Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Treatment
2.3. Outcomes and Definitions
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Procedure Data
3.3. Safety Outcomes
3.4. Distal Radial Access vs. Femoral Access
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Posham, R.; Biederman, D.M.; Patel, R.S.; Kim, E.; Tabori, N.E.; Nowakowski, F.S.; Lookstein, R.A.; Fischman, A.M. Transradial Approach for Noncoronary Interventions: A Single-Center Review of Safety and Feasibility in the First 1500 Cases. J. Vasc. Interv. Radiol. 2016, 27, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrante, G.; Rao, S.V.; Jüni, P.; Da Costa, B.R.; Reimers, B.; Condorelli, G.; Anzuini, A.; Jolly, S.S.; Bertrand, O.F.; Krucoff, M.W.; et al. Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials. JACC Cardiovasc. Interv. 2016, 9, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Kiemeneij, F.; Laarman, G.J.; Odekerken, D.; Slagboom, T.; van der Wieken, R. A Randomized Comparison of Percutaneous Transluminal Coronary Angioplasty by the Radial, Brachial and Femoral Approaches: The Access Study. J. Am. Coll. Cardiol. 1997, 29, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Brueck, M.; Bandorski, D.; Kramer, W.; Wieczorek, M.; Höltgen, R.; Tillmanns, H. A Randomized Comparison of Transradial versus Transfemoral Approach for Coronary Angiography and Angioplasty. JACC Cardiovasc. Interv. 2009, 2, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Valgimigli, M.; Gagnor, A.; Calabró, P.; Frigoli, E.; Leonardi, S.; Zaro, T.; Rubartelli, P.; Briguori, C.; Andò, G.; Repetto, A.; et al. Radial versus Femoral Access in Patients with Acute Coronary Syndromes Undergoing Invasive Management: A Randomised Multicentre Trial. Lancet 2015, 385, 2465–2476. [Google Scholar] [CrossRef]
- Kiemeneij, F. Left Distal Transradial Access in the Anatomical Snuffbox for Coronary Angiography (LdTRA) and Interventions (LdTRI). EuroIntervention 2017, 13, 851–857. [Google Scholar] [CrossRef]
- Hamandi, M.; Saad, M.; Hasan, R.; Megaly, M.; Abbott, J.D.; Dib, C.; Szerlip, M.; Potluri, S.; Lotfi, A.; Kiemeneij, F.; et al. Distal Versus Conventional Transradial Artery Access for Coronary Angiography and Intervention: A Meta-Analysis. Cardiovasc. Revasc. Med. 2020, 21, 1209–1213. [Google Scholar] [CrossRef]
- Koury, A.; Monsignore, L.M.; de Castro-Afonso, L.H.; Abud, D.G. Safety of Ultrasound-Guided Distal Radial Artery Access for Abdominopelvic Transarterial Interventions: A Prospective Study. Diagn. Interv. Radiol. 2020, 26, 570–574. [Google Scholar] [CrossRef]
- van Dam, L.; Geeraedts, T.; Bijdevaate, D.; van Doormaal, P.J.; The, A.; Moelker, A. Distal Radial Artery Access for Noncoronary Endovascular Treatment Is a Safe and Feasible Technique. J. Vasc. Interv. Radiol. 2019, 30, 1281–1285. [Google Scholar] [CrossRef]
