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Abstract: Raman spectroscopy (RS) is a spectroscopic technique based on the inelastic interaction
of incident electromagnetic radiation (from a laser beam) with a polarizable molecule, which, when
scattered, carries information from molecular vibrational energy (the Raman effect). RS detects
biochemical changes in biological samples at the molecular level, making it an effective analytical
technique for disease diagnosis and prognosis. It outperforms conventional sample preservation
techniques by requiring no chemical reagents, reducing analysis time even at low concentrations,
and working in the presence of interfering agents or solvents. Because routinely utilized biomarkers
for kidney disease have limitations, there is considerable interest in the potential use of RS. RS
may identify and quantify urinary and blood biochemical components, with results comparable to
reference methods in nephrology.
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1. Introduction

Biospectroscopy enables the identification of key biochemical changes in tissue as-
sociated with a given pathological state, facilitating biomarker extraction and automated
detection of key lesions. This technology has the ability to generate a unique spectral
fingerprint that is representative of the chemical bonds by utilizing the interaction of light
with the constituent molecules present within any given biosample. This allows the cellular
activity specific to any given pathological state to be identified. Infrared spectroscopy and
Raman spectroscopy (RS) are two important analytical techniques, which are low-cost and
label-free, with minimal sample preparation required [1]. RS, unlike infrared absorption,
is well suited for biological tissue measurements due to its low sensitivity to water [2].
In comparison to biopsy and biomarkers, optical methods have the potential to develop
noninvasive or minimally invasive and objective approaches to pathological assessment [3].
Furthermore, technological advances in chemometric analysis over the last decade have
enabled a high throughput of large datasets, with an increased investigation of its poten-
tial application in renal medicine [1]. In the present review article, we give an overview
of the current applications of RS in kidney diseases and highlight the unmet needs for
further research.

2. Raman Spectroscopy

RS is based on the inelastic scattering of light by polarizable molecules, which reveals
the vibrational energy levels of the molecular chemical bonds [4,5]. A schematic overview of
an RS setup is presented in Figure 1.The magnitude of the change in molecular polarization
is proportional to the intensity of Raman scattering. In classical physics, light is thought
of as a wave with electric and magnetic fields. Each electromagnetic wave is made up
of both an electric and a magnetic field that are perpendicular to one another. While RS
under standard conditions provides information about a sample’s chemical composition,
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polarized RS can provide additional information, such as the symmetry of vibrational
modes and the sample’s orientation [6]. Vertical variations in Raman intensities correspond
to changes in component concentrations. Horizontal shifts in Raman signals are caused by
minor differences in molecular vibrations caused by molecule composition changes [2].
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Figure 1. Schematic overview of a Raman microscopy/spectroscopy setup.

RS enables the analysis of chemical structures in biological fluids such as plasma,
urine, and cerebrospinal fluid in a quick and nondestructive manner. Talari et al. published
a large database of molecular fingerprints containing the most commonly observed peak
frequencies and their assignments [7]. Figure 2 illustrates the Raman spectrum of whole
blood over the range 400–1700 cm−1.

Previously, the application of RS was restricted due to its low sensitivity, high cost, and
a lack of readily available, onsite analysis [6]. Recent RS technological advancements have
resulted in a readily available, portable, and reasonably priced RS device [8]. Multivariate
spectral analysis methods are frequently used to process Raman spectra and facilitate data
interpretation, which could also be the case when diagnosing nephropathies [2].

Surface-enhanced Raman spectroscopy (SERS) is a subtype of RS that is specifically
designed to increase its sensitivity of low concentration analytes (by factors of 104 or higher,
enabling single-molecule SERS). The addition of an enhancement material (e.g., colloidal
metals and roughened metals, including gold, silver, and copper) to a sample significantly
increases the electromagnetic fields of adsorbate molecules generated by the excitation
of localized surface plasmons [9]. The combination of SERS with the tips of atomic force
microscopy or scanning tunneling microscopy has resulted in tip-enhanced Raman scatter-
ing, a powerful imaging tool. The rich vibrational spectroscopic information provided by
SERS distinguishes it from many other techniques for analytical applications [10]. SERS
has numerous advantages over traditional methods. First of all, it is noninvasive. Second,
SERS can distinguish multiple substances at the same time. Third, SERS may be a more
convenient, less expensive, and faster tool than traditional techniques in clinical and bio-
chemical laboratories [11]. On the other hand, the SERS technique has limitations in that
(1) it requires intimate contact between the enhancing surface and the analyte, (2) the sub-
strates degrade over time, resulting in a decrease in signal, (3) the substrates have limited
selectivity for a given analyte, (4) the substrates have limited reusability, and (5) there are
problems with homogeneity and reproducibility of the SERS signal within a substrate [12].
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3. Raman Spectroscopy: A Novel Tool to Detect Renal Biomarkers?
3.1. Skin

Chronic kidney disease (CKD) is one of the most common noncommunicable disease
pathologies. Kidney failure is associated with a variety of physiological and pathological
characteristics of internal organs, all of which are closely related to the skin condition and
affect its component composition [13]. One of the leading trends in therapeutic disciplines
is the analysis of changes in the composition of different human skin layers. In skin
analysis, RS is used to quantify the content of a specific component in the skin, determine
dermal drug delivery, identify biophysical links between vibrational characteristics and
specific compositional and chemical changes associated with aging, screen for skin cancer,
etc. [14–17]. In a study of 85 hemodialysis patients (90 spectra) and 40 healthy adults
(80 spectra) [18], investigation of the forearm skin using RS yielded an accuracy of 0.96,
sensitivity of 0.94, and specificity of 0.99 in identifying the target subjects with kidney failure.
Multivariate analysis of the Raman component of the skin spectrum proved to be specific for
identifying spectral features associated with metabolic changes in the skin in kidney failure,
with specificity, sensitivity, and accuracy of 0.91, 0.84, and 0.88, respectively, whereas the
age factor had no significant effect on the analysis. When using the partial least square-
discriminant analysis (PLS-DA) method to classify subjects on the basis of the presence of
kidney failure, the most informative Raman spectral bands were 1315–1330 cm−1 (amide
III, δ(CH2) in α-helix collagen) [19], 1450–1460 cm−1 (δ(CH) in proteins and lipids) [20],
and 1700–1800 cm−1 (v(CO) in lipids and phospholipids, v(COO)) [21,22]. The analysis’s
accuracy, sensitivity, and specificity are adequate for clinical use, making it a potential
foundation for developing new methods of monitoring hemodialysis patients and screening
the health status of patients with kidney failure [18]. Future research could concentrate on
RS as a useful tool for objectively assessing treatment response in CKD patients. Pruritus,
for example, is a major issue in both dialysis patients and those with advanced kidney
failure. Investigating skin spectra in CKD patients with and without pruritus, as well as
evaluating the change in Raman spectral bands after starting an anti-itch treatment, could
be an intriguing and worthwhile area of research.
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3.2. Urine

