Three-Dimensional Printed Knee Implants: Insights into Surgeons’ Points of View
Abstract
:1. Introduction
2. Material and Method
2.1. Questionnaire
2.2. Categorization of Answers
2.3. Statistical Analysis
3. Results
3.1. Demographics
3.2. Opinions Expressed
3.3. Expressed Motivations Related to the Justification of Opinions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Original Text in French | Proposed Translation into English |
Pas intéressé, pas la cible je pense | Not interested, this is not the right target |
Génial | Brilliant |
Je ne vois pas l’intérêt | Don’t see the point |
Oui si combinée à un alignement cinématique et un cône beam tdm | Yes if combined with a kinematic alignment and a CT cone beam |
Bénéfice reste à prouver à la vue du surcout | The benefit remains to be demonstrated in the light of the extra cost |
Le coût ?, Fiabilité ?, Mais pourquoi pas … | Costs ?, Reliability ?, Why not though … |
Délai de fabrication et accessibilité notamment centre hospitalier | Manufacturing time and availability, especially in hospitals |
Difficultés de commande liées à imagerie complémentaire nécessaire Tom etc… | Ordering issues […] |
Résistance mécanique ? | Mechanical strength ? |
Problème de la durée de vie | Lifespan issue |
très séduisant mais allonge les délais de confection en préopératoire | very attractive but increases the time needed for preoperative preparation |
ne pense pas que ce soit utile (chronophage + coûteux) | don’t think it’s useful (time-consuming + costly) |
Autorisation de mise sur le marché difficile à obtenir? | Difficult to obtain marketing authorization? |
Problème d’homologationx de résistance | Issues dealing with resistance’s official approvals |
Intérêt de personnalisation | Interest in customization |
[…] Probable intérêt biomécanique personnalisée pour nos patients. | […] Potential customized biomechanical interest for our patients |
Ça va beaucoup dépendre de s critères sur lesquels on se base pour la fabrication. | It will deeply depend on manufacturing’s criteria |
Elle doit pouvoir “cohabiter” avec la compétence et les habitudes de l’opérateur. | It [3DP prosthesis] has to be compatible with operator’s habits and skills |
Ok si performance identique aux prothèses classiques | Ok if as reliable as standard prostheses |
Aucun avis | No opinion |
Rien | Nothing |
excellent | excellent |
ça peut être le futur | it may be the future |
c’est une bonne idée en raison de la rapidité de la réalisation de la prothèse | good idea given the speed of the prosthesis manufacturing process |
inutile | useless |
négligeable | insignificant |
quel est le genou normal du patient | what is the patient’s normal knee |
bonne solution si rencontre les standards actuels | good solution if it meets current standards |
pas mal | not bad |
fragilité | fragility |
dubitatif quant à la qualité des matériaux | dubious about the quality of materials |
prudence, prudence | prudence, prudence |
References
- Martelli, N.; Serrano, C.; van den Brink, H.; Pineau, J.; Prognon, P.; Borget, I.; El Batti, S. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 2016, 159, 1485–1500. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Cano, P.; Calvo-Haro, J.A.; Fillat-Gomà, F.; Andrés-Cano, I.; Perez-Mañanes, R. Role of the orthopaedic surgeon in 3D printing: Current applications and legal issues for a personalized medicine. Rev. Española Cirugía Ortopédica Traumatol. (Engl. Ed.) 2021, 65, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Li, Y.; Wang, X.; Zhu, T.; Wang, Q.; Cai, H.; Li, W.; Tian, Y.; Liu, Z. Progressive 3D Printing Technology and Its Application in Medical Materials. Front. Pharmacol. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Trauner, K.B. The Emerging Role of 3D Printing in Arthroplasty and Orthopedics. J. Arthroplast. 2018, 33, 2352–2354. [Google Scholar] [CrossRef]