- Shinozaki, N.; Ikari, Y. Distal Radial Artery Approach for Endovascular Therapy. Cardiovasc. Interv. Ther. 2022, 37, 533–537. [Google Scholar] [CrossRef]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of Hepatocellular Carcinoma: The BCLC Staging Classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M.E.; de Lope, C.R.; Bruix, J. Current Strategy for Staging and Treatment: The BCLC Update and Future Prospects. Semin. Liver Dis. 2010, 30, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and Response Criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Barbeau, G.R.; Arsenault, F.; Dugas, L.; Simard, S.; Larivière, M.M. Evaluation of the Ulnopalmar Arterial Arches with Pulse Oximetry and Plethysmography: Comparison with the Allen’s Test in 1010 Patients. Am. Heart J. 2004, 147, 489–493. [Google Scholar] [CrossRef]
- Minici, R.; Siciliano, M.A.; Ammendola, M.; Santoro, R.C.; Barbieri, V.; Ranieri, G.; Laganà, D. Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology. Cancers 2022, 15, 257. [Google Scholar] [CrossRef]
- Al-Azizi, K.M.; Lotfi, A.S. The Distal Left Radial Artery Access for Coronary Angiography and Intervention: A New Era. Cardiovasc. Revasc. Med. 2018, 19, 35–40. [Google Scholar] [CrossRef]
- Minici, R.; Ammendola, M.; Manti, F.; Siciliano, M.A.; Minici, M.; Komaei, I.; Currò, G.; Laganà, D. Safety and Efficacy of Degradable Starch Microspheres Transcatheter Arterial Chemoembolization (DSM-TACE) in the Downstaging of Intermediate-Stage Hepatocellular Carcinoma (HCC) in Patients With a Child-Pugh Score of 8–9. Front. Pharmacol. 2021, 12, 634087. [Google Scholar] [CrossRef]
- Brown, K.T.; Do, R.K.; Gonen, M.; Covey, A.M.; Getrajdman, G.I.; Sofocleous, C.T.; Jarnagin, W.R.; D’Angelica, M.I.; Allen, P.J.; Erinjeri, J.P.; et al. Randomized Trial of Hepatic Artery Embolization for Hepatocellular Carcinoma Using Doxorubicin-Eluting Microspheres Compared With Embolization With Microspheres Alone. J. Clin. Oncol. 2016, 34, 2046–2053. [Google Scholar] [CrossRef] [Green Version]
- Edris, A.; Gordin, J.; Sallam, T.; Wachsner, R.; Meymandi, S.; Traina, M. Facilitated Patent Haemostasis after Transradial Catheterisation to Reduce Radial Artery Occlusion. EuroIntervention 2015, 11, 765–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, A.; Carrafiello, G.; Ierardi, A.M.; Tsetis, D.; Brountzos, E. Quality-Improvement Guidelines for Hepatic Transarterial Chemoembolization. Cardiovasc. Intervent. Radiol. 2012, 35, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (MRECIST) Assessment for Hepatocellular Carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippiadis, D.K.; Binkert, C.; Pellerin, O.; Hoffmann, R.T.; Krajina, A.; Pereira, P.L. Cirse Quality Assurance Document and Standards for Classification of Complications: The Cirse Classification System. Cardiovasc. Intervent. Radiol. 2017, 40, 1141–1146. [Google Scholar] [CrossRef]
- Kühn, A.L.; Singh, J.; Moholkar, V.M.; Satti, S.R.; Rodrigues, K.d.M.; Massari, F.; Gounis, M.J.; McGowan, A.; Puri, A.S. Distal Radial Artery (Snuffbox) Access for Carotid Artery Stenting—Technical Pearls and Procedural Set-Up. Interv. Neuroradiol. 2021, 27, 241–248. [Google Scholar] [CrossRef]
