Metabolic Profiles of Whole Serum and Serum-Derived Exosomes Are Different in Head and Neck Cancer Patients Treated by Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Exosomes Isolation and Characterization
2.3. Metabolite Extraction
2.4. GC–MS Analysis
2.5. Statistical and Chemometric Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, B.; Johnson, N.W.; Kumar, N. Global epidemiology of head and neck cancers: A Continuing Challenge. Oncology 2016, 91, 13–23. [Google Scholar] [CrossRef]
- Budach, V.; Tinhofer, I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: A systematic review. Lancet Oncol. 2019, 20, e313–e326. [Google Scholar] [CrossRef]
- Economopoulou, P.; de Bree, R.; Kotsantis, I.; Psyrri, A. Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front. Oncol. 2019, 9, 827. [Google Scholar] [CrossRef]
- Boguszewicz, Ł.; Bieleń, A.; Mrochem-Kwarciak, J.; Skorupa, A.; Ciszek, M.; Heyda, A.; Wygoda, A.; Kotylak, A.; Składowski, K.; Sokół, M. NMR-based metabolomics in real-time monitoring of treatment induced toxicity and cachexia in head and neck cancer: A method for early detection of high risk patients. Metabolomics 2019, 15, 110. [Google Scholar] [CrossRef] [Green Version]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Darby, S.C.; Cutter, D.J.; Boerma, M.; Constine, L.S.; Fajardo, L.F.; Kodama, K.; Mabuchi, K.; Marks, L.B.; Mettler, F.A.; Pierce, L.J.; et al. Radiation-related heart disease: Current knowledge and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Travis, L.B.; Ng, A.K.; Allan, J.M.; Pui, C.H.; Kennedy, A.R.; Xu, X.G.; Purdy, J.A.; Applegate, K.; Yahalom, J.; Constine, L.S.; et al. Second malignant neoplasms and cardiovascular disease following radiotherapy. Health Phys. 2014, 106, 229–246. [Google Scholar] [CrossRef]
- Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems biology and multi-omics integration: Viewpoints from the Metabolomics Research Community. Metabolites 2019, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Wheelock, C.E.; Goss, V.M.; Balgoma, D.; Nicholas, B.; Brandsma, J.; Skipp, P.J.; Snowden, S.; Burg, D.; D’Amico, A.; Horvath, I.; et al. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J. 2013, 42, 802–825. [Google Scholar] [CrossRef]
- Patel, S.; Ahmed, S. Emerging field of metabolomics: Big promise for cancer biomarker identification and drug discovery. J. Pharm. Biomed. Anal. 2015, 107, 63–74. [Google Scholar] [CrossRef]
- Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal. 2014, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tiziani, S.; Lopes, V.; Günther, U.L. Early stage diagnosis of oral cancer using 1H NMR-Based metabolomics1,2. Neoplasia 2009, 11, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonezawa, K.; Nishiumii, S.; Kitamoto-Matsuda, J.; Fujita, T.; Morimoto, K.; Yamashita, D.; Saito, M.; Otsuki, N.; Irino, Y.; Shinohara, M.; et al. Serum and tissue metabolomics of head and neck cancer. Cancer Genom. Proteom. 2013, 10, 233–238. [Google Scholar]
- Hsieh, Y.T.; Chen, Y.F.; Lin, S.C.; Chang, K.W.; Li, W.C. Targeting cellular metabolism modulates head and neck oncogenesis. Int. J. Mol. Sci. 2019, 20, 3960. [Google Scholar] [CrossRef] [Green Version]
- Kasiappan, R.; Kamarajan, P.; Kapila, Y.L. Metabolomics in head and neck cancer: A summary of findings. Transl. Syst. Med. Oral. Dis. 2019, 119–135. [Google Scholar]
- Shin, J.M.; Kamarajan, P.; Christopher Fenno, J.; Rickard, A.H.; Kapila, Y.L. Metabolomics of head and neck cancer: A mini-review. Front. Physiol. 2016, 7, 526. [Google Scholar] [CrossRef] [Green Version]