Research in the last decades has published several methods based on RS and SERS for
the detection of urinary renal biomarkers, including urea peaks at 1004 cm−1 (symmetrical
CN stretch) and 1161 cm−1 (attributed to NH2 modes), creatinine peaks at 608 cm−1 (NCH3
stretching, CO deformation and ring vibrations), 680 cm−1 (CNH2 and CO stretching, ring
vibrations), 846 cm−1 (CNH2 deformation and ring vibrations), and 910 cm−1 (C–C–N
stretching), glucose peak at 1128 cm−1 (C–O stretching), and protein peaks at 600, 850,
1060, and 1470 cm−1 (disulfide bonds, tyrosine, C–N bonds, and CH2 and CH3 angle
bending) [23–26]. An overview of the most important findings of these studies is presented
in Table 1 [11,27–43]. The applications of RS for the identification of uropathogens, urine
crystals, and kidney stones are not included in this review.

Table 1. Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) studies for
measuring creatinine, urea, glucose, protein/albumin, and blood in urine.

Parameter Method Findings References

Creatinine

RS
• Peak at 692 cm−1

• R = 1.00
• LOD = 1.5 mg/mL

[29]

Gold colloid SERS • Peak between 1390 and 1490 cm−1

• R2 = 1.0
[38]

RS • R2 > 0.98
• RMSEcv = 4.9 mg/dL

[30]

RS and a Teflon® liquid core optical fiber-based
excitation–collection geometry

• Peak at 687.5 cm−1

• RMSEcv = 6.2 mg/dL
[27,28]

Silver nanoparticle-based SERS • Peak at 1400–1500 cm−1

• R2 = 0.96
[35]

SERS with metalized nanostructure parylene
(PPX-Cl) film as a SERS substrate

• Peaks at 700, 840, 900, and 1420 cm−1

• 840 and 900 cm−1 peaks were stronger than
the 700 cm−1 peak

• R = 0.907 for 840 cm−1, 0.968 for 900 cm−1

[36]

RS • Peak at 608, 680, 846, and 910 cm−1 [32]

RS
• Peak at 527, 1006, and 1160 cm−1

• R = 0.91
• RMSEcv = 25.2 mg/dL

[31]

AuNP coated Blu-ray DVD (BRDVD)-based
SERS

• Peak at 888, 958, and 1444 cm−1

• LOD: 0.2 µg/mL
[34]

RS • Peak at 650–940 cm−1 [33]

Silver nanoparticle-based SERS • R2 = 0.81 [11]

Silver nanoparticle-based SERS • R2 = 0.79
• RMSEcv = 4.19 mmol/L

[37]
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Table 1. Cont.

Parameter Method Findings References

Urea

RS • Peak at 1003 cm−1 [26]

RS and a Teflon® liquid core optical fiber-based
excitation-collection geometry

• Peak at 1014 cm−1

• RMSEcv = 39.5 mg/dL
[27,28]

RS
• Peak at 1016 cm−1

• R = 0.97
• LOD: 20 mg/dL

[29]

RS • Peak at 1000 cm−1 [30]

RS
• Peak at 681, 846, and 908 cm−1

• R = 0.90
• RMSEcv = 312 mg/dL

[31]

RS • Peak at 1004 cm−1 [32]

RS • Peak from 500–560 cm−1, from
960–1043 cm−1, from 1120–1192 cm−1

[33]

AuNP coated Blu-ray DVD
(BRDVD)-based SERS

• Peak at 1018 cm−1

• LOD: 0.6 µg/mL
[34]

SERS with metalized nanostructure parylene
(PPX-Cl) film as a SERS substrate • Peak at 1000 cm−1 [36]

Silver nanoparticle-based SERS • Peak at 1004 cm−1

• R2 = 0.78
[11]

Silver nanoparticle-based SERS • R2 = 0.73
• RMSEcv = 632.44 mmol/L

[37]

Gold colloid SERS • Peak at 1000 cm−1 [38]

Glucose
RS

• Peak at 1130 cm−1

• R = 1.00
• LOD: 32 mg/dL

[29]

RS • Peak at 1128 cm−1 [32]

Protein/
albumin

RS
• Peak at 600, 850, 1060, and

1470 cm−1 (protein)
• R2 = 0.97

[26]

Silver nanoparticle-based SERS
• Peak at 1002 cm−1 (albumin)
• R2 = 0.98
• LOD of albumin: 3 µg/mL

[39]

SERS coupled with GONR catalysis • Peak at 1615 cm−1 (albumin)
• LOD of albumin = 0.02 ng/mL

[40]

AuNP-coated Blu-ray DVD (BRDVD)-based
SERS

• Peak at 1208 and 1370 cm−1 (albumin)
• LOD of albumin: 0.1 µg/mL

[34]
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Table 1. Cont.

Parameter Method Findings References

Protein/
albumin

AGMS device coupled with SER • R2 = 0.99
• LOD of albumin = 2.0 mg/L

[41]

Polydopamine bifunctionalized glass chip
and SERS

• Peak at 1096 cm−1

• R2 = 0.99
• LOD of albumin: 0.2 mg/L

[42]

RS • Peak at 1450 cm−1 (albumin) [33]

Silver nanoparticle-based SERS • Peak at 890 cm−1 (protein)
• R2 = 0.47

[11]

Silver nanoparticle-based SERS • R2 = 0.6579 (albumin)
• RMSEcv = 10.50 mmol/L

[37]

Blood RS • R2 = 0.91 (all hematuria
levels), 0.92 (microhematuria)

[43]

Abbreviations: RS, Raman spectroscopy; R, correlation coefficient; ; LOD, limit of detection; SERS, surface-
enhanced Raman spectroscopy; R2, coefficient of determination; RMSEcv, root-mean-squared error of cross-
validation; GONR, graphene oxide nanoribbon; AuNP, gold nanoparticle; AGMS, array gas membrane separation.