- Eid-Lidt, G.; Rivera Rodríguez, A.; Jimenez Castellanos, J.; Farjat Pasos, J.I.; Estrada López, K.E.; Gaspar, J. Distal Radial Artery Approach to Prevent Radial Artery Occlusion Trial. JACC Cardiovasc. Interv. 2021, 14, 378–385. [Google Scholar] [CrossRef]
- Hamilton, G.W.; Farouque, O. Could Distal Radial Artery Access Do More Than “Just” Reduce Rates of Radial Artery Occlusion? JACC Cardiovasc. Interv. 2021, 14, 1042–1043. [Google Scholar] [CrossRef]
- Sgueglia, G.A.; Di Giorgio, A.; Gaspardone, A.; Babunashvili, A. Anatomic Basis and Physiological Rationale of Distal Radial Artery Access for Percutaneous Coronary and Endovascular Procedures. JACC Cardiovasc. Interv. 2018, 11, 2113–2119. [Google Scholar] [CrossRef]
- Sgueglia, G.A.; Santoliquido, A.; Gaspardone, A.; Di Giorgio, A. Radial Artery Occlusion With Distal Radial Access Compared to Conventional Transradial Access: A Pathophysiology Outlook. JACC Cardiovasc. Interv. 2021, 14, 1043. [Google Scholar] [CrossRef]
- Richter, Y.; Edelman, E.R. Cardiology Is Flow. Circulation 2006, 113, 2679–2682. [Google Scholar] [CrossRef] [Green Version]
- Sgueglia, G.A.; Santoliquido, A.; Gaspardone, A.; Di Giorgio, A. First Results of the Distal Radial Access Doppler Study. JACC Cardiovasc. Imaging 2021, 14, 1281–1283. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Sawaoka, T.; Sasaki, K.; Iida, K.; Sakuraba, S.; Yokohama, K.; Sato, H.; Soma, M.; Okamura, E.; Harada, T.; et al. Evaluation of the Diameter of the Distal Radial Artery at the Anatomical Snuff Box Using Ultrasound in Japanese Patients. Cardiovasc. Interv. Ther. 2019, 34, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Yoshimachi, F.; Ikari, Y. Distal Radial Approach: A Review on Achieving a High Success Rate. Cardiovasc. Interv. Ther. 2021, 36, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Meo, D.; Falsaperla, D.; Modica, A.; Calcagno, M.C.; Libra, F.; Desiderio, C.; Palmucci, S.; Foti, P.V.; Musumeci, A.G.; Basile, A. Proximal and Distal Radial Artery Approaches for Endovascular Percutaneous Procedures: Anatomical Suitability by Ultrasound Evaluation. Radiol. Med. 2021, 126, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Aoi, S.; Htun, W.W.; Freeo, S.; Lee, S.; Kyaw, H.; Alfaro, V.; Coppola, J.; Pancholy, S.; Kwan, T. Distal Transradial Artery Access in the Anatomical Snuffbox for Coronary Angiography as an Alternative Access Site for Faster Hemostasis. Catheter. Cardiovasc. Interv. 2019, 94, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Izumida, T.; Watanabe, J.; Yoshida, R.; Kotani, K. Efficacy and Safety of Distal Radial Approach for Cardiac Catheterization: A Systematic Review and Meta-Analysis. World J. Cardiol. 2021, 13, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Yang, M.-J.; Ma, J.-Q.; Luo, J.-J.; Zhang, Z.-H.; Yu, T.-Z.; Zheng, Z.-Y.; Zhang, W.; Yan, Z.-P. Transradial Access Chemoembolization for Hepatocellular Carcinoma in Comparation with Transfemoral Access. Transl. Cancer Res. 2019, 8, 1795–1805. [Google Scholar] [CrossRef]
- Park, S.E.; Cho, S.B.; Baek, H.J.; Moon, J.I.; Ryu, K.H.; Ha, J.Y.; Lee, S.; Won, J.; Ahn, J.-H.; Kim, R.; et al. Clinical Experience with Distal Transradial Access for Endovascular Treatment of Various Noncoronary Interventions in a Multicenter Study. PLoS ONE 2020, 15, e0237798. [Google Scholar] [CrossRef]
