The Potential Applications of Raman Spectroscopy in Kidney Diseases
Abstract
:1. Introduction
2. Raman Spectroscopy
3. Raman Spectroscopy: A Novel Tool to Detect Renal Biomarkers?
3.1. Skin
3.2. Urine
3.3. Serum
4. The Potential Use of Raman Spectroscopy in Specific Kidney Diseases
4.1. Anti-Neutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis
4.2. Primary Focal Segmental Glomerulosclerosis
4.3. Anti-Glomerular Basement Membrane Disease
4.4. Diabetic Kidney Disease
4.5. Kidney Transplantation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, A.D.; Freitas, D.L.D.; Lima, K.M.G.; Floyd, L.; Brady, M.E.; Dhaygude, A.P.; Rowbottom, A.W.; Martin, F.L. Automated Computational Detection of Disease Activity in ANCA-Associated Glomerulonephritis Using Raman Spectroscopy: A Pilot Study. Molecules 2022, 27, 2312. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, Y.; Qi, J.; Sneha, R.; Chang, A.; Mohan, C.; Shih, W.-C. Raman Spectroscopy as a Diagnostic Tool for Monitoring Acute Nephritis. J. Biophotonics 2016, 9, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.A.; Bosschaart, N.; Keller, M.D.; van Leeuwen, T.G.; Mahadevan-Jansen, A. Combined Raman Spectroscopy and Optical Coherence Tomography Device for Tissue Characterization. Opt. Lett. 2008, 33, 1135–1137. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Saleem, M.; Amanat, S.T.; Shakoor, H.A.; Rashid, R.; Mahmood, A.; Ahmed, M. Optical Diagnosis of Malaria Infection in Human Plasma Using Raman Spectroscopy. J. Biomed. Opt. 2015, 20, 017002. [Google Scholar] [CrossRef] [PubMed]
- Sathyavathi, R.; Dingari, N.C.; Barman, I.; Prasad, P.S.R.; Prabhakar, S.; Narayana Rao, D.; Dasari, R.R.; Undamatla, J. Raman Spectroscopy Provides a Powerful, Rapid Diagnostic Tool for the Detection of Tuberculous Meningitis in Ex Vivo Cerebrospinal Fluid Samples. J. Biophotonics 2013, 6, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Kudelski, A. Analytical Applications of Raman Spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; ur Rehman, I. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Zhang, X.; Young, M.A.; Lyandres, O.; Van Duyne, R.P. Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Huang, Z.; Feng, S.; Guan, Q.; Lin, T.; Zhao, J.; Nguan, C.Y.C.; Zeng, H.; Harriman, D.; Li, H.; Du, C. Correlation of Surface-Enhanced Raman Spectroscopic Fingerprints of Kidney Transplant Recipient Urine with Kidney Function Parameters. Sci. Rep. 2021, 11, 2463. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franks, A.G. Skin Manifestations of Internal Disease. Med. Clin. N. A. 2009, 93, 1265–1282. [Google Scholar] [CrossRef]
- Feng, X.; Moy, A.J.; Nguyen, H.T.M.; Zhang, J.; Fox, M.C.; Sebastian, K.R.; Reichenberg, J.S.; Markey, M.K.; Tunnell, J.W. Raman Active Components of Skin Cancer. Biomed. Opt. Express 2017, 8, 2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzen, L.; Anderski, J.; Windbergs, M. Quantitative Detection of Caffeine in Human Skin by Confocal Raman Spectroscopy—A Systematic in Vitro Validation Study. Eur. J. Pharm. Biopharm. 2015, 95, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.; Vukosavljevic, B.; Windbergs, M. Raman Spectroscopy in Skin Research and Dermal Drug Delivery. In Confocal Raman Microscopy; Toporski, J., Dieing, T., Hollricher, O., Eds.; Springer Series in Surface Sciences; Springer International Publishing: Cham, Switzerland, 2018; Volume 66, pp. 421–448. ISBN 978-3-319-75378-2. [Google Scholar]
- Pezzotti, G.; Boffelli, M.; Miyamori, D.; Uemura, T.; Marunaka, Y.; Zhu, W.; Ikegaya, H. Raman Spectroscopy of Human Skin: Looking for a Quantitative Algorithm to Reliably Estimate Human Age. J. Biomed. Opt 2015, 20, 065008. [Google Scholar] [CrossRef]