A pilot study of renal allograft recipient Lewis rats and obese diabetic ZSF1 rats with
kidney disease investigated if SERS could predict the number of biochemical substances in
urine samples that are related to kidney function. PLS predicted the biochemical parameters
of kidney function using the SERS spectra, resulting in R2 = 0.8246 (p < 0.001, urine protein),
R2 = 0.8438 (p < 0.001, urine creatinine), R2 = 0.9265 (p < 0.001, urea), R2 = 0.8719 (p < 0.001,
serum creatinine), and R2 = 0.6014 (p < 0.001, urine protein-to-creatinine ratio). SERS
predicted urine creatinine within the biological range of 1–9 mmol/L with a root-mean-
squared error of cross-validation (RMSEcv) of 0.69 mmol/L [44].

By analyzing urine from diabetic and hypertensive patients without and with compli-
cations compared to controls and correlating the changes in the spectral features, dispersive
near-infrared RS proved to be a promising tool for analysis of these renal biomarkers. The
intensity of specific peaks varied depending on the group, such as the absence of the glu-
cose peak (1128 cm−1) for the healthy control group and its presence in all disease groups,
and the decreased intensity of the urea (1004 cm−1) and creatinine (680 cm−1) peaks for the
diseased groups compared to the control group. The first principal component analysis
(PCA) loading vectors revealed urea, creatinine, and glucose spectral features. Urinary
urea and creatinine concentrations decreased as the disease progressed from controls to
lower/higher risk of complications and the dialysis group (PC1 score, p < 0.05). When
urine of the lower/higher risk of complications group was compared to the control group,
the amount of glucose increased (PC3 score, p < 0.05). The discriminating model had a
higher overall classification rate of 70% (89% for the control group, and 81% for both the
high risk for complications and the dialysis groups). The authors concluded that SERS
could provide diagnostic information about kidney failure, as well as a better estimation of
disease prognosis due to diabetes mellitus and hypertension using a single spectrum of
urine [32].

A Chinese study with 126 CKD patients (CKD stages 2–5) and 97 healthy subjects
compared the differences in SERS properties of urine [37]. Three Raman peaks at 640–680,
1006, and 1625–1655 cm−1 were also reported by others [39,45], while the missing peak at
1026/1028 cm−1 was probably too close to the strong peak at 1006 cm−1. Other prominent
Raman signals at 1079, 1185, 1287, and 1383 cm−1 in the CKD group may be unique to
this subset of the CKD population because they have not been reported previously [37].
Nitrogenous compounds (C–N stretching from primary amines) and cytosine may be
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represented by these peaks. Nitrogenous compounds are most likely produced by the
urea cycle’s amino-acid metabolism and may be higher in the urine of CKD patients [46].
Cytosine is one of the four major bases in both DNA and RNA, and it is derived from
cellular processes that are also linked to CKD progression [47]. For the urine spectra, CKD
was distinguished from non-CKD controls with a sensitivity of 78.0%, specificity of 86.2%,
and accuracy of 81.8% using PCA-LDA. The mean± standard deviation (SD) for integration
area under the receiver operating characteristic (ROC) curve for urine was 0.886 ± 0.025
(p < 0.0001). The various CKD stages were separated with a moderate accuracy of 75.4%.
The distinction was not obvious, most likely because of the small number of samples in
each group, which differed according to a variety of physiological or metabolic conditions.
Furthermore, some of the Raman signals used in the discrimination analysis were not
linearly related to the stages of CKD. The PLS prediction of urine spectra was 0.7335 for
urine urea (p < 0.001), with peaks at 527, 1006, and 1159 cm−1, 0.7901 for urine creatinine
(p < 0.001), with peaks at 605, 681, and 848 cm−1, 0.4644 for estimated glomerular filtration
rate (eGFR) (p < 0.001), and 0.6579 for microalbuminuria (p < 0.001) [37].

A total of 235 urine specimens from healthy people were analyzed using Raman
Chemometric Urinalysis (RametrixTM) and showed significant differences (p < 0.001) in the
Raman spectra of a urine specimen, which could be attributed to the age of the donor. Future
research should focus on the influence of diet and lifestyle on these variations. Menstruation
did not contribute statistically significant changes to the RametrixTM spectral signature
of urine in the 30 day study subset of urine specimens [48]. RametrixTM [26] was used
to compare Raman spectra from 362 urine specimens from patients receiving peritoneal
dialysis (PD) therapy for end-stage kidney disease (ESKD), 395 dialysate specimens from
those PD therapies, and 235 urine specimens from healthy human volunteers. The entire
Raman spectrum of a specimen (i.e., chemometrics) could determine its type (i.e., urine or
dialysate) with >98% accuracy, sensitivity, and specificity or the donor’s state (i.e., healthy
human or PD patient) with better than 96% accuracy (with better than 97% sensitivity and
94% specificity). RametrixTM could potentially be used to determine whether PD’s disease
therapies are patient-specific, whether there are differences between subsequent treatments,
and how they affect the patient’s outcomes [49].

The detection and quantification of macro- and microhematuria in human urine
samples have also been tested using RS. Anticoagulated whole blood was mixed with
freshly collected urine to achieve blood/urine (v/v) concentrations of 0%, 0.25%, 0.5%,
1%, 2%, 6%, 10%, and 20%. Raman spectra were obtained at 785 nm, and data were
analyzed using RametrixTM. With prediction accuracies of 91% and 94%, discriminate
analysis of principal component (DAPC) models was capable of detecting various levels of
microhematuria in unknown urine samples. These preliminary findings indicate that RS
and chemometric analyses can be used to detect and quantify micro- and macrohematuria
in clinically relevant urine specimens that have not been processed [43].

3.3. Serum

Serum creatinine and urea are important biomarkers for diagnosing and monitoring
kidney disease. Several studies have investigated the use of RS and SERS to detect these
serum biomarkers rapidly and sensitively (Table 2) [11,28,37,50–56].

Table 2. Research into the use of Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy
(SERS) to measure serum creatinine and urea.

Parameter Method Finding References

Creatinine
Creatinine Silver nanoparticle-based SERS

• Peak between 530 and 1070 cm−1

• LOD < 0.1 µg/mL
• RMSEP = 0.0065 (1.3%, 6 PLS factors), 0.014 (0.3%, 8

PLS factors)

[52]
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Table 2. Cont.