- Lammer, J.; Malagari, K.; Vogl, T.; Pilleul, F.; Denys, A.; Watkinson, A.; Pitton, M.; Sergent, G.; Pfammatter, T.; Terraz, S.; et al. Prospective Randomized Study of Doxorubicin-Eluting-Bead Embolization in the Treatment of Hepatocellular Carcinoma: Results of the PRECISION V Study. Cardiovasc. Interv. Radiol. 2010, 33, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Han, Q.; Jia, Y.; Fan, C.; Qin, G. Distal Transradial Access in Anatomical Snuffbox for Coronary Angiography and Intervention: An Updated Meta-Analysis. J. Interv. Cardiol. 2021, 2021, 7099044. [Google Scholar] [CrossRef]
- Al-Azizi, K.M.; Grewal, V.; Gobeil, K.; Maqsood, K.; Haider, A.; Mohani, A.; Giugliano, G.; Lotfi, A.S. The Left Distal Transradial Artery Access for Coronary Angiography and Intervention: A US Experience. Cardiovasc. Revasc. Med. 2019, 20, 786–789. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, S.W.; Son, J.-W.; Ahn, S.-G.; Lee, S.-H. Real-World Experience of the Left Distal Transradial Approach for Coronary Angiography and Percutaneous Coronary Intervention: A Prospective Observational Study (LeDRA). EuroIntervention 2018, 14, e995–e1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhambhani, A.; Pandey, S.; Nadamani, A.N.; Tyagi, K. An Observational Comparison of Distal Radial and Traditional Radial Approaches for Coronary Angiography. J. Saudi Heart Assoc. 2020, 32, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Zouari, F.; Ben Abdessalem, M.A.; Sassi, A.; Ellouze, T.; Bahloul, A.; Mallek, S.; Triki, F.; Mahdhaoui, A.; Jeridi, G.; et al. Distal Radial Approach versus Conventional Radial Approach: A Comparative Study of Feasibility and Safety. Libyan J. Med. 2021, 16, 1830600. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, M.E.; Figueira, T.M.A.; Ensor, J.; Tam, A.L.; Avritscher, R.; Kaseb, A.; Gupta, S. The Impact of the Use of C-Arm Cone-Beam CT During Chemoembolization for Hepatocellular Carcinoma. Curr. Med. Imaging 2022, 18, 372–380. [Google Scholar] [CrossRef]
- Ishiguchi, T.; Nakamura, H.; Okazaki, M.; Sawada, S.; Takayasu, Y.; Hashimoto, S.; Hayashi, N.; Furui, S.; Koyama, S.; Maekoshi, H. Radiation exposure to patient and radiologist during transcatheter arterial embolization for hepatocellular carcinoma. Nihon Igaku Hoshasen Gakkai Zasshi 2000, 60, 839–844. [Google Scholar]
- Hidajat, N.; Wust, P.; Felix, R.; Schröder, R.J. Radiation Exposure to Patient and Staff in Hepatic Chemoembolization: Risk Estimation of Cancer and Deterministic Effects. Cardiovasc. Intervent. Radiol. 2006, 29, 791–796. [Google Scholar] [CrossRef]
- Minici, R.; Paone, S.; Talarico, M.; Zappia, L.; Abdalla, K.; Petullà, M.; Laganà, D. Percutaneous Treatment of Vascular Access-Site Complications: A Ten Years’ Experience in Two Centres. CVIR Endovasc. 2020, 3, 29. [Google Scholar] [CrossRef]