- Bratchenko, L.A.; Bratchenko, I.A.; Khristoforova, Y.A.; Artemyev, D.N.; Konovalova, D.Y.; Lebedev, P.A.; Zakharov, V.P. Raman Spectroscopy of Human Skin for Kidney Failure Detection. J. Biophotonics 2021, 14. [Google Scholar] [CrossRef]
- Paquin, R.; Colomban, P. Nanomechanics of Single Keratin Fibres: A Raman Study of the α-Helix →β-Sheet Transition and the Effect of Water. J. Raman Spectrosc. 2007, 38, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Ó Faoláin, E.; Hunter, M.B.; Byrne, J.M.; Kelehan, P.; McNamara, M.; Byrne, H.J.; Lyng, F.M. A Study Examining the Effects of Tissue Processing on Human Tissue Sections Using Vibrational Spectroscopy. Vib. Spectrosc. 2005, 38, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Barry, B.W.; Edwards, H.G.M.; Williams, A.C. Fourier Transform Raman and Infrared Vibrational Study of Human Skin: Assignment of Spectral Bands. J. Raman Spectrosc. 1992, 23, 641–645. [Google Scholar] [CrossRef]
- Kast, R.E.; Serhatkulu, G.K.; Cao, A.; Pandya, A.K.; Dai, H.; Thakur, J.S.; Naik, V.M.; Naik, R.; Klein, M.D.; Auner, G.W.; et al. Raman Spectroscopy Can Differentiate Malignant Tumors from Normal Breast Tissue and Detect Early Neoplastic Changes in a Mouse Model. Biopolymers 2008, 89, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Keuleers, R.; Desseyn, H.O.; Rousseau, B.; Van Alsenoy, C. Vibrational Analysis of Urea. J. Phys. Chem. A 1999, 103, 4621–4630. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Bayrak, C.; Bayarı, S.H. Vibrational and DFT Studies of Creatinine and Its Metal Complexes. Hacettepe J. Biol. Chem. 2010, 38, 107–118. [Google Scholar]
- Fisher, A.K.; Carswell, W.F.; Athamneh, A.I.M.; Sullivan, M.C.; Robertson, J.L.; Bevan, D.R.; Senger, R.S. The RametrixTM LITE Toolbox v1.0 for MATLAB®. J. Raman Spectrosc. 2018, 49, 885–896. [Google Scholar] [CrossRef]
- Qi, D.; Berger, A.J. Quantitative Concentration Measurements of Creatinine Dissolved in Water and Urine Using Raman Spectroscopy and a Liquid Core Optical Fiber. J. Biomed. Opt. 2005, 10, 031115. [Google Scholar] [CrossRef]
- Qi, D.; Berger, A.J. Chemical Concentration Measurement in Blood Serum and Urine Samples Using Liquid-Core Optical Fiber Raman Spectroscopy. Appl. Opt. 2007, 46, 1726–1734. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Yamaguchi, Y.; Yamamoto, H.; Doi, S.; Ozaki, Y. Quantitative Analysis of Metabolites in Urine by Anti-Stokes Raman Spectroscopy. Biospectroscopy 1997, 3, 113–120. [Google Scholar] [CrossRef]
- McMurdy, J.W.; Berger, A.J. Raman Spectroscopy-Based Creatinine Measurement in Urine Samples from a Multipatient Population. Appl. Spectrosc. 2003, 57, 522–525. [Google Scholar] [CrossRef]
- Saatkamp, C.J.; de Almeida, M.L.; Bispo, J.A.M.; Pinheiro, A.L.B.; Fernandes, A.B.; Silveira, L. Quantifying Creatinine and Urea in Human Urine through Raman Spectroscopy Aiming at Diagnosis of Kidney Disease. J. Biomed. Opt. 2016, 21, 37001. [Google Scholar] [CrossRef] [Green Version]
- Bispo, J.A.M.; de Sousa Vieira, E.E.; Silveira, L.; Fernandes, A.B. Correlating the Amount of Urea, Creatinine, and Glucose in Urine from Patients with Diabetes Mellitus and Hypertension with the Risk of Developing Renal Lesions by Means of Raman Spectroscopy and Principal Component Analysis. J. Biomed. Opt. 2013, 18, 87004. [Google Scholar] [CrossRef] [PubMed]
- Flores-Guerrero, J.L.; Muñoz-Morales, A.; Narea-Jimenez, F.; Perez-Fuentes, R.; Torres-Rasgado, E.; Ruiz-Vivanco, G.; Gonzalez-Viveros, N.; Castro-Ramos, J. Novel Assessment of Urinary Albumin Excretion in Type 2 Diabetes Patients by Raman Spectroscopy. Diagnostics 2020, 10, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamuah, N.; Saikia, A.; Joseph, A.M.; Nath, P. Blu-Ray DVD as SERS Substrate for Reliable Detection of Albumin, Creatinine and Urea in Urine. Sens. Actuators B Chem. 2019, 285, 108–115. [Google Scholar] [CrossRef]