Parameter Method Finding References

Creatinine
Creatinine

RS
• Peak at 680 and 846 cm−1

• R = 0.93
• RMSEcv = 1.94 mg/dL

[50]

Nano-Au on Ag film SERS • Peak at 678 cm−1

• LOD = 4.42 × 10−3 µmol/mL
[55]

Silver nanoparticle-based SERS • R2 = 0.76 [11]

Silver nanoparticle-based SERS • R2 = 0.85
• RMSEcv = 31.83 mmol/L

[37]

Silver nanoparticle-based SERS chip
integrated with a MOS

• Peak at 678 cm−1

• R2 = 0.91
[53]

Nano-Ag/Au@Au film
composite SERS

• Peak at 612 cm−1

• R = 0.96
• LOD = 5 × 10−6 mol/L

[54]

RS
• Peak at 681 and 846 cm−1

• R = 0.64
• RMSEcv = 0.21 mg/dL (PLS-based regression model)

[51]

Au nanoparticle-based SERS • Peak at 685 cm−1

• R = 0.99
[56]

Urea

LCOF RS • Peak from 510–1800 cm−1

• RMSEcv = 2.2 mg/dL
[28]

RS
• Peak at 1004 cm−1

• R = 0.97
• RMSEcv = 17.6 mg/dL

[50]

Silver nanoparticle-based SERS • R2 = 0.65 [11]

Silver nanoparticle-based SERS • R2 = 0.85
• RMSEcv = 2.47 mmol/L

[37]

RS
• Peak at 1004 cm−1

• R = 0.89
• RMSEcv = 4.9 mg/dL (PLS-based regression model)

[51]

Abbreviations: SERS, surface-enhanced Raman spectroscopy; LOD, limit of detection; RMSEP, root-mean-square
error of prediction; RS, Raman spectroscopy; R, correlation coefficient; RMSEcv, mean square error of cross-
validation; Au, gold; Ag, silver; R2, coefficient of determination; MOS, micro-optical system; LCOF, liquid-core
optical fiber.

In an exploratory study, there were several obvious differences between normal
(n = 50) and CKD serum samples (n = 60) in the integration areas of Raman spectral wave-
bands within 550–1750 cm−1. Although there were significant SERS spectral differences
between the two groups, primary SERS peaks were observed in both groups at 641, 724,
813, 1003, 1132, 1210, 1326, 1450, 1583, and 1655 cm−1, with the strongest signals at 641,
724, 1326, 1450, and 1655 cm−1. SERS intensity peaked at 724, 1326, and 1450 cm−1 in the
normal group but not in the patients. The intensity at 641 and 1655 cm−1 was higher in
CKD patients than in the control group. Nucleic acids (641, 724, 813, 1003, 1210, 1132, and
1450 cm−1), carbohydrates (641, 890, and 1094 cm−1), and lipids (1278 and 1327 cm−1) were
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identified as the major SERS peaks. The CKD group had a higher peak at 1655 cm−1 (amide
I band) than the normal group, indicating more proteins in the α-helix conformation. The
SERS peak at 724 cm−1 caused by hypoxanthine showed a low signal in CKD, indicating
an abnormal metabolism of DNA or RNA bases. The decreased intensity of the 1326 cm−1

(C–H bending mode in nucleic acids) peak in CKD patients indicates a lower concentration
of nucleic acids in their sera. The SERS band of tryptophan at 1450 cm−1 showed a lower
signal in the CKD group, implying a decrease in phenylalanine levels in these patients. The
890 cm−1 peak is assigned to glutathione and D-(C)-galactosamine in the CKD group, but
their peaks at 1094, 1278, and 1400 cm−1 vanish. The differences or changes between the
CKD and normal groups are linked to renal pathological changes and metabolism. The
precise mechanisms underlying these spectral changes merit further investigation. With
the creation of a training set database and a classification model, PCA-LDA was used to
classify healthy subjects and CKD patients. The classification model was further validated
using the spectra of independent serum samples from 10 normal subjects and 11 CKD
patients, with a sensitivity and specificity of 100% [57]. In a small study of 47 hemodialysis
patients and 55 healthy subjects, discrimination of the Raman spectra between normal and
dialysis groups, based on PCA with PC2 and PC3, had a sensitivity of 91%, specificity of
98%, and accuracy of 95%. The Raman technique could determine serum urea and serum
concentrations with low error and distinguishing hemodialysis from normal subjects [50].
A Chinese case–control study with 126 CKD patients (CKD stages 2–5) and 97 healthy indi-
viduals investigated the use of SERS with silver nanoparticles, and multivariate analysis
was able to directly diagnose CKD in serum. Both healthy controls and CKD patients had
primary SERS peaks at 641, 724, 813, 1003, 1132, 1210, 1326, 1450, 1583, and 1655 cm−1.
These signals could be attributed to known biochemical components such as L-tyrosine
and lactose with C–S vibration structure (641 and 813 cm−1), nucleic acids (641, 724, 813,
1003, 1210, and 1450 cm−1), carbohydrates (641, 890, and 1094 cm−1), lipids (1278 and
1328 cm−1), and amino acids (1655 cm−1). PCA-LDA discriminated CKD from non-CKD
controls with a sensitivity of 74.6%, specificity of 93.8%, and accuracy of 83.0% for the
serum spectra. The integration area under the ROC curve was 0.937 ± 0.015 (p < 0.0001).
The serum spectra separated the various stages of CKD with an accuracy of 78.0% and
75.4%. The serum urea PLS prediction was 0.8540 (p < 0.001), the serum creatinine PLS
prediction was 0.8536 (p < 0.001), and the eGFR prediction was 0.7500 (p < 0.001). As a
result, SERS could be regarded as a novel tool for detecting CKD in a healthy population.
Identification of CKD stage-dependent signals or chemical composition with unknown
special nanoparticles is required in future studies for reproducible discrimination between
CKD stages [37].

Uremic toxins accumulate in the blood of CKD patients, and their levels are a predictor
of cardiovascular events and mortality [58]. Protein-bound uremic toxins (PBUTs), which
primarily bind with human serum albumin (HSA) and are not removed by conventional
hemodialysis, are a major concern [59,60]. The determination of these compounds during
a dialysis session would provide a better understanding of CKD pathology, as well as
a diagnostic strategy for predicting disease progression and complications. Monitoring
the serum PBUT concentration is also important for comparing the efficacy of therapeutic
strategies that have been reported to reduce their plasma concentration in CKD patients’
bloodstreams [61]. PBUTs have been detected using a variety of chromatography-based
analytical methods. However, there is a need to create new, simple techniques that can
overcome the disadvantages of high-performance liquid chromatography (HPLC) and
HPLC-coupled analyses. SERS coupled with an Au nanoparticle substrate has been applied
for the simple quantification of 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF)
and indole-3-acetic acid (IAA) in human serum samples, which are critical PBUTs. The
CMPF and IAA analysis detection limits were estimated to be 0.04 nM and 0.05 µM, respec-
tively. The sensor’s intra-assay precision was evaluated by analyzing IAA at a concentration
of 0.020 mg/mL three times, which yielded a similar response and a coefficient of variation
of 1.7%. The SERS spectra of CMPF in serum and urine samples from healthy subjects
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showed the following peaks: (1) serum: 1440 cm−1 (CH3 and CH2 deformation), 1380 cm−1

