F.; Constantinidis, C. Bottom-up and top-down attention: Different processes and overlapping neural systems. Neuroscientist 2014, 20, 509–521. [Google Scholar] [CrossRef]
- Tommasi, G.; Fiorio, M.; Yelnik, J.; Krack, P.; Sala, F.; Schmitt, E.; Fraix, V.; Bertolasi, L.; Le Bas, J.F.; Ricciardi, G.K.; et al. Disentangling the Role of Cortico-Basal Ganglia Loops in Top-Down and Bottom-Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease. J. Cogn. Neurosci. 2015, 27, 1215–1237. [Google Scholar] [CrossRef] [PubMed]
- Bocquillon, P.; Bourriez, J.L.; Palmero-Soler, E.; Destée, A.; Defebvre, L.; Derambure, P.; Dujardin, K. Role of basal ganglia circuits in resisting interference by distracters: A swLORETA study. PLoS ONE 2012, 7, e34239. [Google Scholar] [CrossRef]
- Wulaer, B.; Kunisawa, K.; Tanabe, M.; Yanagawa, A.; Saito, K.; Mouri, A.; Nabeshima, T. Pharmacological blockade of dopamine D1- or D2-receptor in the prefrontal cortex induces attentional impairment in the object-based attention test through different neuronal circuits in mice. Mol. Brain 2021, 14, 43. [Google Scholar] [CrossRef]
- Fischer, M.; Moscovitch, M.; Alain, C. A systematic review and meta-analysis of memory-guided attention: Frontal and parietal activation suggests involvement of fronto-parietal networks. Wiley Interdiscip. Rev. Cogn. Sci. 2021, 12, e1546. [Google Scholar] [CrossRef]
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Revisiting the effects of Parkinson’s disease and frontal lobe lesions on task switching: The role of rule reconfiguration. J. Neuropsychol. 2014, 8, 53–74. [Google Scholar] [CrossRef]
- Mayeux, R.; Stern, Y.; Sano, M.; Cote, L.; Williams, J.B. Clinical and biochemical correlates of bradyphrenia in Parkinson’s disease. Neurology 1987, 37, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Peavy, G.M. Mild cognitive deficits in Parkinson disease: Where there is bradykinesia, there is bradyphrenia. Neurology 2010, 75, 1038–1039. [Google Scholar] [CrossRef] [PubMed]
- Steinke, A.; Lange, F.; Seer, C.; Hendel, M.K.; Kopp, B. Computational Modeling for Neuropsychological Assessment of Bradyphrenia in Parkinson’s Disease. J. Clin. Med. 2020, 9, 1158. [Google Scholar] [CrossRef]
- Letanneux, A.; Velay, J.L.; Viallet, F.; Pinto, S. Altered Inhibitory Mechanisms in Parkinson’s Disease: Evidence from Lexical Decision and Simple Reaction Time Tasks. Front. Hum. Neurosci. 2021, 15, 624026. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, R.M.; Cummings, J.L. Frontal-subcortical dementias. Neurologist 2008, 14, 100–107. [Google Scholar] [CrossRef]
- Wang, W.; Baker, K.; Umamahesan, C.; Gilmour, S.; Charlett, A.; Taylor, D.; Young, A.H.; Dobbs, R.J.; Dobbs, S.M. Bradyphrenia and Tachyphrenia in Idiopathic Parkinsonism Appear, in Part, Iatrogenic: An Observational Study with Systematic Review Background. J. Clin. Med. 2023, 12, 6499. [Google Scholar] [CrossRef]
- Gibson, L.L.; Weintraub, D.; Lemmen, R.; Perera, G.; Chaudhuri, K.R.; Svenningsson, P.; Aarsland, D. Risk of Dementia in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Mov. Disord. 2024, 39, 1697–1709. [Google Scholar] [CrossRef]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S.; et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 2007, 22, 1689–1707; quiz 1837. [Google Scholar] [CrossRef]