- Minici, R.; Ammendola, M.; Talarico, M.; Luposella, M.; Minici, M.; Ciranni, S.; Guzzardi, G.; Laganà, D. Endovascular Recanalization of Chronic Total Occlusions of the Native Superficial Femoral Artery after Failed Femoropopliteal Bypass in Patients with Critical Limb Ischemia. CVIR Endovasc. 2021, 4, 68. [Google Scholar] [CrossRef]
- Minici, R.; Serra, R.; Ierardi, A.M.; Petullà, M.; Bracale, U.M.; Carrafiello, G.; Laganà, D. Thoracic endovascular repair for blunt traumatic thoracic aortic injury: Long-term results. Vascular 2022, 19, 17085381221127740. [Google Scholar] [CrossRef]
- Feng, H.; Fang, Z.; Zhou, S.; Hu, X. Left Distal Transradial Approach for Coronary Intervention: Insights from Early Clinical Experience and Future Directions. Cardiol. Res. Pract. 2019, 2019, 8671306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norimatsu, K.; Kusumoto, T.; Yoshimoto, K.; Tsukamoto, M.; Kuwano, T.; Nishikawa, H.; Matsumura, T.; Miura, S.-I. Importance of Measurement of the Diameter of the Distal Radial Artery in a Distal Radial Approach from the Anatomical Snuffbox before Coronary Catheterization. Heart Vessels 2019, 34, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Huang, H.; Li, F.; Shi, G.; Yu, X.; Yu, L. Distal Transradial Access: A Review of the Feasibility and Safety in Cardiovascular Angiography and Intervention. BMC Cardiovasc. Disord. 2020, 20, 356. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Rouh, T.; Schmitt, C.; Naguib, N.N.N.; Nour-Eldin, N.A.; Eichler, K.; Beeres, M.; Vogl, T.J. Transarterial Chemoembolization (TACE) Using Mitomycin and Lipiodol with or without Degradable Starch Microspheres for Hepatocellular Carcinoma: Comparative Study. BMC Cancer 2018, 18, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lencioni, R.; de Baere, T.; Soulen, M.C.; Rilling, W.S.; Geschwind, J.-F.H. Lipiodol Transarterial Chemoembolization for Hepatocellular Carcinoma: A Systematic Review of Efficacy and Safety Data. Hepatology 2016, 64, 106–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minici, R.; Ammendola, M.; Manti, F.; Siciliano, M.A.; Giglio, E.; Minici, M.; Melina, M.; Currò, G.; Laganà, D. Safety and Efficacy of Degradable Starch Microspheres Transcatheter Arterial Chemoembolization as a Bridging Therapy in Patients with Early Stage Hepatocellular Carcinoma and Child-Pugh Stage B Eligible for Liver Transplant. Front. Pharmacol. 2021, 12, 634084. [Google Scholar] [CrossRef]
- Minici, R.; Serra, R.; De Rosi, N.; Ciranni, S.; Talarico, M.; Petullà, M.; Guzzardi, G.; Fontana, F.; Laganà, D. Endovascular treatment of femoro-popliteal occlusions with retrograde tibial access after failure of the antegrade approach. Catheter. Cardiovasc. Interv. 2023; in press. [Google Scholar]
- Bracale, U.M.; Peluso, A.; Panagrosso, M.; Cecere, F.; DEL Guercio, L.; Minici, R.; Giannotta, N.; Ielapi, N.; Licastro, N.; Serraino, G.F.; et al. Ankle-Brachial Index evaluation in totally percutaneous approach vs. femoral artery cutdown for endovascular aortic repair of abdominal aortic aneurysms. Chirurgia 2022, 35, 349–354. [Google Scholar] [CrossRef]