- Wang, T.-L.; Chiang, H.K.; Lu, H.-H.; Peng, F.-Y. Semi-Quantitative Surface Enhanced Raman Scattering Spectroscopic Creatinine Measurement in Human Urine Samples. Opt. Quant. Electron. 2005, 37, 1415–1422. [Google Scholar] [CrossRef]
- Wang, H.; Malvadkar, N.; Koytek, S.; Bylander, J.; Reeves, W.B.; Demirel, M.C. Quantitative Analysis of Creatinine in Urine by Metalized Nanostructured Parylene. J. Biomed. Opt. 2010, 15, 027004. [Google Scholar] [CrossRef] [PubMed]
- Zong, M.; Zhou, L.; Guan, Q.; Lin, D.; Zhao, J.; Qi, H.; Harriman, D.; Fan, L.; Zeng, H.; Du, C. Comparison of Surface-Enhanced Raman Scattering Properties of Serum and Urine for the Detection of Chronic Kidney Disease in Patients. Appl. Spectrosc. 2021, 75, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Premasiri, W.R.; Clarke, R.H.; Womble, M.E. Urine Analysis by Laser Raman Spectroscopy. Lasers Surg. Med. 2001, 28, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Stefancu, A.; Moisoiu, V.; Bocsa, C.; Bálint, Z.; Cosma, D.-T.; Veresiu, I.A.; Chiş, V.; Leopold, N.; Elec, F. SERS-Based Quantification of Albuminuria in the Normal-to-Mildly Increased Range. Analyst 2018, 143, 5372–5379. [Google Scholar] [CrossRef]
- Wen, G.; Jing, Q.; Liang, A.; Jiang, Z. A New SERS Strategy for Quantitative Analysis of Trace Microalbuminuria Based on Immunorecognition and Graphene Oxide Nanoribbon Catalysis. Int. J. Nanomed. 2018, 13, 6099–6107. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, G.; Zhang, Z. Miniaturized Array Gas Membrane Separation Strategy for Rapid Analysis of Complex Samples by Surface-Enhanced Raman Scattering. Anal. Chim. Acta 2019, 1065, 29–39. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, R.; Chen, H.; Weng, W.; Lin, Q.; Deng, D.; Li, Z.; Kong, J. Sensitive Polydopamine Bi-Functionalized SERS Immunoassay for Microalbuminuria Detection. Biosens. Bioelectron. 2019, 142, 111542. [Google Scholar] [CrossRef] [PubMed]
- Carswell, W.; Robertson, J.L.; Senger, R.S. Raman Spectroscopic Detection and Quantification of Macro- and Microhematuria in Human Urine. Appl. Spectrosc. 2022, 76, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhou, L.; Lin, D.; Zhao, J.; Guan, Q.; Zheng, B.; Wang, K.; Li, H.; Chen, R.; Zeng, H.; et al. Assessment of Treatment Efficacy Using Surface-Enhanced Raman Spectroscopy Analysis of Urine in Rats with Kidney Transplantation or Kidney Disease. Clin. Exp. Nephrol. 2019, 23, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Zaw, T.; Cardona, I.; Hosnain, M.; Garg, N.; Lefkowitz, H.R.; Tolias, P.; Du, H. Use of Surface-Enhanced Raman Scattering as a Prognostic Indicator of Acute Kidney Transplant Rejection. Biomed. Opt. Express 2015, 6, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, L.P.; Silveira, L.; da Silva, A.G.; Fernandes, A.B.; Pacheco, M.T.T.; Rocco, D.D.F.M. Raman Spectroscopy Applied to Identify Metabolites in Urine of Physically Active Subjects. J. Photochem. Photobiol. B Biol. 2017, 176, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Davies, R. The Metabolomic Quest for a Biomarker in Chronic Kidney Disease. Clin. Kidney J. 2018, 11, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Senger, R.S.; Kavuru, V.; Sullivan, M.; Gouldin, A.; Lundgren, S.; Merrifield, K.; Steen, C.; Baker, E.; Vu, T.; Agnor, B.; et al. Spectral Characteristics of Urine Specimens from Healthy Human Volunteers Analyzed Using Raman Chemometric Urinalysis (Rametrix). PLoS ONE 2019, 14, e0222115. [Google Scholar] [CrossRef] [Green Version]
- Senger, R.S.; Sullivan, M.; Gouldin, A.; Lundgren, S.; Merrifield, K.; Steen, C.; Baker, E.; Vu, T.; Agnor, B.; Martinez, G.; et al. Spectral Characteristics of Urine from Patients with End-Stage Kidney Disease Analyzed Using Raman Chemometric Urinalysis (Rametrix). PLoS ONE 2020, 15, e0227281. [Google Scholar] [CrossRef]