- Duan, X.; Wang, B.; Yang, L.; Kadakia, A.R. Applications of 3D Printing Technology in Orthopedic Treatment. BioMed Res. Int. 2021, 2021, e9892456. [Google Scholar] [CrossRef]
- Rodriguez Colon, R.; Nayak, V.V.; Parente, P.E.L.; Leucht, P.; Tovar, N.; Lin, C.C.; Rezzadeh, K.; Hacquebord, J.H.; Coelho, P.G.; Witek, L. The presence of 3D printing in orthopedics: A clinical and material review. J. Orthop. Res. 2023, 41, 601–613. [Google Scholar] [CrossRef]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. BioMed Eng. OnLine 2016, 15, 115. [Google Scholar] [CrossRef]
- Batailler, C.; Swan, J.; Sappey Marinier, E.; Servien, E.; Lustig, S. New Technologies in Knee Arthroplasty: Current Concepts. J. Clin. Med. 2021, 10, 47. [Google Scholar] [CrossRef]
- Auricchio, F.; Marconi, S. 3D printing: Clinical applications in orthopaedics and traumatology. EFORT Open Rev. 2016, 1, 121–127. [Google Scholar] [CrossRef]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Dalury, D.F.; Pomeroy, D.L.; Gorab, R.S.; Adams, M.J. Why are Total Knee Arthroplasties Being Revised? J. Arthroplast. 2013, 28, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.; Walter, N.; Lau, E.; Worlicek, M.; Kurtz, S.M.; Alt, V. Recent trends in revision knee arthroplasty in Germany. Sci. Rep. 2021, 11, 15479. [Google Scholar] [CrossRef]
- Delanois, R.E.; Mistry, J.B.; Gwam, C.U.; Mohamed, N.S.; Choksi, U.S.; Mont, M.A. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. J. Arthroplast. 2017, 32, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Moret, C.S.; Hirschmann, M.T.; Vogel, N.; Arnold, M.P. Customised, individually made total knee arthroplasty shows promising 1-year clinical and patient reported outcomes. Arch Orthop. Trauma Surg. 2021, 141, 2217–2225. [Google Scholar] [CrossRef] [PubMed]
- Budhiparama, N.C.; Lumban-Gaol, I.; Ifran, N.N.; de Groot, P.C.J.; Nelissen, R.G.H.H. Anthropometric Measurement of Caucasian and Asian Knees, Mismatch with Knee Systems? Orthop. J. Sport. Med. 2020, 8, 2325967120S00104. [Google Scholar] [CrossRef]
- Namin, A.T.; Jalali, M.S.; Vahdat, V.; Bedair, H.S.; O’Connor, M.I.; Kamarthi, S.; Isaacs, J.A. Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants. Value Health 2019, 22, 423–430. [Google Scholar] [CrossRef]
- Beit Ner, E.; Dosani, S.; Biant, L.C.; Tawy, G.F. Custom Implants in TKA Provide No Substantial Benefit in Terms of Outcome Scores, Reoperation Risk, or Mean Alignment: A Systematic Review. Clin. Orthop. Relat. Res. 2021, 479, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Taïeb, S.; Vennin, P.; Carpentier, P. Evidence-Based Medicine et Choix du Patient. In Proceedings of the 27° Journées de la Société Française de Sénologie et de Pathologie Mammaire (SFSPM), Deauville, France, 16–18 November 2005; pp. 67–81. [Google Scholar]
- Bergmann, J.H.M.; Chandaria, V.; McGregor, A. Wearable and Implantable Sensors: The Patient’s Perspective. Sensors 2012, 12, 16695–16709. [Google Scholar] [CrossRef]
- Maingueneau, D. Les Termes Clés de L’analyse du Discours; Seuil: Paris, France, 2009. [Google Scholar]
- Boylan, M.; Suchman, K.; Vigdorchik, J.; Slover, J.; Bosco, J. Technology-Assisted Hip and Knee Arthroplasties: An Analysis of Utilization Trends. J. Arthroplast. 2018, 33, 1019–1023. [Google Scholar] [CrossRef]