(CH3 umbrella mode), 1260 cm−1 (stretching vibrations of the C–O bond), 1020 cm−1 (C–C),
1000 cm−1 (symmetric furan ring torsion); (2) urine: 1458 cm−1 (CH3 and CH2 deforma-
tion), 1380 cm−1 (CH3 umbrella mode), 1260 cm−1 (stretching vibrations of the C–O bond),
1000–1050 cm−1 (symmetric furan ring torsion), and 1600 cm−1 (C=C in the furan ring).
Raman bands of IAA in serum and urine from healthy subjects were as follows: (1) serum:
1603 cm−1 (vC=C), 1594 cm−1 (C–C pyrrole stretch), 1458 cm−1 (γC=C in plane), 1434 cm−1

(NCC stretch NH bend), 1363–1342 cm−1 (Fermi doublet), 1225 cm−1 (CH bend NH bend),
1026 cm−1 (benzene ring breathing), 996 cm−1 (γOH), and 846 cm−1 (NH bend); (2) urine:
1575 cm−1 (vC=C), 800 cm−1 and 1554 cm-1 (C–C pyrrole stretch), 1454 cm-1 (γC=C in
plane), 1431 cm−1 (NCC stretch NH bend), 1360 cm−1 (Fermi doublet), 1010 cm−1 (benzene
ring breathing), and 995 cm−1 (γOH). Individual detection of CMPF and IAA molecules
in serum samples revealed nonoverlapping Raman bands with minimal interference from
the biological sample matrix. It should be noted that CMPF has prominent SERS peaks
near 1380 cm−1, 1340 cm−1, and 1260 cm−1, whereas IAA has prominent SERS peaks near
1026 cm−1, 1594 cm−1, 1434 cm−1, and 1220–1240 cm−1. In CKD patients, SERS peaks
consistent with serum CMPF and IAA were found at 1325–1375 cm−1 (vC–CH3 vibrations),
1150 and 1275 cm−1 (C–O bonds), and 1510 cm−1 (C=C bond). However, because this is a
more complicated matrix, some identical SERS peaks may be due to the presence of other
non-PBUT uremic toxins, such as creatinine (680 cm−1), uric acid (637 and 1138 cm−1),
and urea (1001 and 1045 cm−1). The current method is superior in that it eliminates time-
consuming sample treatment steps (analysis time less than 5 min) and reduces the sample
limit. Furthermore, SERS has a high sensitivity due to signal enhancers and does not
necessitate the use of any specialized scientific instruments [61].

4. The Potential Use of Raman Spectroscopy in Specific Kidney Diseases
4.1. Anti-Neutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis is a mul-
tisystem autoimmune disease that is caused by necrotizing inflammation of small and
medium-sized blood vessels. Renal involvement with ANCA-associated glomerulonephri-
tis is often associated with rapidly progressive disease and a higher mortality risk when
compared to patients without renal disease, particularly among those on dialysis [62]. Re-
nal biopsy is still the gold standard for diagnosing ANCA-associated glomerulonephritis,
but its serial use for disease monitoring is limited due to procedural risks and resource
requirements. Interobserver variability in key histological findings such as interstitial
fibrosis and tubular atrophy (IFTA) and interstitial infiltrate is possible, with the former
having important prognostic implications. As a result, there is still room for adjuvant
techniques to supplement and aid current issue analysis [63]. In a pilot study of 11 pa-
tients with a new diagnosis of ANCA-associated glomerulonephritis and 17 in disease
remission, the role of RS as a method for automated computational detection of disease
activity was evaluated. After supervised classification based on recorded histological data,
spectral data from unstained tissue samples were able to discriminate disease activity with
a high degree of accuracy on blind predictive modeling: F-score 95% for >25% intersti-
tial fibrosis and tubular atrophy (sensitivity 100%, specificity 90%), 100% for necrotizing
glomerular lesions (sensitivity 100%, specificity 100%), and 100% for interstitial infiltrate
(sensitivity 100%, specificity 100%). According to these findings, spectral data correctly
differentiated the presence of histological lesions indicative of chronic damage and ac-
tive disease, such as IFTA, interstitial infiltrate, and necrotizing glomerulonephritis. The
wavenumber variables that were responsible for the greatest between-group differences in
the first two were associated with increased amino acid and cortisol activity, whereas IFTA
was associated with increased nucleic acid expression. Thus, biospectroscopy provides
a potentially novel machine learning method for automated computational detection of
ANCA-associated glomerulonephritis disease activity in renal biopsy specimens. A sub-
group analysis was also performed to see if urine spectral data could be used as a surrogate
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for renal biopsy, with the premise being that the biomolecular signature obtained from
urine could characterize and reflect histological findings at a given timepoint. Using the
same chemometric methodology, the model’s ability to reliably distinguish the presence of
necrotizing glomerulonephritis lesions, interstitial infiltrate, and IFTA in urine was limited,
with poor sensitivity in each group. This could be due to the subgroup’s small sample size
in each category and the possibility of insufficient training data. Taking this into considera-
tion, further research in this area should not be discouraged. Any future study evaluating
the role of biospectroscopy in ANCA-associated glomerulonephritis would benefit from
assaying and analyzing classical (C-reactive protein (CRP), anti-myeloperoxidase (MPO,
p-ANCA)/anti-proteinase-3 titers (PR3, c-ANCA) antibodies) and potential biomarkers
(including urinary monocyte chemoattractant protein-1 (uMCP-1), urinary soluble CD163
(sCD163), and complement cascade degradation products) with spectral data [64–71]. Other
potential research areas include the use of forward feature extraction algorithms to build
prediction outcome models based on extracted spectral features, as well as the correlation
of spectral data with imaging mass spectrometry to aid in the identification of potential
biomarkers [1].