- de Almeida, M.L.; Saatkamp, C.J.; Fernandes, A.B.; Pinheiro, A.L.B.; Silveira, L. Estimating the Concentration of Urea and Creatinine in the Human Serum of Normal and Dialysis Patients through Raman Spectroscopy. Lasers Med. Sci. 2016, 31, 1415–1423. [Google Scholar] [CrossRef]
- Giansante, S.; Giana, H.E.; Fernandes, A.B.; Silveira, L. Analytical Performance of Raman Spectroscopy in Assaying Biochemical Components in Human Serum. Lasers Med. Sci. 2022, 37, 287–298. [Google Scholar] [CrossRef]
- Stosch, R.; Henrion, A.; Schiel, D.; Güttler, B. Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum. Anal. Chem. 2005, 77, 7386–7392. [Google Scholar] [CrossRef]
- Yang, F.; Wen, P.; Li, G.; Zhang, Z.; Ge, C.; Chen, L. High-Performance Surface-Enhanced Raman Spectroscopy Chip Integrated with a Micro-Optical System for the Rapid Detection of Creatinine in Serum. Biomed. Opt. Express 2021, 12, 4795–4806. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Yang, F.; Ge, C.; Li, S.; Xu, Y.; Chen, L. Self-Assembled Nano-Ag/Au@Au Film Composite SERS Substrates Show High Uniformity and High Enhancement Factor for Creatinine Detection. Nanotechnology 2021, 32. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Xu, Y.; Zhao, H.; Li, S.; Chen, L. Design and Preparation of Centrifugal Microfluidic Chip Integrated with SERS Detection for Rapid Diagnostics. Talanta 2019, 194, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, L.-Z.; Yu, Z.; Su, L.-Y.; Zheng, Y.; Song, P.; Wang, Y.-H.; Pan, Y.-B.; Zheng, B. Quantitative Detection of Creatinine in Human Serum by SERS with Evaporation-Induced Optimal Hotspots on Au Nanocubes. ACS Appl. Nano Mater. 2022, 5, 4841–4847. [Google Scholar] [CrossRef]
- Guo, J.; Rong, Z.; Li, Y.; Wang, S.; Zhang, W.; Xiao, R. Diagnosis of Chronic Kidney Diseases Based on Surface-Enhanced Raman Spectroscopy and Multivariate Analysis. Laser Phys. 2018, 28, 075603. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Dou, L.; Cerini, C.; Dignat-George, F.; Brunet, P. Vascular Incompetence in Dialysis Patients—Protein-Bound Uremic Toxins and Endothelial Dysfunction. Semin. Dial. 2011, 24, 327–337. [Google Scholar] [CrossRef]
- Liabeuf, S.; Drüeke, T.B.; Massy, Z.A. Protein-Bound Uremic Toxins: New Insight from Clinical Studies. Toxins 2011, 3, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on Uremic Toxins: Classification, Concentration, and Interindividual Variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef] [Green Version]
- Saadati, S.; Eduok, U.; Abdelrasoul, A.; Shoker, A. A Surface-Enhanced Raman Scattering-Based Approach for Rapid and Highly Sensitive Quantitative Analysis of 3-Carboxy-4-Methyl-5-Propyl-2-Furanpropionate and Indole-3-Acetic Acid in Saline, Human Serum and Uremic Serum of Patients with Chronic Kidney Disease. RSC Adv. 2020, 10, 43489–43496. [Google Scholar] [CrossRef]
- Berti, A.; Cornec-Le Gall, E.; Cornec, D.; Casal Moura, M.; Matteson, E.L.; Crowson, C.S.; Ravindran, A.; Sethi, S.; Fervenza, F.C.; Specks, U. Incidence, Prevalence, Mortality and Chronic Renal Damage of Anti-Neutrophil Cytoplasmic Antibody-Associated Glomerulonephritis in a 20-Year Population-Based Cohort. Nephrol. Dial. Transplant. 2019, 34, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Berden, A.E.; Ferrario, F.; Hagen, E.C.; Jayne, D.R.; Jennette, J.C.; Joh, K.; Neumann, I.; Noël, L.-H.; Pusey, C.D.; Waldherr, R.; et al. Histopathologic Classification of ANCA-Associated Glomerulonephritis. J. Am. Soc. Nephrol. 2010, 21, 1628–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, F.W.K.; Sanders, J.-S.; George, A.; Hammad, T.; Miller, C.; Dougan, T.; Cook, H.T.; Kallenberg, C.G.M.; Gaskin, G.; Levy, J.B.; et al. Urinary Monocyte Chemoattractant Protein-1 (MCP-1) Is a Marker of Active Renal Vasculitis. Nephrol. Dial. Transplant. 2004, 19, 2761–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlsson, S.; Bakoush, O.; Tencer, J.; Torffvit, O.; Segelmark, M. Monocyte Chemoattractant Protein 1 Is a Prognostic Marker in ANCA-Associated Small Vessel Vasculitis. Mediators Inflamm. 2009, 2009, 584916. [Google Scholar] [CrossRef] [Green Version]