- Minici, R.; Venturini, M.; Fontana, F.; Guzzardi, G.; Pingitore, A.; Piacentino, F.; Serra, R.; Coppola, A.; Santoro, R.; Laganà, D. Efficacy and Safety of Ethylene-Vinyl Alcohol (EVOH) Copolymer-Based Non-Adhesive Liquid Embolic Agents (NALEAs) in Transcatheter Arterial Embolization (TAE) of Acute Non-Neurovascular Bleeding: A Multicenter Retrospective Cohort Study. Medicina 2023, 59, 710. [Google Scholar] [CrossRef]
- Vefalı, V.; Sarıçam, E. The Comparison of Traditional Radial Access and Novel Distal Radial Access for Cardiac Catheterization. Cardiovasc. Revasc. Med. 2020, 21, 496–500. [Google Scholar] [CrossRef]
Variables | All Patients (n = 42) |
---|---|
Age (years) | 53.1 (±18.6) |
Sex (M/F) | 28 (66.7%)/14 (33.3%) |
BMI | 25 (±5.3) |
Diabetes mellitus | 20 (47.6%) |
Coronary artery disease | 22 (52.4%) |
Congestive heart failure | 18 (42.9%) |
Cerebrovascular disease | 8 (19.0%) |
Smoking history | 28 (66.7%) |
Current smoker | 18 (42.9%) |
Hypertension | 32 (76.2%) |
Hyperlipidaemia | 30 (71.4%) |
Chronic renal insufficiency (eGFR <90 mL/min) | 14 (33.3%) |
Hepatitis B virus | 6 (14.3%) |
Hepatitis C virus | 20 (47.6%) |
Non-alcoholic fatty liver disease | 2 (4.8%) |
Alcoholic liver disease | 19 (38.1%) |
α-Fetoprotein (ng/mL) | 547 (176–1878) |
Carbohydrate antigen 19-9 (U/mL) | 4 (0.4–40.9) |
γ-Glutamyltransferase (U/L) | 98 (8–989) |
Alkaline phosphatase (U/L) | 50 (22–861) |
Aspartate transaminase (U/L) | 34 (5–250) |
Alanine transaminase (U/L) | 45 (11–298) |
Albumin (g/L) | 28 (26–34) |
Total bilirubin (mg/dL) | 1.1 (0.4–1.8) |
Prothrombin time (seconds prolonged) | 6 (5–9) |
Ascites | 0 (0%) |
Encephalopathy | 10 (23.8%) |
Cirrhosis | 38 (90.5%) |
Child–Pugh Class, A/B/C | 0 (0%)/42 (100%)/0 (0%) |
Platelet count (No. ×103/μL) | 99 (90–410) |
Creatinine (mg/dL) | 1.2 (0.5–1.5) |
Hemoglobin (g/dL) | 13.1 (11–14.9) |
Number of tumors, 1/2/3 | 18 (42.8%)/12 (28.6%)/12 (28.6%) |
Maximum tumor size (cm) | 5.1 (3.6–5.5) |
Bilobar disease | 18 (42.8%) |
Capsule | 22 (52.4%) |
Variables | |
---|---|
Total number of DEB-TACE | 42 |
Technical success | 42 (100.0%) |
Technical success by distal radial access | 41 (97.6%) |
Vessel size (mm) | 2.52 (±0.25) |
Number of punctures of vascular access site | 1.4 (±0.5) |
Cannulation time (seconds) | 273.2 (±53) |
Side of vascular access, right/left | 6 (14.3%)/36 (85.7%) |
Successful cannulation and sheath introduction, no/yes | 1 (2.4%)/41 (97.6%) |
Vascular access site conversion | 1 (2.4%) |
Sheath diameter, 4F/5F/6F/7F | 0 (0%)/42 (100%)/0 (0%)/0 (0%) |
Intra-arterial unfractionated heparin | 10 (23.8%) |
Chemoembolization pattern
| 35 (83.3%) 5 (11.9%) 2 (4.8%) 0 (0%) |
Time to hemostasis (min) | 13.1 (±1.5) |
TR band air inflation (mL) | 10 (±0.3) |
Hemostatic device-removal time (min) | 128.8 (±26.6) |
Contrast volume (mL) | 77.9 (±12.5) |
Procedure duration (min) | 68.3 (±9.9) |
Fluoroscopy time (min) | 26.8 (±6.2) |
Cumulative air kerma (mGy) | 509 (213–1518) |
Dose area product (DAP) (Gy/cm2) | 76 (44–198) |
Tumor response to DEB-TACE
| 10 (23.8%) 12 (28.6%) 11 (26.2%) 9 (21.4%) |
Variables | ||
---|---|---|