- Jellinger, K.A. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int. J. Mol. Sci. 2023, 25, 498. [Google Scholar] [CrossRef]
- Åström, D.O.; Simonsen, J.; Raket, L.L.; Sgarbi, S.; Hellsten, J.; Hagell, P.; Norlin, J.M.; Kellerborg, K.; Martinez-Martin, P.; Odin, P. High risk of developing dementia in Parkinson’s disease: A Swedish registry-based study. Sci. Rep. 2022, 12, 16759. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.; Drozdova, A.; Wang, W.; Thomas, M. The impact of dementia development concurrent with Parkinson’s disease: A new perspective. CNS Neurol. Disord. Drug Targets 2014, 13, 1160–1168. [Google Scholar] [CrossRef]
- Caballol, N.; Martí, M.J.; Tolosa, E. Cognitive dysfunction and dementia in Parkinson disease. Mov. Disord. 2007, 22 (Suppl. 17), S358–S366. [Google Scholar] [CrossRef]
- Emre, M. Dementia associated with Parkinson’s disease. Lancet Neurol. 2003, 2, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Gruszka, A.; Hampshire, A.; Barker, R.A.; Owen, A.M. Normal aging and Parkinson’s disease are associated with the functional decline of distinct frontal-striatal circuits. Cortex 2017, 93, 178–192. [Google Scholar] [CrossRef]
- Novikov, N.I.; Brazhnik, E.S.; Kitchigina, V.F. Pathological Correlates of Cognitive Decline in Parkinson’s Disease: From Molecules to Neural Networks. Biochemistry 2023, 88, 1890–1904. [Google Scholar] [CrossRef]
- Schreiber, L.; Odlaug, B.L.; Grant, J.E. Impulse control disorders: Updated review of clinical characteristics and pharmacological management. Front. Psychiatry 2011, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Theis, H.; Prange, S.; Bischof, G.N.; Hoenig, M.C.; Tittgemeyer, M.; Timmermann, L.; Fink, G.R.; Drzezga, A.; Eggers, C.; van Eimeren, T. Impulsive-compulsive behaviour in early Parkinson’s disease is determined by apathy and dopamine receptor D3 polymorphism. NPJ Park.’s Dis. 2023, 9, 154. [Google Scholar] [CrossRef]
- Jellinger, K.A. Behavioral disorders in Parkinson disease: Current view. J. Neural Transm. 2025, 132, 169–201. [Google Scholar] [CrossRef]
- Turcano, P.; Jacobson, J.; Ghoniem, K.; Mullan, A.; Camerucci, E.; Stang, C.; Piat, C.; Bower, J.H.; Savica, R. Impulse control disorders and use of dopamine agonists in early onset Parkinson’s disease. Front. Neurol. 2024, 15, 1404904. [Google Scholar] [CrossRef]
- Poletti, M.; Logi, C.; Lucetti, C.; Del Dotto, P.; Baldacci, F.; Vergallo, A.; Ulivi, M.; Del Sarto, S.; Rossi, G.; Ceravolo, R.; et al. A single-center, cross-sectional prevalence study of impulse control disorders in Parkinson disease: Association with dopaminergic drugs. J. Clin. Psychopharmacol. 2013, 33, 691–694. [Google Scholar] [CrossRef]
- Joutsa, J.; Martikainen, K.; Vahlberg, T.; Voon, V.; Kaasinen, V. Impulse control disorders and depression in Finnish patients with Parkinson’s disease. Park. Relat. Disord. 2012, 18, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Violante, M.; González-Latapi, P.; Cervantes-Arriaga, A.; Camacho-Ordoñez, A.; Weintraub, D. Impulse control and related disorders in Mexican Parkinson’s disease patients. Park. Relat. Disord. 2014, 20, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, D.; Claassen, D.O. Impulse Control and Related Disorders in Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 133, 679–717. [Google Scholar] [CrossRef] [PubMed]