- Lieberthal, J.G.; Cuthbertson, D.; Carette, S.; Hoffman, G.S.; Khalidi, N.A.; Koening, C.L.; Langford, C.A.; Maksimowicz-McKinnon, K.; Seo, P.; Specks, U.; et al. Urinary Biomarkers in Relapsing Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J. Rheumatol. 2013, 40, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, N.; Erlandsson, E.; Gunnarsson, L.; Pettersson, Å.; Ohlsson, S. Monocyte Chemoattractant Protein-1 in Antineutrophil Cytoplasmic Autoantibody-Associated Vasculitis: Biomarker Potential and Association with Polymorphisms in the MCP-1 and the CC Chemokine Receptor-2 Gene. Mediators Inflamm. 2018, 2018, 6861257. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, V.P.; Wong, L.; Kennedy, C.; Elliot, L.A.; O’Meachair, S.; Coughlan, A.M.; O’Brien, E.C.; Ryan, M.M.; Sandoval, D.; Connolly, E.; et al. Urinary Soluble CD163 in Active Renal Vasculitis. J. Am. Soc. Nephrol. 2016, 27, 2906–2916. [Google Scholar] [CrossRef] [Green Version]
- Xing, G.; Chen, M.; Liu, G.; Heeringa, P.; Zhang, J.; Zheng, X.; E, J.; Kallenberg, C.G.M.; Zhao, M. Complement Activation Is Involved in Renal Damage in Human Antineutrophil Cytoplasmic Autoantibody Associated Pauci-Immune Vasculitis. J. Clin. Immunol. 2009, 29, 282–291. [Google Scholar] [CrossRef]
- Hilhorst, M.; van Paassen, P.; van Rie, H.; Bijnens, N.; Heerings-Rewinkel, P.; van Breda Vriesman, P.; Cohen Tervaert, J.W.; Limburg Renal Registry. Complement in ANCA-Associated Glomerulonephritis. Nephrol. Dial. Transplant. 2017, 32, 1302–1313. [Google Scholar] [CrossRef]
- Gou, S.-J.; Yuan, J.; Wang, C.; Zhao, M.-H.; Chen, M. Alternative Complement Pathway Activation Products in Urine and Kidneys of Patients with ANCA-Associated GN. Clin. J. Am. Soc. Nephrol. 2013, 8, 1884–1891. [Google Scholar] [CrossRef] [Green Version]
- De Vriese, A.S.; Sethi, S.; Nath, K.A.; Glassock, R.J.; Fervenza, F.C. Differentiating Primary, Genetic, and Secondary FSGS in Adults: A Clinicopathologic Approach. J. Am. Soc. Nephrol. 2018, 29, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Musiała, A.; Donizy, P.; Augustyniak-Bartosik, H.; Jakuszko, K.; Banasik, M.; Kościelska-Kasprzak, K.; Krajewska, M.; Kamińska, D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J. Clin. Med. 2022, 11, 3292. [Google Scholar] [CrossRef] [PubMed]
- Meliambro, K.; Schwartzman, M.; Cravedi, P.; Campbell, K.N. The Impact of Histologic Variants on FSGS Outcomes. Int. Sch. Res. Notices 2014, 2014, 913690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Deile, J.; Sarau, G.; Kotb, A.M.; Jaremenko, C.; Rolle-Kampczyk, U.E.; Daniel, C.; Kalkhof, S.; Christiansen, S.H.; Schiffer, M. Novel Diagnostic and Therapeutic Techniques Reveal Changed Metabolic Profiles in Recurrent Focal Segmental Glomerulosclerosis. Sci. Rep. 2021, 11, 4577. [Google Scholar] [CrossRef]
- Parachalil, D.R.; Bruno, C.; Bonnier, F.; Blasco, H.; Chourpa, I.; McIntyre, J.; Byrne, H.J. Raman Spectroscopic Screening of High and Low Molecular Weight Fractions of Human Serum. Analyst 2019, 144, 4295–4311. [Google Scholar] [CrossRef]
- Schneider, R.R.S.; Eng, D.G.; Kutz, J.N.; Sweetwyne, M.T.; Pippin, J.W.; Shankland, S.J. Compound Effects of Aging and Experimental FSGS on Glomerular Epithelial Cells. Aging (Albany NY) 2017, 9, 524–546. [Google Scholar] [CrossRef] [Green Version]