- Via, G.G.; Brueggeman, D.A.; Lyons, J.G.; Ely, I.C.; Froehle, A.W.; Krishnamurthy, A.B. Funding has no effect on clinical outcomes of total joint arthroplasty emerging technologies: A systematic review of bibliometrics and conflicts of interest. Arthroplasty 2022, 4, 45. [Google Scholar] [CrossRef]
- Lan, Y.-T.; Chen, Y.-W.; Niu, R.; Chang, D.C.; Hollenbeck, B.L.; Mattingly, D.A.; Smith, E.L.; Talmo, C.T. The trend and future projection of technology-assisted total knee arthroplasty in the United States. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 19, e2478. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.L.; Sculco, P.K.; Mayman, D.J.; Jerabek, S.A.; Ast, M.P.; Chalmers, B.P. Robots in the Operating Room during Hip and Knee Arthroplasty. Curr. Rev. Musculoskelet. Med. 2020, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C. 3D-printed patient-specific applications in orthopedics. Orthop. Res. Rev. 2016, 8, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Beal, M.D.; Delagrammaticas, D.; Fitz, D. Improving outcomes in total knee arthroplasty—Do navigation or customized implants have a role? J. Orthop. Surg. Res. 2016, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Culler, S.D.; Martin, G.M.; Swearingen, A. Comparison of adverse events rates and hospital cost between customized individually made implants and standard off-the-shelf implants for total knee arthroplasty. Arthroplast. Today 2017, 3, 257–263. [Google Scholar] [CrossRef]
- Schwarzkopf, R.; Brodsky, M.; Garcia, G.A.; Gomoll, A.H. Surgical and Functional Outcomes in Patients Undergoing Total Knee Replacement with Patient-Specific Implants Compared with “Off-the-Shelf” Implants. Orthop. J. Sport. Med. 2015, 3, 2325967115590379. [Google Scholar] [CrossRef]
- Nuryyeva, E.; De Wilde, R. 3-D Printing Is Revolutionizing the Medical Devices World, but Are Payers Ready? Value Health 2016, 19, A311. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future Young Patient Demand for Primary and Revision Joint Replacement: National Projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606. [Google Scholar] [CrossRef]
- Baj, A.; Bolzoni, A.R.; Giannì, A.B. Virtual Planning and Patient-Specific Implants in Mandibular Reconstructionsurgery: A Micro-Costing Analysiss. Value Health 2016, 19, A723. [Google Scholar] [CrossRef]
- Alemayehu, D.G.; Zhang, Z.; Tahir, E.; Gateau, D.; Zhang, D.-F.; Ma, X. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery. BioMed Res. Int. 2021, 2021, e7940242. [Google Scholar] [CrossRef]
- Dion, C.; Yamomo, G.; Howard, J.; Teeter, M.; Willing, R.; Lanting, B. Revision total knee arthroplasty using a novel 3D printed titanium augment: A biomechanical cadaveric study. J. Mech. Behav. Biomed. Mater. 2020, 110, 103944. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-A.; Koh, Y.-G.; Kang, K.-T. Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review. J. Clin. Med. 2020, 9, 1559. [Google Scholar] [CrossRef] [PubMed]
- Rosso, F.; Rossi, R.; Cottino, U.; Dettoni, F.; Bruzzone, M.; Bonasia, D.E. Three-Dimensional Printed Models in Pre-Operative Planning of Complex Primary and Revision Total Knee Arthroplasty. Appl. Sci. 2022, 12, 9618. [Google Scholar] [CrossRef]
Category | Examples of Surgeons’ Motivations |
---|---|
Surgery | “Yes if combined with a kinematic alignment and a CT cone beam” “Not interested, this is not the right target” |
Cost | “The benefit remains to be demonstrated in the light of the extra cost” “Costs ?; […] Why not though” |