- Rai, V.; Mukherjee, R.; Ghosh, A.K.; Routray, A.; Chakraborty, C. “Omics” in oral cancer: New approaches for biomarker discovery. Arch. Oral Biol. 2018, 87, 15–34. [Google Scholar] [CrossRef]
- Jelonek, K.; Pietrowska, M.; Widlak, P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: The influence of inflammation and radiation toxicity. Int. J. Radiat. Biol. 2017, 93, 683–696. [Google Scholar] [CrossRef]
- Doyle, L.; Wang, M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Zebrowska, A.; Skowronek, A.; Wojakowska, A.; Widlak, P.; Pietrowska, M. Metabolome of exosomes: Focus on vesicles released by cancer cells and present in human body fluids. Int. J. Mol. Sci. 2019, 20, 3461. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Liu, S.; Li, B. Potential role of exosomes in cancer metastasis. Biomed. Res. Int. 2019, 2019, 4649705. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Zhu, Y.; Ni, J.; Thompson, J.; Malouf, D.; Bucci, J.; Graham, P.; Li, Y. Extracellular vesicles: The next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 2020, 10, 2309–2326. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy. Int. J. Mol. Sci. 2018, 19, 2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelonek, K.; Widlak, P.; Pietrowska, M. The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept. Lett. 2016, 23, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Jabbari, N.; Nawaz, M.; Rezaie, J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: A possible way to communicate resistance against radiotherapy. Int. J. Mol. Sci. 2019, 20, 3649. [Google Scholar] [CrossRef] [Green Version]
- Zorrilla, S.R.; García, A.G.; Carrión, A.B.; Vila, P.G.; Martín, M.S.; Torreira, M.G.; Sayans, M.P. Exosomes in head and neck cancer. Updating and revisiting. J. Enzyme Inhib. Med. Chem. 2019, 34, 1641–1651. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Song, F.; Zheng, Y.L.; Lv, J.; Wang, Q.F.; Xu, N. Exosomes in head and neck squamous cell carcinoma. Front. Oncol. 2019, 9, 894. [Google Scholar] [CrossRef]
- Smolarz, M.; Pietrowska, M.; Matysiak, N.; Mielańczyk, Ł.; Widłak, P. Proteome profiling of exosomes purified from a small amount of human serum: The problem of co-purified serum components. Proteomes 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.M.; Feinn, R. Using effect size—Or why the p value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Cureton, E.E. Rank-biserial correlation. Psychometrika 1956, 21, 287–290. [Google Scholar] [CrossRef]
- Rosenthal, R. Parametric measures of effect size. In The Handbook of Research Synthesis; Cooper, H., Hedges, L.V., Valentine, J.C., Eds.; Russell Sage Foundation: New York, NY, USA, 1994; pp. 231–244, References-Scientific Research Publishing; Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1985786 (accessed on 13 July 2020).
- Goenawan, I.H.; Bryan, K.; Lynn, D.J. DyNet: Visualization and analysis of dynamic molecular interaction networks. Bioinformatics 2016, 32, 2713–2715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Lazar, I.; Clement, E.; Attane, C.; Muller, C.; Nieto, L. Thematic review series: Exosomes and microvesicles: Lipids as key components of their biogenesis and functions: A new role for extracellular vesicles: How small vesicles can feed tumors’ big appetite. J. Lipid Res. 2018, 59, 1793–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Record, M.; Carayon, K.; Poirot, M.; Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2014, 1841, 108–120. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, M.; Kim, D.Y.; Kim, K., II; Yi, J.Y. Mechanisms of energy metabolism in skeletal muscle mitochondria following radiation exposure. Cells 2019, 8, 950. [Google Scholar] [CrossRef] [Green Version]