4.2. Primary Focal Segmental Glomerulosclerosis

Focal segmental glomerulosclerosis (FSGS) is a morphologic pattern of glomerular in-
jury defined by sclerosis in parts (segmental) of some (focal) glomeruli and global podocyte
foot process effacement in all glomeruli. There are three types of FSGS: primary (idio-
pathic), secondary, and genetic. Despite sharing clinical and histologic characteristics, these
subclasses differ in terms of management and prognosis [72]. Although primary FSGS
is a rare disease, it is one of the most common nephropathies causing ESKD. Circulating
permeability factors are most likely to blame. Despite decades of research and several iden-
tified potential factors, no unifying concept for circulating factors has been established [73].
There is an unmet clinical need for early and specific biomarkers to detect FSGS and predict
prognosis and treatment response. Until now, diagnostic and therapeutic decisions have
been based on nonspecific markers such as proteinuria, serum creatinine, and renal histol-
ogy. However, because FSGS is a focal disease prone to biopsy sampling errors, the actual
disease of the patients may be misinterpreted even by histology [74]. As a result, there
is a greater demand in FSGS research for the use of novel technologies that enable us to
study FSGS from previously unexplored angles. Raman microspectroscopy might be able
to provide a molecular fingerprint of FSGS at the tissue level. This hypothesis was tested in
an FSGS patient who received a living-related kidney transplant and had recurrent FSGS
in the transplanted kidney. Although all of the classically published circulating factors
were within normal limits, an immediate response to CytoSorb apheresis was suggestive
of pathogenic circulating factors. A podocyte cell culture model and a proteinuria model
in zebrafish were used to prove the functional effects of the patient’s serum on podocytes
and the glomerular filtration barrier. RS was performed on podocytes treated with the
patient’s serum and healthy control serum, <50 kDa serum fractions of the FSGS patient,
and four healthy control patients, in addition to renal biopsies of a patient at the time of
kidney transplantation, a patient with FSGS recurrence, and a patient with minimal change
disease. At the time of disease recurrence, FSGS patient samples contained Raman signals
corresponding to changes in lipid concentrations, as well as lipid composition. The most
noticeable differences in Raman peaks between FSGS serum- and control serum-treated
cultured human podocytes were found at wavelengths corresponding to membrane-bound
phosphatidylcholine, phenylalanine, phospholipids, fatty acids, and sphingomyelin. The
Raman spectra of the <50 kDa serum fraction of the FSGS patient at the time of recurrence
corresponded to phospholipids, phosphatidylcholine, and sphingomyelin, confirming a
lipoprotein profile dysbalance. The FSGS kidney biopsy’s Raman signal also revealed
increased membrane-bound phosphatidylcholine, phenylalanine, phospholipids, fatty
acids, and sphingomyelin, which were consistent with FSGS’s disrupted systemic and
renal lipid expression. Dyslipidemia is a common finding in nephrotic syndrome, which
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includes FSGS. Several serum metabolomic signatures involved in lipid metabolism dis-
ruptions in FSGS have been identified, corresponding to FSGS serum Raman signals,
serum-treated podocyte Raman signals, and biopsy after FSGS recurrence Raman signals.
These lipoprotein changes may reveal new pathways involved in the pathomechanism of
recurrent FSGS [75]. Major Raman peaks for albumin (830 cm−1, 950 cm−1, 1350 cm−1,
and 1650 cm−1 [76]) were higher in the FSGS relapse biopsy than in the baseline biopsy,
indicating a higher albumin abundance in the damaged kidney due to glomerular filtration
barrier leakage [75]. Furthermore, increased collagen along the Bowman’s capsule has
been reported in FSGS mice [77], and the Raman measurements in the FSGS relapse biopsy
showed an increased signal at 1259 cm−1 [75]. A machine learning-based anomaly detection
method was also used to identify differences in the Raman spectra between the baseline
biopsy and the FSGS recurrence biopsy. In the FSGS recurrence kidney biopsy, differences
were found in the area of parietal epithelial cells and the focal points of the glomerulus.
Cuboidal parietal cells, a novel parietal epithelial cell subpopulation colocalized with the
Bowman’s capsule, were recently proposed to form tip lesions in FSGS [78]. In line with
this, parietal epithelial cell activation has been described in early recurrent FSGS [79]. Focal
activation of parietal epithelial cells contributed to the development and progression of
sclerotic lesions in three different FSGS models and human biopsies with FSGS [80].

4.3. Anti-Glomerular Basement Membrane Disease

Anti-glomerular basement membrane (GBM) disease, also known as Goodpasture’s
disease, is a relatively uncommon cause of glomerulonephritis caused by autoantibodies
directed at specific antigenic targets within the glomerular or pulmonary basement mem-
brane. In the mouse model of this disease, acute exposure to “nephrotoxic” anti-GBM
antibodies can rapidly and reproducibly impair the recipient mice’s renal function. The
efficacy of using RS combined with multivariate analysis as a diagnostic tool for discrimi-
nating healthy kidneys from kidneys afflicted with acute nephritis from anti-GBM mouse
models has been explored. Dominant Raman bands were observed among normal and
diseased tissue corresponding to putative biochemicals such as phenylalanine at 1000 cm−1,
collagen at 1265 cm−1, lipid at 1442 cm−1, and amide I at 1647 cm−1. By applying multi-
variate analysis to RS, researchers were able to distinguish between the diseased and the
non-diseased mice with up to 100% accuracy, and between the severely diseased [129/svJ
(129)], mildly diseased [C57BL/6 (B6)], and healthy mice with up to 98% accuracy. It has
the potential to largely reduce the complexity of diagnosing and monitoring anti-GBM
disease. This model could also be used to investigate the downstream pathways that lead
to chronic nephropathies such as lupus nephritis [2].

4.4. Diabetic Kidney Disease

Diabetic kidney disease (DKD) is one of the most common complications of type 2 dia-
betes and the leading cause of ESKD worldwide [81]. It is a microvascular complication
characterized by an increase in urine albumin excretion (UAE), glomerular lesions, and a
decrease in eGFR [82]. The UAE remains the cornerstone for DKD diagnosis and classifi-
cation [83]. As the diabetes epidemic spreads, particularly in low-income countries [84],
there is a growing demand for low-cost alternatives to immunochemical assays, nephelom-
etry, immunoturbidimetry, enzyme-linked immunosorbent assays, radioimmunoassay, and
high-performance liquid chromatography (HPLC) to measure the UAE [85].

Recently, RS was used to detect albumin in artificial and human urine samples. An in-
creased intensity at the peak of 1450 cm−1 and 1630 cm−1 was detected in artificial samples
with higher urinary albumin concentrations using prolonged exposure and fluorescence
background removal using a wavelets-based method [33]. An increased intensity at the
peak of 1450 cm−1 may correspond to amino-acid glycine [86] concentration in albumin,
representing a Raman window for the detection of the presence and concentration of al-
bumin in the urine when analyzing the Raman spectra obtained from artificial urine by
increasing the concentration of albumin. When albumin was dissolved in sterile water,
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one peak overlapped with the Raman signal of water at 1630 cm−1, which also represents
the highest albumin concentration. Nonetheless, the mix of water with albumin presented
another detection peak at 1431 cm−1, which reinforces the idea that RS can be a useful tool
to detect albumin in water dissolutions. In urine samples from type 2 diabetes mellitus
patients, the presence of albumin was found at the peaks of the spectrum at 663, 993, 1021,
1235, 1430, and 1634 cm−1 [33].