- Kuppe, C.; Leuchtle, K.; Wagner, A.; Kabgani, N.; Saritas, T.; Puelles, V.G.; Smeets, B.; Hakroush, S.; van der Vlag, J.; Boor, P.; et al. Novel Parietal Epithelial Cell Subpopulations Contribute to Focal Segmental Glomerulosclerosis and Glomerular Tip Lesions. Kidney Int. 2019, 96, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Fatima, H.; Moeller, M.J.; Smeets, B.; Yang, H.-C.; D’Agati, V.D.; Alpers, C.E.; Fogo, A.B. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant. Clin. J. Am. Soc. Nephrol. 2012, 7, 1852–1858. [Google Scholar] [CrossRef] [Green Version]
- Smeets, B.; Kuppe, C.; Sicking, E.-M.; Fuss, A.; Jirak, P.; van Kuppevelt, T.H.; Endlich, K.; Wetzels, J.F.M.; Gröne, H.-J.; Floege, J.; et al. Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis. J. Am. Soc. Nephrol. 2011, 22, 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Umanath, K.; Lewis, J.B. Update on Diabetic Nephropathy: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 71, 884–895. [Google Scholar] [CrossRef]
- Nakagawa, T.; Tanabe, K.; Croker, B.P.; Johnson, R.J.; Grant, M.B.; Kosugi, T.; Li, Q. Endothelial Dysfunction as a Potential Contributor in Diabetic Nephropathy. Nat. Rev. Nephrol. 2011, 7, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, C.K.; Han, P.V.; Zabetian, A.; Ali, M.K.; Narayan, K.M.V. Rural Diabetes Prevalence Quintuples over Twenty-Five Years in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2012, 96, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Polkinghorne, K.R. Detection and Measurement of Urinary Protein. Curr. Opin. Nephrol. Hypertens. 2006, 15, 625–630. [Google Scholar] [CrossRef]
- Lin, J.; Lin, X.; Hu, C.; Bai, P.; Yang, H.; Dai, Y.; Qiu, H.; Lin, M.; Feng, S.; Pan, J.; et al. Silver Nanoparticle Based Surface-Enhanced Raman Spectroscopy for Label-Free Discrimination of Diabetic Albumin under near-Infrared Laser Excitation. Laser Phys. Lett. 2018, 15, 095703. [Google Scholar] [CrossRef]
- Williams, C.; Palviainen, M.; Reichardt, N.-C.; Siljander, P.R.-M.; Falcón-Pérez, J.M. Metabolomics Applied to the Study of Extracellular Vesicles. Metabolites 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Vidal, M. Exosomes: Revisiting Their Role as “Garbage Bags”. Traffic 2019, 20, 815–828. [Google Scholar] [CrossRef]
- Musante, L.; Bontha, S.V.; La Salvia, S.; Fernandez-Piñeros, A.; Lannigan, J.; Le, T.H.; Mas, V.; Erdbrügger, U. Rigorous Characterization of Urinary Extracellular Vesicles (UEVs) in the Low Centrifugation Pellet—A Neglected Source for UEVs. Sci. Rep. 2020, 10, 3701. [Google Scholar] [CrossRef] [Green Version]
- Solé, C.; Moliné, T.; Vidal, M.; Ordi-Ros, J.; Cortés-Hernández, J. An Exosomal Urinary MiRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells 2019, 8, 773. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, A.; Roman, M.; Wróbel, A.; Gala-Błądzińska, A.; Małecki, M.T.; Paluszkiewicz, C.; Stępień, E.Ł. Raman Spectroscopy of Urinary Extracellular Vesicles to Stratify Patients with Chronic Kidney Disease in Type 2 Diabetes. Nanomed. Nanotechnol. Biol. Med. 2022, 39, 102468. [Google Scholar] [CrossRef]
- Tatischeff, I.; Larquet, E.; Falcón-Pérez, J.M.; Turpin, P.-Y.; Kruglik, S.G. Fast Characterisation of Cell-Derived Extracellular Vesicles by Nanoparticles Tracking Analysis, Cryo-Electron Microscopy, and Raman Tweezers Microspectroscopy. J. Extracell. Vesicles 2012, 1, 19179. [Google Scholar] [CrossRef] [PubMed]
- Gualerzi, A.; Picciolini, S.; Carlomagno, C.; Terenzi, F.; Ramat, S.; Sorbi, S.; Bedoni, M. Raman Profiling of Circulating Extracellular Vesicles for the Stratification of Parkinson’s Patients. Nanomed. Nanotechnol. Biol. Med. 2019, 22, 102097. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, N.; Sil, S.; Verma, T.; Umapathy, S. Challenges in Application of Raman Spectroscopy to Biology and Materials. RSC Adv. 2018, 8, 25888–25908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualerzi, A.; Niada, S.; Giannasi, C.; Picciolini, S.; Morasso, C.; Vanna, R.; Rossella, V.; Masserini, M.; Bedoni, M.; Ciceri, F.; et al. Raman Spectroscopy Uncovers Biochemical Tissue-Related Features of Extracellular Vesicles from Mesenchymal Stromal Cells. Sci. Rep. 2017, 7, 9820. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman Spectroscopy of Lipids: A Review: Raman Spectroscopy of Lipids. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Moeckli, B.; Sun, P.; Lazeyras, F.; Morel, P.; Moll, S.; Pascual, M.; Bühler, L.H. Evaluation of Donor Kidneys Prior to Transplantation: An Update of Current and Emerging Methods. Transpl. Int. 2019, 32, 459–469. [Google Scholar] [CrossRef]
- Chen, H.; Luo, C.; Xing, L.; Guo, H.; Ma, P.; Zhang, X.; Zeng, L.; Sui, M. Simultaneous and Ultra-Sensitive SERS Detection of SLPI and IL-18 for the Assessment of Donor Kidney Quality Using Black Phosphorus/Gold Nanohybrids. Opt. Express 2022, 30, 1452–1465. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Murugan, R.; Al-Khafaji, A.; Lebovitz, D.J.; Souter, M.; Stuart, S.R.N.; Kellum, J.A.; Monitoring Organ Donors to Improve Transplantation Results (MOnIToR) Study Investigators. Donor Biomarkers as Predictors of Organ Use and Recipient Survival after Neurologically Deceased Donor Organ Transplantation. J. Crit. Care 2018, 48, 42–47. [Google Scholar] [CrossRef]
- Mansour, S.G.; Khoury, N.; Kodali, R.; Virmani, S.; Reese, P.P.; Hall, I.E.; Jia, Y.; Yamamoto, Y.; Thiessen-Philbrook, H.R.; Obeid, W.; et al. Clinically Adjudicated Deceased Donor Acute Kidney Injury and Graft Outcomes. PLoS ONE 2022, 17, e0264329. [Google Scholar] [CrossRef]
- Ambrosi, N.G.; Caro, F.Y.; Osella, F.; Alvarez, L.D.; Sánchez, F.; Toniolo, F.; Guerrieri, D.; Incardona, C.; Casadei, D.; Chuluyan, E. SLPI in the Perfusion Solution Helps to Identify Graft Quality in Kidney Transplants. Biomark. Med. 2019, 13, 895–906. [Google Scholar] [CrossRef]
- Averdunk, L.; Fitzner, C.; Levkovich, T.; Leaf, D.E.; Sobotta, M.; Vieten, J.; Ochi, A.; Moeckel, G.; Marx, G.; Stoppe, C. Secretory Leukocyte Protease Inhibitor (SLPI)-A Novel Predictive Biomarker of Acute Kidney Injury after Cardiac Surgery: A Prospective Observational Study. J. Clin. Med. 2019, 8, 1931. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.R.; Tommasini, M.; Ciusani, E.; Lucotti, A.; Trusso, S.; Ossi, P.M. Protein-Metal Interactions Probed by SERS: Lysozyme on Nanostructured Gold Surface. Plasmonics 2018, 13, 2117–2124. [Google Scholar] [CrossRef]
- Aliaga, A.E.; Garrido, C.; Leyton, P.; Diaz F., G.; Gomez-Jeria, J.S.; Aguayo, T.; Clavijo, E.; Campos-Vallette, M.M.; Sanchez-Cortes, S. SERS and Theoretical Studies of Arginine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Siddhanta, S.; Karthigeyan, D.; Kundu, P.P.; Kundu, T.K.; Narayana, C. Surface Enhanced Raman Spectroscopy of Aurora Kinases: Direct, Ultrasensitive Detection of Autophosphorylation. RSC Adv. 2013, 3, 4221. [Google Scholar] [CrossRef]
- Chi, J.; Ma, Y.; Weng, F.L.; Thiessen-Philbrook, H.; Parikh, C.R.; Du, H. Surface-Enhanced Raman Scattering Analysis of Urine from Deceased Donors as a Prognostic Tool for Kidney Transplant Outcome. J. Biophotonics 2017, 10, 1743–1755. [Google Scholar] [CrossRef]
- Chi, J.; Chen, H.; Tolias, P.; Du, H. Fiber Optic Probe Enabled by Surface-Enhanced Raman Scattering for Early Diagnosis of Potential Acute Rejection of Kidney Transplant. In Fiber Optic Sensors and Applications XI; Du, H.H., Pickrell, G., Udd, E., Baldwin, C.S., Benterou, J.J., Wang, A., Eds.; SPIE: Baltimore, MD, USA, 2014; p. 90980P. [Google Scholar]
- Brown, K.L.; Palyvoda, O.Y.; Thakur, J.S.; Nehlsen-Cannarella, S.L.; Fagoaga, O.R.; Gruber, S.A.; Auner, G.W. Raman Spectroscopic Differentiation of Activated versus Non-Activated T Lymphocytes: An in Vitro Study of an Acute Allograft Rejection Model. J. Immunol. Methods 2009, 340, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Notingher, I.; Verrier, S.; Haque, S.; Polak, J.M.; Hench, L.L. Spectroscopic Study of Human Lung Epithelial Cells (A549) in Culture: Living Cells versus Dead Cells. Biopolymers 2003, 72, 230–240. [Google Scholar] [CrossRef]