- Gossai, D.; Lau-Cam, C.A. The effects of taurine, taurine homologs and hypotaurine on cell and membrane antioxidative system alterations caused by type 2 diabetes in rat erythrocytes. Adv. Exp. Med. Biol. 2009, 643, 359–368. [Google Scholar]
- Jelonek, K.; Pietrowska, M.; Ros, M.; Zagdanski, A.; Suchwalko, A.; Polanska, J.; Marczyk, M.; Rutkowski, T.; Skladowski, K.; Clench, M.R.; et al. Radiation-induced changes in serum lipidome of head and neck cancer patients. Int. J. Mol. Sci. 2014, 15, 6609–6624. [Google Scholar] [CrossRef] [Green Version]
- Jelonek, K.; Krzywon, A.; Jablonska, P.; Slominska, E.M.; Smolenski, R.T.; Polanska, J.; Rutkowski, T.; Mrochem-Kwarciak, J.; Skladowski, K.; Widlak, P. Systemic effects of radiotherapy and concurrent chemo-radiotherapy in head and neck cancer patients—Comparison of serum metabolome profiles. Metabolites 2020, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, A.; Wojakowska, A.; Marczak, L.; Lysek-Gladysinska, M.; Smolarz, M.; Story, M.D.; Polanska, J.; Widlak, P.; Pietrowska, M. Ionizing radiation affects the composition of the proteome of extracellular vesicles released by head-and-neck cancer cells in vitro. J. Radiat. Res. 2019, 60, 289–297. [Google Scholar] [CrossRef]
- Abramowicz, A.; Łabaj, W.; Mika, J.; Szołtysek, K.; Ślęzak-Prochazka, I.; Mielańczyk, Ł.; Story, M.D.; Pietrowska, M.; Polański, A.; Widłak, P. MicroRNA profile of exosomes and parental cells is differently affected by ionizing radiation. Radiat. Res. 2020, 194, 133–142. [Google Scholar] [CrossRef]
- Kumar Jella, K.; Rani, S.; O’Driscoll, L.; McClean, B.; Byrne, H.J.; Lyng, F.M. Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat. Res. 2014, 181, 138–145. [Google Scholar] [CrossRef] [PubMed]
Metabolite Name | Class | Mean Abundance in Cancer (Samples A) | Mean Abundance in Control (Samples C) | Significance of Differences between Control and Cancer (RBCC Effect Size) |
---|---|---|---|---|
Serum Metabolites | ||||
Upregulated in Cancer | ||||
Myristic acid | Fatty acids | 3.90 × 10−3 | 3.18 × 10−3 | 0.82 |
Hypoxanthine | Purines | 3.48 × 10−4 | 1.46 × 10−4 | 0.76 |
L-Glutamic acid | Amino acids | 4.97 × 10−3 | 2.34 × 10−3 | 0.70 |
Xanthine | Purines | 2.96 × 10−5 | 2.01 × 10−5 | 0.66 |
beta-Lactose | Saccharides | 2.41 × 10−5 | 9.82 × 10−6 | 0.64 |
L-Serine | Amino acids | 8.19 × 10−3 | 6.07 × 10−3 | 0.60 |
Oleic acid monoglyceride | Glycerolipids | 2.41 × 10−5 | 3.14 × 10−5 | 0.60 |
O-Acetylserine | Amino acids | 4.37 × 10−3 | 3.60 × 10−3 | 0.58 |
Eicosenoic acid | Fatty acids | 3.61 × 10−5 | 2.18 × 10−5 | 0.58 |
Palmitoleic acid | Fatty acids | 1.02 × 10−3 | 3.12 × 10−4 | 0.56 |
Oleamide | Fatty acids | 6.71 × 10−5 | 1.72 × 10−5 | 0.54 |
L-Aspartic acid | Amino acids | 2.02 × 10−3 | 1.32 × 10−3 | 0.52 |
Downregulated in Cancer | ||||
Inosine | Purines | 4.55 × 10−5 | 4.28 × 10−4 | −1.00 |
Salicylic acid | Carboxylic acids | 6.74 × 10−6 | 8.44 × 10−4 | −0.92 |
Adenosine | Purines | 1.27 × 10−5 | 5.74 × 10−5 | −0.89 |
2-Ethylhexanoic acid | Fatty acids | 1.14 × 10−4 | 2.51 × 10−4 | −0.74 |
Gentisic acid | Carboxylic acids | 6.36 × 10−6 | 1.56 × 10−5 | −0.64 |