- Wolters, E.; van der Werf, Y.D.; van den Heuvel, O.A. Parkinson’s disease-related disorders in the impulsive-compulsive spectrum. J. Neurol. 2008, 255 (Suppl. 5), 48–56. [Google Scholar] [CrossRef]
- Voon, V.; Mehta, A.R.; Hallett, M. Impulse control disorders in Parkinson’s disease: Recent advances. Curr. Opin. Neurol. 2011, 24, 324–330. [Google Scholar] [CrossRef]
- Napier, T.C.; Corvol, J.C.; Grace, A.A.; Roitman, J.D.; Rowe, J.; Voon, V.; Strafella, A.P. Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease. Mov. Disord. 2015, 30, 141–149. [Google Scholar] [CrossRef]
- Wolfschlag, M.; Cedergren Weber, G.; Weintraub, D.; Odin, P.; Håkansson, A. Impulse control disorders in Parkinson’s disease: A national Swedish registry study on high-risk treatments and vulnerable patient groups. J. Neurol. Neurosurg. Psychiatry 2024, 96, 265–271. [Google Scholar] [CrossRef]
- Luo, Y.; Xiang, Y.; Liu, J.; Hu, Y.; Guo, J. A Multi-omics Framework Based on Machine Learning as a Predictor of Cognitive Impairment Progression in Early Parkinson’s Disease. Neurol. Ther. 2025, 14, 643–658. [Google Scholar] [CrossRef]
- Tng, T.J.W.; Wong, B.W.Y.; Sim, E.H.Y.; Tan, E.K.; Goh, W.W.B.; Lim, K.-L. Systematic analysis of multi-omics data reveals component-specific blood-based biomarkers for Parkinson’s disease. Transl. Med. Commun. 2024, 9, 12. [Google Scholar] [CrossRef]
- Lejeune, F.-X.; Ichou, F.; Camenen, E.; Colsch, B.; Mauger, F.; Peltier, C.; Moszer, I.; Gilson, E.; Pierre-Jean, M.; Floch, E.L.; et al. A Multimodal Omics Exploration of the Motor and Non-Motor Symptoms of Parkinson’s Disease. Int. J. Transl. Med. 2022, 2, 97–112. [Google Scholar] [CrossRef]
- Hu, M.; Skjærbæk, C.; Borghammer, P. Approaches to Early Parkinson’s Disease Subtyping. J. Park’s Dis. 2024, 14, S297–S306. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, C.; Termine, A.; Caltagirone, C. Transcriptomics profiling of Parkinson’s disease progression subtypes reveals distinctive patterns of gene expression. J. Cent. Nerv. Syst. Dis. 2025, 17, 11795735241286821. [Google Scholar] [CrossRef]
- Serag, I.; Azzam, A.Y.; Hassan, A.K.; Diab, R.A.; Diab, M.; Hefnawy, M.T.; Ali, M.A.; Negida, A. Multimodal diagnostic tools and advanced data models for detection of prodromal Parkinson’s disease: A scoping review. BMC Med. Imaging 2025, 25, 103. [Google Scholar] [CrossRef]
- Rabie, H.; Akhloufi, M.A. A review of machine learning and deep learning for Parkinson’s disease detection. Discov. Artif. Intell. 2025, 5, 24. [Google Scholar] [CrossRef]
- Malaguti, M.C.; Gios, L.; Jurman, G. The third wheel or the game changer? How AI could team up with neurologists in Parkinson’s care. Park. Relat. Disord. 2025, 134, 107797. [Google Scholar] [CrossRef]
- Cerasa, A.; Novellino, F.; Quattrone, A. Connectivity Changes in Parkinson’s Disease. Curr. Neurol. Neurosci. Rep. 2016, 16, 91. [Google Scholar] [CrossRef]
- Caligiore, D.; Helmich, R.C.; Hallett, M.; Moustafa, A.A.; Timmermann, L.; Toni, I.; Baldassarre, G. Parkinson’s disease as a system-level disorder. NPJ Park.’s Dis. 2016, 2, 16025. [Google Scholar] [CrossRef]