Logistics | “[…] Manufacturing time and availability, especially in hospitals” “Ordering issues […]” |
Material | “Mechanical strength?” “Lifespan issue” |
Time | “very attractive but increases the time needed for preoperative preparation” “don’t think it’s useful (time-consuming + costly)” |
Regulatory | “Difficult to obtain marketing authorization?” “Issues dealing with resistance’s official approvals” |
Customization | “Interest in customization” “[…] Potential customized biomechanical interest for our patients” |
Category | Examples of Surgeons’ Motivations |
---|---|
Pre-operative | “It will deeply depend on manufacturing’s criteria” |
Intra-operative | “It [3DP prosthesis] has to be compatible with operator’s habits and skills” |
Post-operative | “Ok if as reliable as standard prostheses” |
3DP Expressed Opinion | ||||
---|---|---|---|---|
Negative, n = 22 1 | Positive, n = 51 1 | Total, n = 73 1 | p-Value 2 | |
Experience (years) | 0.8 | |||
≤10 | 9 (41%) | 19 (37%) | 28 (38%) | |
More than 10 | 13 (59%) | 32 (63%) | 45 (62%) | |
Working structure | 0.8 | |||
Private | 9 (41%) | 19 (37%) | 28 (38%) | |
Public | 13 (59%) | 32 (63%) | 45 (62%) | |
Number of prostheses per year | 0.4 | |||
≤100 | 16 (73%) | 32 (63%) | 48 (66%) | |
>100 | 6 (27%) | 19 (37%) | 25 (34%) | |
Use of planning software | >0.9 | |||
Yes | 11 (50%) | 25 (49%) | 36 (49%) | |
No | 11 (50%) | 26 (51%) | 37 (51%) | |
Use of navigation system or robot | 0.022 | |||
Yes | 3 (14%) | 21 (41%) | 24 (33%) | |
No | 19 (86%) | 30 (59%) | 49 (67%) | |
Extra surgical time | 0.034 | |||
Yes | 13 (59%) | 42 (82%) | 55 (75%) | |
No | 9 (41%) | 9 (18%) | 18 (25%) |
Positive | Negative | Total | |||
---|---|---|---|---|---|
n | % | n | % | n | |
Explicit motivation | 51 | 70% | 22 | 30% | 73 |
YES | 24 | 47% | 15 | 68% | 39 |
NO | 27 | 53% | 7 | 32% | 34 |
Classification of motivation | |||||
Surgery | 11 | 46% | 7 | 47% | 18 |
Costs | 3 | 13% | 2 | 13% | 5 |
Logistics | 2 | 8% | 3 | 20% | 5 |
Materials | 2 | 8% | 5 | 33% | 7 |
Customization | 4 | 17% | - | - | - |
Time | 3 | 13% | 1 | 7% | 4 |
Regulatory | - | - | 3 | 20% | - |
Sub-total | 25 | - | 21 | - | 46 |
Motivation and stage of surgery | |||||
Pre | 15 | 63% | 9 | 60% | 24 |
Intra | 3 | 13% | 1 | 7% | 4 |
Post | 7 | 29% | 6 | 40% | 13 |
Sub-total | 25 | - | 16 | - | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Stum, M.; Bertin, T.; Le Goff-Pronost, M.; Apremont, C.; Dardenne, G.; Rolland-Lozachmeur, G.; Stindel, E. Three-Dimensional Printed Knee Implants: Insights into Surgeons’ Points of View. J. Pers. Med. 2023, 13, 811. https://doi.org/10.3390/jpm13050811
Le Stum M, Bertin T, Le Goff-Pronost M, Apremont C, Dardenne G, Rolland-Lozachmeur G, Stindel E. Three-Dimensional Printed Knee Implants: Insights into Surgeons’ Points of View. Journal of Personalized Medicine. 2023; 13(5):811. https://doi.org/10.3390/jpm13050811
Chicago/Turabian StyleLe Stum, Mathieu, Thomas Bertin, Myriam Le Goff-Pronost, Claire Apremont, Guillaume Dardenne, Ghislaine Rolland-Lozachmeur, and Eric Stindel. 2023. "Three-Dimensional Printed Knee Implants: Insights into Surgeons’ Points of View" Journal of Personalized Medicine 13, no. 5: 811. https://doi.org/10.3390/jpm13050811
APA StyleLe Stum, M., Bertin, T., Le Goff-Pronost, M., Apremont, C., Dardenne, G., Rolland-Lozachmeur, G., & Stindel, E. (2023). Three-Dimensional Printed Knee Implants: Insights into Surgeons’ Points of View. Journal of Personalized Medicine, 13(5), 811. https://doi.org/10.3390/jpm13050811