- Brown, K.L.; Palyvoda, O.Y.; Thakur, J.S.; Nehlsen-Cannarella, S.L.; Fagoaga, O.R.; Gruber, S.A.; Auner, G.W. Differentiation of Alloreactive versus CD3/CD28 Stimulated T-Lymphocytes Using Raman Spectroscopy: A Greater Specificity for Noninvasive Acute Renal Allograft Rejection Detection. Cytometry A 2009, 75, 917–923. [Google Scholar] [CrossRef]
- Vuiblet, V.; Fere, M.; Bankole, E.; Wynckel, A.; Gobinet, C.; Birembaut, P.; Piot, O.; Rieu, P. Raman-Based Detection of Hydroxyethyl Starch in Kidney Allograft Biopsies as a Potential Marker of Allograft Quality in Kidney Transplant Recipients. Sci. Rep. 2016, 6, 33045. [Google Scholar] [CrossRef] [Green Version]
- Draux, F.; Gobinet, C.; Sulé-Suso, J.; Manfait, M.; Jeannesson, P.; Sockalingum, G.D. Raman Imaging of Single Living Cells: Probing Effects of Non-Cytotoxic Doses of an Anti-Cancer Drug. Analyst 2011, 136, 2718–2725. [Google Scholar] [CrossRef]
Parameter | Method | Findings | References |
---|---|---|---|
Creatinine | RS |
| [29] |
Gold colloid SERS |
| [38] | |
RS |
| [30] | |
RS and a Teflon® liquid core optical fiber-based excitation–collection geometry |
| [27,28] | |
Silver nanoparticle-based SERS |
| [35] | |
SERS with metalized nanostructure parylene (PPX-Cl) film as a SERS substrate |
| [36] | |
RS |
| [32] | |
RS |
| [31] | |
AuNP coated Blu-ray DVD (BRDVD)-based SERS |
| [34] | |
RS |
| [33] | |
Silver nanoparticle-based SERS |
| [11] | |
Silver nanoparticle-based SERS |
| [37] | |
Urea | RS |
| [26] |
RS and a Teflon® liquid core optical fiber-based excitation-collection geometry |
| [27,28] | |
RS |
| [29] | |
RS |
| [30] | |
RS |
| [31] | |
RS |
| [32] | |
RS |
| [33] | |
AuNP coated Blu-ray DVD (BRDVD)-based SERS |
| [34] | |
SERS with metalized nanostructure parylene (PPX-Cl) film as a SERS substrate |
| [36] | |
Silver nanoparticle-based SERS |
| [11] | |
Silver nanoparticle-based SERS |
| [37] | |
Gold colloid SERS |
| [38] | |
Glucose | RS |
| [29] |
RS |
| [32] | |
Protein/albumin | RS |
| [26] |
Silver nanoparticle-based SERS |
| [39] | |
SERS coupled with GONR catalysis |
| [40] | |
AuNP-coated Blu-ray DVD (BRDVD)-based SERS |
| [34] | |
AGMS device coupled with SER |
| [41] | |
Polydopamine bifunctionalized glass chip and SERS |
| [42] | |
RS |
| [33] | |
Silver nanoparticle-based SERS |
| [11] | |
Silver nanoparticle-based SERS |
| [37] | |
Blood | RS |
| [43] |
Parameter | Method | Finding | References |
---|---|---|---|
Creatinine Creatinine | Silver nanoparticle-based SERS |
| [52] |
RS |
| [50] | |
Nano-Au on Ag film SERS |
| [55] | |
Silver nanoparticle-based SERS |
| [11] | |
Silver nanoparticle-based SERS |
| [37] | |
Silver nanoparticle-based SERS chip integrated with a MOS |
| [53] | |
Nano-Ag/Au@Au film composite SERS |
| [54] | |
RS |
| [51] | |
Au nanoparticle-based SERS |
| [56] | |
Urea | LCOF RS |
| [28] |
RS |
| [50] | |
Silver nanoparticle-based SERS |
| [11] | |
Silver nanoparticle-based SERS |
| [37] | |
RS |
| [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Speeckaert, M.M. The Potential Applications of Raman Spectroscopy in Kidney Diseases. J. Pers. Med. 2022, 12, 1644. https://doi.org/10.3390/jpm12101644
Delrue C, Speeckaert MM. The Potential Applications of Raman Spectroscopy in Kidney Diseases. Journal of Personalized Medicine. 2022; 12(10):1644. https://doi.org/10.3390/jpm12101644
Chicago/Turabian StyleDelrue, Charlotte, and Marijn M. Speeckaert. 2022. "The Potential Applications of Raman Spectroscopy in Kidney Diseases" Journal of Personalized Medicine 12, no. 10: 1644. https://doi.org/10.3390/jpm12101644