D-Threitol | Sugar alcohols | 2.01 × 10−4 | 2.88 × 10−4 | −0.64 |
Oxalic acid | Carboxylic acids | 2.08 × 10−2 | 2.47 × 10−2 | −0.62 |
Paraxanthine | Purines | 1.94 × 10−4 | 4.26 × 10−4 | −0.62 |
Serotonin | Amines | 5.43 × 10−5 | 1.06 × 10−4 | −0.60 |
D-Ribose | Saccharides | 1.50 × 10−4 | 1.51 × 10−4 | −0.60 |
N-acetyl-d-hexosamine | Amines | 6.21 × 10−5 | 1.69 × 10−5 | −0.57 |
Nonanoic acid | Fatty acids | 2.23 × 10−4 | 2.67 × 10−4 | −0.56 |
D-Xylonic acid | Sugar acids | 3.07 × 10−5 | 4.48 × 10−5 | −0.56 |
Phosphate | Inorganic acids | 1.40 × 10−2 | 1.64 × 10−2 | −0.54 |
L-Isoleucine | Amino acids | 2.69 × 10−3 | 3.30 × 10−3 | −0.52 |
Exosome Metabolites | ||||
Upregulated in Cancer | ||||
1-Hexadecanol | Fatty alcohols | 5.81 × 10−5 | 3.12 × 10−5 | 0.52 |
Downregulated in Cancer | ||||
4-Hydroxybenzoic acid | Carboxylic acids | 8.05 × 10−7 | 2.61 × 10−5 | −0.66 |
Citric acid | Carboxylic acids | 8.58 × 10−6 | 3.22 × 10−4 | −0.54 |
Propylene glycol | Others | 2.89 × 10−5 | 1.96 × 10−4 | −0.52 |
Metabolite Name | Class | Mean Abundance Pre-RT (Samples A) | Mean Abundance Post-RT (Samples B) | Significance of Differences between Pre-RT and Post-RT (Cohen’s D Effect Size) |
---|---|---|---|---|
Serum Metabolites | ||||
Upregulated by RT | ||||
Hypotaurine | Others | 6.48 × 10−5 | 1.09 × 10−4 | −1.16 |
Glycerol-1-phosphate | Glycerolipids | 1.03 × 10−4 | 1.46 × 10−4 | −1.06 |
Oleamide | Fatty acids | 6.71 × 10−5 | 1.77 × 10−4 | −0.81 |
Serotonin | Amines | 5.43 × 10−5 | 6.71 × 10−5 | −0.81 |
Downregulated by RT | ||||
1-Methylhistidine | Amino acids | 1.13 × 10−4 | 7.84 × 10−5 | 0.96 |
Urea | Others | 1.81 × 10−4 | 4.76 × 10−2 | 0.96 |
Quinic acid | Others | 7.48 × 10−5 | 5.60 × 10−5 | 0.87 |
2-ketoglucose dimethylacetal | Hydroxy acids | 1.68 × 10−4 | 7.86 × 10−5 | 0.85 |
4-Deoxyerythronic acid | Sugar acids | 4.44 × 10−5 | 2.77 × 10−5 | 0.85 |
Galactosylglycerol | Glycerolipids | 4.55 × 10−5 | 1.69 × 10−5 | 0.85 |
Gentisic acid | Carboxylic acids | 6.36 × 10−6 | 3.78 × 10−6 | 0.85 |
D-Xylitol | Sugar alcohols | 2.29 × 10−4 | 1.49 × 10−4 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojakowska, A.; Zebrowska, A.; Skowronek, A.; Rutkowski, T.; Polanski, K.; Widlak, P.; Marczak, L.; Pietrowska, M. Metabolic Profiles of Whole Serum and Serum-Derived Exosomes Are Different in Head and Neck Cancer Patients Treated by Radiotherapy. J. Pers. Med. 2020, 10, 229. https://doi.org/10.3390/jpm10040229
Wojakowska A, Zebrowska A, Skowronek A, Rutkowski T, Polanski K, Widlak P, Marczak L, Pietrowska M. Metabolic Profiles of Whole Serum and Serum-Derived Exosomes Are Different in Head and Neck Cancer Patients Treated by Radiotherapy. Journal of Personalized Medicine. 2020; 10(4):229. https://doi.org/10.3390/jpm10040229
Chicago/Turabian StyleWojakowska, Anna, Aneta Zebrowska, Agata Skowronek, Tomasz Rutkowski, Krzysztof Polanski, Piotr Widlak, Lukasz Marczak, and Monika Pietrowska. 2020. "Metabolic Profiles of Whole Serum and Serum-Derived Exosomes Are Different in Head and Neck Cancer Patients Treated by Radiotherapy" Journal of Personalized Medicine 10, no. 4: 229. https://doi.org/10.3390/jpm10040229
APA StyleWojakowska, A., Zebrowska, A., Skowronek, A., Rutkowski, T., Polanski, K., Widlak, P., Marczak, L., & Pietrowska, M. (2020). Metabolic Profiles of Whole Serum and Serum-Derived Exosomes Are Different in Head and Neck Cancer Patients Treated by Radiotherapy. Journal of Personalized Medicine, 10(4), 229. https://doi.org/10.3390/jpm10040229