In a model of obese diabetic ZSF1 rats with kidney disease fed with whole grape
powder containing chow or control chow, PCA/LDA of the SERS spectra of urine samples
was able to separate the grape-fed group from controls with 72.7% sensitivity and 60%
specificity. The integration area under the curve was 0.800 ± 0.097 (p = 0.02), according
to the ROC curves [44]. The major differences between the whole grape powder chow
and control chow groups were found at 662, 733, 912, 1000, 1323, and 1674 cm−1, with
1000 cm−1 being the most significant [7]. Direct SERS has the sensitivity required to detect
clinically relevant urinary albumin concentrations, a strategy that could be used in the
future for point-of-care microalbuminuria screening. In a proof-of-concept study, 27 urine
samples (with urinary albumin concentrations from 0 to 120 µg/mL) were analyzed by
SERS with iodide-modified silver nanoparticles. Using PCA-LDA and cutoff values of 3,
6, and 10 g/mL, groups with high and low urinary albumin concentrations could be dis-
criminated with an overall accuracy of 89%, 93%, and 89%, respectively. On the basis of the
1002 cm−1 SERS band, which is attributed to the ring breathing vibration of phenylalanine,
a detection limit of 3 g/mL for human serum albumin was reported. This detection limit is
comparable to immunoturbidimetric assays and is approximately one order of magnitude
lower than urinary detection limits. The R2 and RMSE of prediction between predicted and
reference values of human serum albumin concentrations were 0.982 and 2.82, respectively,
using an independent prediction set. As a result, there was an excellent correlation between
predicted and reference values, highlighting SERS’s potential for absolute albumin quan-
tification. Furthermore, because of its high sensitivity and specificity, this method could be
used to assess small changes in UAE concentrations, resulting in more efficient treatment
monitoring to slow or even stop the progression to macroalbuminuria. When compared to
immunoturbidimetric analysis or HPLC, SERS spectroscopy is faster. However, translating
this method into a clinical setting will necessitate several additional steps that address
variations in urine chemical composition, as well as a prospective validation in large clinical
trials [39].

Extracellular vesicles are a diverse population of bilayer cell membrane structures
with sizes ranging from 30 to 1000 nm that are released into the extracellular space. They
transport a variety of biomolecules, including proteins, nucleic acids, lipids, and metabo-
lites, which can be transferred to recipient cells [87,88]. Urinary extracellular vesicles’
molecular content may reflect the physiological and pathological state of the epithelial
cells that form nephrons and the lower urinary tract [89,90]. RS could detect subtle dif-
ferences between the spectral fingerprints of urinary extracellular vesicles derived from
urine samples of healthy subjects and patients with diabetes mellitus diagnosed with
different stages of CKD using multivariate statistical methods such as PCA and partial
least squares regression (PLSR). The bands originating from tryptophan T (746–775 cm−1),
phenylalanine P (995–1011 cm−1), and amide I (1629–1709 cm−1), which were positive
peaks in the PC1 loading plot, made the greatest contributions to the discrimination of the
studied groups. The bands derived from proteins and lipids were negative peaks in the PC1
loading plot: C–N stretching (1115–1143 cm−1), C–H bending (1404–1503 cm−1), and lipids
(1282–1305 cm−1) [91]. Following the calculation of variable importance in projection val-
ues using the PLS model, the following ranges were considered for further analysis: protein
bands (746–775 cm−1 and 995–1011 cm−1), lipid bands (1055–1070 cm−1, 1282–1305 cm−1,
1429–1448 cm−1, and 1710–1774 cm−1), and protein and lipid bands (1115–1143 cm−1 and
1661–1699 cm−1) [92–96]. The highest correlations were found between diabetes mellitus
duration and eGFR, as well as the area under characteristic Raman bands for tryptophan
(747–775 cm−1; R = 0.78, R = 0.76) and amide III (1190–1270 cm−1; R = 0.78, R = 0.74). In
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a regression model with eGFR as the dependent variable, tryptophan and amide III as
independent variables had the highest adjusted R2 values, explaining 78% of the variation.
These findings show that the protein and lipid components of urinary extracellular vesicles
change with CKD stage. In the future, Raman spectral signatures of urinary extracellular
vesicles could represent a reliable and precise method for stratifying CKD patients and
possibly evaluating the efficacy of pharmacological treatments [91].

4.5. Kidney Transplantation

Kidney transplantation, which provides better survival and quality of life than dialysis,
has been the preferred treatment for patients with ESKD. Due to the global challenge of
donor kidney shortage, it has been proposed to expand the pool of deceased donors to
include expanded criteria donors. However, the lack of methods for precisely measuring
donor kidney injury and predicting outcome continues to result in high discard rates and
recipient complications. As a result, assessing the quality of deceased donor kidneys before
transplantation is critical. Clinical scores, kidney biopsy histopathology, and machine
perfusion systems are the most commonly used methods [97]. However, clinical scoring
systems are generally inaccurate, resulting in unnecessary organ discard. Because of the
relatively weak association with kidney quality, machine perfusion parameters are not
suitable as standalone criteria, and kidney biopsies are invasive [98]. Biomarkers [e.g.,
neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-
type fatty acid binding protein (L-FABP), monocyte chemoattractant protein-1 (MCP-1),
chitinase-3-like 1 (YKL-40), interleukin 18 (IL-18), secretory leukocyte peptidase inhibitor
(SLPI), etc.] derived from donor urine or serum may offer advantages in the precise
measurement of kidney quality [99–102]. RS and SERS have been evaluated as alternative
tools because there is currently no gold-standard method for detecting biomarkers involved
in donor kidney injury. Using BP/Au nanohybrids as Raman enhancing generators, a
novel label-free and highly sensitive SERS detection strategy for biomarkers related to the
quality of a kidney transplant has been proposed. SERS band intensities at 950 cm−1 [C–H
bending/v(C–H)/v(C–CH3)] and at 1000 cm−1 (Phe v12 and ρCH2) [103–105] were linked
to IL-18 and SLP, respectively. The detection limits for SLPI were 1.53 × 10−8 mg/mL
and 0.23 × 10−8 mg/mL for IL-18. The quantification limits for SLPI and IL-18 were
5.10 × 10−8 mg/mL and 7.67 × 10−9 mg/mL, respectively. Given that the combined
assessment of SLPI and IL-18 expression levels serves as an indicator of donor kidney
quality and can be performed quickly, quite simply, and reproducibly, this SERS-based
method has great clinical potential [98].