Vascular access-site complications (VASCs), no/yes | 40 (95.2%)/2 (4.8%) | |
Haematoma | 2 (4.8%) | |
Pseudoaneurysm | 0 (0%) | |
Retrograde dissection | 0 (0%) | |
AV Fistula | 0 (0%) | |
Major bleeding | 0 (0%) | |
Radial artery occlusion | 0 (0%) | |
Radial artery spasm | 0 (0%) | |
Post-procedural clinical complications (CIRSE class.), absent/present | 28 (66.7%)/14 (33.3%) | |
Grade 1 | 10 (23.8%) | |
Grade 2 | 0 (0%) | |
Grade 3 | 4 (9.5%) | |
Adverse Events (CTCAE), absent/present | 24 (57.1%)/18 (42.9%) | |
Grade 1 | 8 (19.1%) | |
Grade 2 | 8 (19.1%) | |
Grade 3 | 2 (4.8%) | |
Grade 4 | 0 (0%) |
Variables | Group 1 (n = 42) Distal Radial Access | Group 2 (n = 40) Femoral Access | p Value |
---|---|---|---|
Age (years) | 53.1 (±18.6) | 57.9 (±15.9) | 0.2346 |
Sex (M/F) | 28 (66.7%)/14 (33.3%) | 23 (57.5%)/17 (42.5%) | 0.4953 |
BMI | 25 (±5.3) | 25.1 (±5.2) | 0.8122 |
α-Fetoprotein (ng/mL) | 547 (176–1878) | 609 (234–1536) | 0.8708 |
Prothrombin time (seconds prolonged) | 6 (5–9) | 8 (5–9) | 0.1976 |
Cirrhosis | 38 (90.5%) | 37 (92.5%) | 1 |
Child–Pugh class, A/B/C | 0 (0%)/42 (100%)/0 (0%) | 0 (0%)/40 (100%)/0 (0%) | 1 |
Platelet count (No. × 103/μL) | 99 (90–410) | 99 (98–109.8) | 0.5061 |
Number of tumors, 1/2/3 | 18 (42.8%)/12 (28.6%)/12 (28.6%) | 21 (52.5%)/10 (25%)/9 (22.5%) | 0.7159 |
Maximum tumor size (cm) | 5.1 (3.6–5.5) | 5.2 (3.6–5.45) | 0.7978 |
Technical success | 42 (100.0%) | 40 (100.0%) | 1 |
Cannulation time (seconds) | 273.2 (±53) | 196.6 (±31.5) | <0.0001 |
Vascular access-site conversion | 1 (2.4%) | 0 (0%) | 1 |
Chemoembolization pattern
| 35 (83.3%) 5 (11.9%) 2 (4.8%) 0 (0%) | 34 (85%) 4 (10%) 2 (5%) 0 (0%) | 1 |
Procedure duration (min) | 68.3 (±9.9) | 70 (±11.6) | 0.5926 |
Vascular access-site complications (VASCs), no/yes | 40 (95.2%)/2 (4.8%) | 37 (92.5%)/3 (7.5%) | 0.6718 |
Post-procedural clinical complications (CIRSE class.), absent/present
| 28 (66.7%)/14 (33.3%) 10 (23.8%) 0 (0%) 4 (9.5%) | 21 (52.5%)/19 (47.5%) 14 (35%) 0 (0%) 5 (12.5%) | 0.2604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minici, R.; Serra, R.; Giurdanella, M.; Talarico, M.; Siciliano, M.A.; Carrafiello, G.; Laganà, D. Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver. J. Pers. Med. 2023, 13, 640. https://doi.org/10.3390/jpm13040640
Minici R, Serra R, Giurdanella M, Talarico M, Siciliano MA, Carrafiello G, Laganà D. Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver. Journal of Personalized Medicine. 2023; 13(4):640. https://doi.org/10.3390/jpm13040640
Chicago/Turabian StyleMinici, Roberto, Raffaele Serra, Marco Giurdanella, Marisa Talarico, Maria Anna Siciliano, Gianpaolo Carrafiello, and Domenico Laganà. 2023. "Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver" Journal of Personalized Medicine 13, no. 4: 640. https://doi.org/10.3390/jpm13040640
APA StyleMinici, R., Serra, R., Giurdanella, M., Talarico, M., Siciliano, M. A., Carrafiello, G., & Laganà, D. (2023). Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver. Journal of Personalized Medicine, 13(4), 640. https://doi.org/10.3390/jpm13040640