- Liao, H.; Cai, S.; Shen, Q.; Fan, J.; Wang, T.; Zi, Y.; Mao, Z.; Situ, W.; Liu, J.; Zou, T.; et al. Networks Are Associated with Depression in Patients with Parkinson’s Disease: A Resting-State Imaging Study. Front. Neurosci. 2020, 14, 573538. [Google Scholar] [CrossRef]
- Permezel, F.; Alty, J.; Harding, I.H.; Thyagarajan, D. Brain Networks Involved in Sensory Perception in Parkinson’s Disease: A Scoping Review. Brain Sci. 2023, 13, 1552. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Yu, J.; Li, R.; Liao, W.; Chen, Q.; Xing, H.; Lu, F.; Hu, X.; Chen, H.; et al. Amygdala-centered fusional connections characterized nonmotor symptoms in Parkinson’s disease. Cereb. Cortex 2025, 35, bhaf002. [Google Scholar] [CrossRef] [PubMed]
Symptom | Prevalence and Stage | Biomarkers | Pharmacological Treatment | Non-Pharmacological Treatment |
---|---|---|---|---|
Sialorrhea | ↑ 37–84%, early | ↑ α-synuclein (basal ganglia) | Botulinum toxin, glycopyrrolate | Speech therapy, postural adjustments |
Dysphagia | ↑ 40–87%, early | ↑ α-synuclein (enteric nervous system) | Botulinum toxin, levodopa | Swallowing therapy, neuromodulation |
Constipation | ↑ 40–63%, Prodromal | ↑ α-synuclein (sacral nuclei) | Lubiprostone, prokinetics | Dietary fiber |
Sexual dysfunction | ↑ 65–90%, Early | No α-synuclein correlation | Sildenafil, hormone therapy | Psychotherapy, Couples therapy |
Urinary dysfunction | ↑ 25–61%, 5–6 years post-motor onset | ↑ α-synuclein (pelvic plexus) | Antimuscarinics, beta-3 agonists | Bladder training, Pelvic floor exercises |
Orthostatic hypotension | ↑ 30–50%, early/late | ↑ α-synuclein (autonomic nervous system) | Droxidopa, midodrine, fludrocortisone | ↑ Salt/fluids, compression stockings |
Seborrheic dermatitis | ↑ 52–59%, early and progressive | ↑ α-synuclein (sebaceous glands, dermal nerves) | Ketoconazole, cannabidiol | Skin care, microbiome modulation |
Symptom | Prevalence and Stage | Biomarkers | Pharmacological Treatment | Non-Pharmacological Treatment |
---|---|---|---|---|
Olfactory dysfunction | ↑ 90%, prodromal | ↑ α-synuclein (olfactory bulb, mucosa), ↓ functional activity | Intranasal insulin, DBS | Olfactory training |
Ageusia | ↑ 4–54%, mild-advanced | ↓ Taste receptor gene expression, neurodegeneration | No specific treatment | Dietary adjustments |
Visual disturbances | ↑ 90%, prodromal | ↑ α-synuclein (retina), ↓ dopamine, retinal atrophy | Dopaminergic therapy, artificial tears | Prism glasses, vision therapy |
Pain | ↑ 20–98%, prodromal | ↑ α-synuclein (spinal cord, nerves), ↓ dopamine, ↑ neuroinflammation | NSAIDs, anticonvulsants, opioids | Physical therapy, CBT, DBS |
Paresthesias | ↑ 40%, prodromal | ↑ α-synuclein (epidermal nerves), ↓ nerve fiber density | Dopaminergic meds, anticonvulsants | Sensory retraining |
Symptom | Prevalence and Stage | Biomarkers | Pharmacological Treatment | Non-Pharmacological Treatment |
---|---|---|---|---|
EDS | ↑ 21–76%, early | ↓ Hypocretin-1, ↑ Tau, ↑ α-synuclein | Modafinil, istradefylline, melatonin | Sleep hygiene, CBT, exercise |
Insomnia | ↑ 60–80%, early | ↑ α-synuclein, associated with motor and cognitive symptoms | Melatonin, benzodiazepines | CBT-I, neuromodulation |
