Group Testing-Based Robust Algorithm for Diagnosis of COVID-19
Abstract
:1. Introduction
2. Related Works
3. Group Testing for Diagnosis of COVID-19
4. Detection of Confirmed Cases of COVID-19
4.1. Proposed Robust Algorithm
Algorithm 1: Proposed Robust Algorithm (RA). |
|
4.2. Simulation Results
5. Conclusions
Funding
Conflicts of Interest
References
- Mentus, C.; Romeo, M.; DiPaola, C. Analysis and Applications of Non-Adaptive and Adaptive Group Testing Methods for COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, N.; Klein, D.L.; Hickey, B. Evaluation of Group Testing for SARS-CoV-2 RNA. medRxiv 2020. [Google Scholar] [CrossRef]
- Gollier, C.; Gossner, O. Group testing against Covid-19. Covid Econ. 2020. [Google Scholar]
- Dorfman, R. The Detection of Defective Members of Large Populations. Ann. Math. Stat. 1943, 14, 436–440. [Google Scholar] [CrossRef]
- Du, D.-Z.; Hwang, F.-K. Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing; World Scientific: Singapore, 2006. [Google Scholar]
- Fan, P.Z.; Darnell, M.; Honary, B. Superimposed codes for the multiaccess binary adder channel. IEEE Trans. Inf. Theory 1995, 41, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Desmedt, Y.; Duif, N.; Tilborg, V.H.; Wang, H. Bounds and constructions for key distribution schemes. Adv. Math. Commun. 2009, 3, 273–293. [Google Scholar] [CrossRef]
- Assmus, E.F., Jr.; Key, J.D. Designs and Their Codes; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Bar-David, I.; Plotnik, E.; Rom, R. Forward collision resolution—A technique for random multiple-access to the adder channel. IEEE Trans. Inf. Theory 1993, 39, 1671–1675. [Google Scholar] [CrossRef]
- Laarhoven, T. Efficient probabilistic group testing based on traitor tracing. In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 2–4 October 2013. [Google Scholar]
- Bar-Lev, S.K.; Boneh, A.; Perry, D. Incomplete identification models for group-testable items. Nav. Res. Logist. 1990, 37, 647–659. [Google Scholar] [CrossRef]
- Available online: https://www.worldometers.info/coronavirus/ (accessed on 21 April 2020).
- Chan, C.L.; Che, P.H.; Jaggi, S.; Saligrama, V. Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms. In Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 24–27 September 2011. [Google Scholar]
- Aldridge, M.; Baldassini, L.; Johnson, O. Group Testing Algorithms: Bounds and Simulations. IEEE Trans. Inf. Theory 2014, 60, 3671–3687. [Google Scholar] [CrossRef] [Green Version]
- Baldassini, L.; Johnson, O.; Aldridge, M. The capacity of adaptive group testing. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013. [Google Scholar]
- Atia, G.K.; Saligrama, V. Boolean Compressed Sensing and Noisy Group Testing. IEEE Trans. Inf. Theory 2012, 58, 1880–1901. [Google Scholar] [CrossRef] [Green Version]
- Scarlett, J. Noisy Adaptive Group Testing: Bounds and Algorithms. IEEE Trans. Inf. Theory 2019, 65, 3646–3661. [Google Scholar] [CrossRef] [Green Version]
- Knill, E.; Schliep, A.; Torney, D.C. Interpretation of Pooling Experiments Using the Markov Chain Monte Carlo Method. J. Comput. Biol. 1996, 3, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Mackey, D.J.C. Good Error-Correcting Codes based on Very Sparse Matrices. IEEE Trans. Inf. Theory 1999, 45, 399–431. [Google Scholar] [CrossRef] [Green Version]
- Tom Richardson, T.; Urbanke, R. Modern Coding Theory; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Seong, J.-T. Density of Pooling Matrices vs. Sparsity of Signal of Group Testing Frameworks. IEICE Trans. Inf. Syst. 2019, E102.D, 1081–1084. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Sejdinovic, D.; Johnson, O. Note on Noisy Group Testing: Asymptotic Bounds and Belief Propagation Reconstruction. In Proceedings of the Forty-Eighth Annual Allerton Conference, Monticello, IL, USA, 28 September–1 October 2010. [Google Scholar]
- Varshney, L.R. Performance of LDPC Codes Under Noisy Message-Passing Decoding. In Proceedings of the 2007 IEEE Information Theory Workshop, Lake Tahoe, CA, USA, 2–6 September 2007. [Google Scholar]
Incidence Rate | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.1 |
---|---|---|---|---|---|---|
Lower bound [22] | 80 | 141 | 194 | 242 | 286 | 469 |
Dorfman’s method [4] | 196 | 274 | 335 | 384 | 432 | 594 |
Divide and Test method [1] | 81 | 144 | 198 | 275 | 289 | 477 |
GBS method [5] | 88 | 153 | 209 | 258 | 305 | 494 |
Our proposed method | 108 | 168 | 231 | 306 | 377 | 593 |
Incidence Rate | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.1 | |
---|---|---|---|---|---|---|---|
Lower bound [22] | (88, 0.0) | (154, 0.0) | (212, 0.0) | (264, 0.0) | (312, 0.0) | (521, 0.0) | |
Our proposed method | (119, 5.3) | (184, 8.9) | (253, 10.6) | (334, 11.1) | (417, 11.0) | (658, 11.8) | |
Lower bound [22] | (100, 0.0) | (175, 0.0) | (241, 0.0) | (301, 0.0) | (355, 0.0) | (581, 0.0) | |
Our proposed method | (136, 5.3) | (210, 9.1) | (289, 10.1) | (383, 11.2) | (476, 11.5) | (749, 11.9) | |
Lower bound [22] | (113, 0.0) | (198, 0.0) | (272, 0.0) | (340, 0.0) | (406, 0.0) | (658, 0.0) | |
Our proposed method | (153, 5.8) | (237, 9.2) | (325, 10.7) | (431, 11.9) | (539, 12.1) | (846, 12.4) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, J.-T. Group Testing-Based Robust Algorithm for Diagnosis of COVID-19. Diagnostics 2020, 10, 396. https://doi.org/10.3390/diagnostics10060396
Seong J-T. Group Testing-Based Robust Algorithm for Diagnosis of COVID-19. Diagnostics. 2020; 10(6):396. https://doi.org/10.3390/diagnostics10060396
Chicago/Turabian StyleSeong, Jin-Taek. 2020. "Group Testing-Based Robust Algorithm for Diagnosis of COVID-19" Diagnostics 10, no. 6: 396. https://doi.org/10.3390/diagnostics10060396
APA StyleSeong, J.-T. (2020). Group Testing-Based Robust Algorithm for Diagnosis of COVID-19. Diagnostics, 10(6), 396. https://doi.org/10.3390/diagnostics10060396