Urine SERS measurements from deceased donors and associated PCA-LDA analysis
could predict kidney transplant outcomes. PCA-LDA and logistic regression achieved
more than 90% sensitivity in differentiating high donor acute kidney injury (AKI) risk with
acceptable transplant outcomes [acute tubular necrosis (ATN)] from those with recipient
delayed graft function (DGF). Both the ATN and the DGF classes had distinct spectral
features that allowed them to be distinguished from the control class. The presence of
recipient DGF resulted in the most intense spectral differences from the control class,
whereas the presence of donor ATN affected more subtle features of SERS spectra. SERS
has the potential to provide an early indication of deceased donor kidney transplant
outcome before transplantation and can be a valuable tool for clinicians in expanding the
deceased donor kidney pool by utilizing kidneys with high donor AKI risk as detected by
other biomarkers [106].

In a study with 110 kidney transplant recipients, PLS analysis of the urine’s silver
nanoparticle-based SERS spectra revealed a significant relationship among urine protein
(R2 = 0.4660, p < 0.01), creatinine (R2 = 0.8106, p < 0.01), and urea (R2 = 0.7808, p < 0.01).
In the presence of uncertainty (remaining kidney function and therapeutic drugs) and
other unknown factors, the urine SERS spectra were capable of predicting essential kidney
biomarkers. The finding that silver nanoparticle-based SERS spectra of the urine can predict
kidney transplant function should be further validated in larger cohorts [11].
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Although the occurrence of acute rejection (AR) following kidney transplant has
decreased over the last decades, AR remains a major cause of renal transplant failure.
Serum creatinine is the most common, but not the ideal biomarker for assessing kidney
function. As a kidney biopsy is still the gold standard for the diagnosis of an AR, there
is a call for the development of early, rapid, cheap, sensitive, and specific biomarkers for
the detection of graft failure. The utility of SERS-based urine measurements for early
detection of potential AR in kidney transplant patients has been studied. In small pilot
studies [45,107], the urine spectra of all AR patients had a very intense peak at 1360 cm−1

and two peripheral peaks at 1448 and 1495 cm−1, whereas the 1360 cm−1 peak was either
absent or very weak in most normal patients’ spectra. The pyrrole half-ring symmetrical
stretch within the free heme molecule is responsible for the intense peak at 1356–1376 cm−1.
SERS analysis is more specific to abnormal kidney function than serum creatinine, which
may reduce the use of biopsies, resulting in less patient discomfort and lower medical costs.

The activated T lymphocytes are the predominant immune cells involved in the pro-
cess of AR. In an in vitro study of an acute allograft rejection model, RS could distinguish
between activated and nonactivated T lymphocytes and, thus, establish distinct signatures
for both. A preliminary qualitative comparison of activated and nonactivated T lympho-
cytes revealed differences at four distinct points in the Raman spectrum: 788, 1000, 1182,
and 1195 cm−1 [108]. Peaks at 788 and 1000 cm−1 have previously been identified and
described as indicators of cellular viability [109]. Peak positions 1182 and 1195 cm−1 (corre-
sponding with tyrosine/phenylalanine and adenine/thymine changes) had a very distinct
spectral difference [108,110]. RS was further used to examine 75 inactivated, 40 alloantigen-
activated, and 75 CD3/CD28-activated T cells. CD3/CD28 activated peak magnitudes (PM)
were 4.3–23.9% lower than inactivated PM at the following positions: 903, 1031, 1069, 1093,
1155, 1326, and 1449 cm−1, with a difference in peak ratio (PR) observed at the 1182:1195
position (p = 0.006). Although the primary cause of this pattern is unknown, it is most
likely a reshuffling rather than a downregulation of cell surface bio-molecular material.
There were differences in CD3/CD28- and alloantigen-activated PM at 903, 1031, 1093, 1155,
1326, and 1449 cm−1. This Raman shift is most likely a conserved change in cell surface
molecules shared by activated T cells regardless of activation method. When the 1182:1195
peak ratios were examined, similar patterns were discovered in both the alloreactive and
the CD3/CD28-activated samples that were not present in the inactivated or resting T-cell
samples. The separation of CD3/CD28- and alloantigen-activated groups by spectral sig-
nature was 100% specific and sensitive. Changes in nucleic acids are represented by 903,
1093, and 1449 cm−1, and changes in amino acids are represented by 1031 and 1155 cm−1,
whereas both nucleic acid and amino acid changes are represented by 1326 cm−1, consistent
with molecular processes responsible for the transcription, translation, and expression of
cell surface receptors [110].

The use of hydroxyethyl starch (HES) in brain-dead donor resuscitation has been
linked to the presence of osmotic-nephrosis-like lesions in kidney transplant recipients [111].
However, the presence of HES in the kidney could also be detected in the absence of
osmotic nephrosis-like lesions, indicating that the accumulation of HES in the kidney
does not always affect the histological aspect of tubular cells as can be seen using light
microscopy. RS has been used for detecting HES in kidney biopsies from patients who
received HES during a collapse and developed AKI with osmotic nephrosis lesions [112].
HES accumulation in donor’s kidneys, as measured by Raman microscopy, has been related
to donor kidney quality and, thus, to graft renal function (r = 0.88; p < 0.001) and survival
(r = −0.72; p < 0.001). In protocol renal graft biopsies 3 months after transplantation (HES
group = 20, control group = 6), HES compounds could be detected using this label-free
technique in 40% of the HES group. The association between high HES signaling in renal
tubular cells and better renal graft quality may appear to contradict the molecule’s renal
toxicity. However, although an increasing HES signal was associated with a lower risk of
graft failure, this was primarily due to fewer donor morbidities and, as a result, better renal
graft quality [111].
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5. Conclusions

RS allows the simultaneous analysis of a wide range of biomolecules, serving as an
adjuvant technique for biomarker extraction and providing additional potential insight
into the disease’s molecular mechanisms [1]. This method can give a molecular finger-
print of kidney diseases and reveals metabolomic changes corresponding to serum mass
spectrometry findings [75]. The combination of RS and other optical methods within a
single portable device expands the analysis and, in theory, allows for the identification
of various pathological conditions of the human body. To achieve this goal, however, it
will be necessary to conduct experimental work with a larger sample set of patients with
various pathological conditions, as well as to expand the sample set of healthy people [18].
The RS data should be compared to the gold standards currently used in nephrology. For
example, when using RS to estimate GFR, the bias and accuracy (P30) should be detailed in
comparison to a gold-standard measure of GFR (inulin clearance, iothalamate, or iohexol).
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