OSA | ↑ 45–66%, advanced | ↑ Leptin, ghrelin, IL-6 | Clonazepam, melatonin | CPAP therapy, sleep hygiene |
RLS | ↑ 20–40%, early | ↓ Dopamine and serotonin, ↑ iron in brain | Dopaminergic agents, gabapentin | Exercise, thermotherapy |
RBD | ↑ 33–58%, preclinical | ↑ Cognitive impairment risk, α-synuclein | Clonazepam, melatonin | Sleep safety modifications |
Symptom | Prevalence and Stage | Biomarkers | Pharmacological Treatment | Non-Pharmacological Treatment |
---|---|---|---|---|
Depression | ↑ 35–45%, prodromal-late | ↓ Thalamus and amygdala function | SSRIs, SNRIs, TCAs | CBT, TMS, ECT |
Apathy | ↑ 40–52%, early-late | ↓ Mesocortical activity, VTA dysfunction | Dopamine agonists, rivastigmine | DBS, TMS |
Anxiety | ↑ 31%, prodromal-late | ↑ TNF-α, ↓ nitric oxide | SSRIs, benzodiazepines | CBT, meditation |
Visual hallucinations | ↑ 27–50%, early-advanced | ↓ Acetylcholine, cognitive decline | Rivastigmine, clozapine | CBT, music therapy |
Phantosmia | ↑ 0.5–18.2%, early-late | Correlation with hallucinations | Antiseizure, antipsychotics | Surgical intervention |
Symptom | Prevalence and Stage | Biomarkers | Pharmacological Treatment | Non-Pharmacological Treatment |
---|---|---|---|---|
Inattention and task-switching | ↑ 20%, Preclinical | EEG alterations, gene mutations | Atomoxetine, methylphenidate | Cognitive training, physical activity |
Bradyphrenia | ↑ 25%, Early | ↑ CSF metabolites, linked to constipation and bradykinesia | Levodopa, MAO-B inhibitors | Processing speed training |
Dementia | ↑ 80%, Late | ↑ Cortical atrophy, ↑ α-synuclein, ↓ Amyloid-β | Donepezil, memantine, emerging therapies | Exercise, non-invasive brain stimulation |
Impulse control disorders | ↑ 20%, Early | ↑ Dopamine tone, ↑ OFC metabolism | Adjust DRT, antipsychotics | CBT, DBS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Zelayeta, L.; Delgado-Minjares, K.M.; Villegas-Rojas, M.M.; León-Arcia, K.; Santiago-Balmaseda, A.; Andrade-Guerrero, J.; Pérez-Segura, I.; Ortega-Robles, E.; Soto-Rojas, L.O.; Arias-Carrión, O. Redefining Non-Motor Symptoms in Parkinson’s Disease. J. Pers. Med. 2025, 15, 172. https://doi.org/10.3390/jpm15050172
Peña-Zelayeta L, Delgado-Minjares KM, Villegas-Rojas MM, León-Arcia K, Santiago-Balmaseda A, Andrade-Guerrero J, Pérez-Segura I, Ortega-Robles E, Soto-Rojas LO, Arias-Carrión O. Redefining Non-Motor Symptoms in Parkinson’s Disease. Journal of Personalized Medicine. 2025; 15(5):172. https://doi.org/10.3390/jpm15050172
Chicago/Turabian StylePeña-Zelayeta, Laura, Karen M. Delgado-Minjares, Marcos M. Villegas-Rojas, Karen León-Arcia, Alberto Santiago-Balmaseda, Jesús Andrade-Guerrero, Isaac Pérez-Segura, Emmanuel Ortega-Robles, Luis O. Soto-Rojas, and Oscar Arias-Carrión. 2025. "Redefining Non-Motor Symptoms in Parkinson’s Disease" Journal of Personalized Medicine 15, no. 5: 172. https://doi.org/10.3390/jpm15050172
APA StylePeña-Zelayeta, L., Delgado-Minjares, K. M., Villegas-Rojas, M. M., León-Arcia, K., Santiago-Balmaseda, A., Andrade-Guerrero, J., Pérez-Segura, I., Ortega-Robles, E., Soto-Rojas, L. O., & Arias-Carrión, O. (2025). Redefining Non-Motor Symptoms in Parkinson’s Disease. Journal of Personalized Medicine, 15(5), 172. https://doi.org/10.3390/jpm15050172