Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars
Abstract
:1. Introduction
2. Iceland
Field Sites | Mars Analogue Investigations |
---|---|
Instrument Testing | |
Brúarjökull proglacial region Kverkjökull sandur Skeiðarársandur and Sólheimajökull | Large-scale field testing of context and close-up imaging instrumentation to positively identify large-scale stratigraphy and depositional fabrics, lithofacies, and small scale sedimentary structures, diagenetic features, and associated chemical composition (e.g., corroboration with spectroscopic data along a stratigraphic sequence). Testing sample acquisition and manipulation for caching or processing for analytical instruments, and spectroscopic, mineralogical, and geochemical instrument testing on sediments sourced from basaltic terrains. |
Alteration Mineralogy | |
Brúarjökull proglacial region Skeiðarársandur and Sólheimajökull Gígjökulslón | Low temperature hydrothermal and pedogenic alteration of primary basalt, particularly investigating authigenic vs. detrital alteration minerals within combined fluvial-lacustrine systems, and precipitation of neformed clays from recent (<5 years) basaltic sediments and glass-rich volcanic ash. |
Kverkfjallalón | Low-high temperature hydrothermal alteration of basaltic sediments and resulting hydrated mineral assemblages (e.g., [41], and how such alteration phases are fluvially-transported and deposited. |
Biosignatures | |
Brúarjökull proglacial region Skeiðarársandur and Sólheimajökull Gígjökulslón | Preservation and detection limits of organic biosignatures within clay-poor lacustrine environments, particularly on the influence of age and lithification on the preservation of biosignatures. Detection limits of trace organic deposition within a short-lived proglacial lacustrine environment. |
Kverkfjallalón | Preservation and detection limits of isotopic biosignatures within smectite clay-bearing lacustrine sediments, particularly as a depositional system for seasonal sulfate-dominated hydrothermal streams [41]. |
Hveragil stream | Successive mineralisation of biogenic organic matter within hydrothermal fluvial carbonate deposits. |
Skaftá western and eastern lakes | Identification of biogenic organic productivity and burial within low-temperature, sulfidic lacustrine systems, and the geochemical biosignatures generated through chemotlithoautotrophic metabolisms (e.g., carbon and sulfur stable isotope fractionation patterns), and tracing these biosignatures from subglacial microbial communities (source) to deposited sediments (sink). |
Microbiology | |
Skaftá western and eastern lakes | Anaerobic metabolic pathways based on sulfide and CO2, adaption to extremes (oligotrophy, cold temperatures, environment instability), and biogeochemical cycling of CHNOPS in lacustrine environments. |
Hveragil stream | Microbial communities within a seasonal CO2-rich fluvial environment fed by subsurface hydrothermal fluids and glacial meltwater from Kverkfjöll volcano. |
Kverkfjallalón Galtarlón Grímsvötn | Adaption to extremes including oligotrophy, seasonal ice-cover, and biogeochemical cycling of CHNOPS within young and transient lacustrine environments. Elucidation of viable metabolic redox couples and their response to limiting CHNOPS. |
3. Lacustrine Environments
3.1. Subglacial Lakes
3.2. Englacial Lakes
3.3. Proglacial Lacustrine Environments
4. Fluvial Environments
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Parnell, J.; Cullen, D.; Sims, M.R.; Bowden, S.; Cockell, C.S.; Court, R.; Ehrenfreund, E.; Gaubert, F.; Grant, W.; Parro, V.; et al. Searching for Life on Mars: Selection of Molecular Targets for ESA’s Aurora ExoMars Mission. Astrobiology 2007, 7, 578–604. [Google Scholar] [CrossRef] [PubMed]
- Grotzinger, J. Beyond water on Mars. Nat. Geosci. 2009, 2, 231–233. [Google Scholar] [CrossRef]
- Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; et al. A synthesis of Martian aqueous mineralogy after one Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Langevin, Y.; Mustard, J.F.; Poulet, F.; Arvidson, R.; Gendrin, A.; Gondet, B.; Mangold, N.; Pinet, P.; Forget, F.; et al. Global mineralogical and aqueous Mars history derived from the OMEGA/Mars Express data. Science 2006, 312, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.; Poulet, F.; Bibring, J.-P.; Murchie, S. Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars. Science 2010, 328, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.H.; Head, J.W. Geologic history of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef]
- Fairén, A.G. A cold and wet Mars. Icarus 2010, 208, 165–175. [Google Scholar] [CrossRef]
- Baker, V. Water and the Martian landscape. Nat. Rev. 2001, 412, 228–236. [Google Scholar]
- Westall, F.; Loizeau, D.; Foucher, F.; Bost, N.; Betrand, M.; Vago, J.; Kminek, G. Habitability on Mars from a Microbial Point of View. Astrobiology 2013, 13, 887–897. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cockell, C.S. Trajectories of Martian Habitability. Astrobiology 2014, 14, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Grotzinger, J.P.L.; Milliken, R.E. The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy. In Sedimentary Geology of Mars; SEPM Special Publication No. 102; Society for Sedimentary Geology (SEPM): Tulsa, OK, USA, 2012; pp. 1–48. [Google Scholar]
- Schon, S.C.; Head, J.W.; Fasset, C.I. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate. Planet. Space Sci. 2012, 67, 28–45. [Google Scholar] [CrossRef]
- De Villiers, G.; Kleinhans, M.G.; Postma, G. Experimental delta formation in crater lakes and implications for interpretation of Martian deltas. J. Geophys. Res. Planets 2013, 118, 651–670. [Google Scholar] [CrossRef]
- Carr, M.H. The fluvial history of Mars. Philos. Trans. R. Soc. A 2012, 370, 2193–2215. [Google Scholar] [CrossRef]
- Hyneck, B.M.; Beach, M.; Hoke, M.R.T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Keske, A.L.; Hamilton, C.W.; McEwen, A.S.; Daubar, I.J. Episodes of fluvial and volcanic activity in Mangala Valles, Mars. Icarus 2015, 245, 333–347. [Google Scholar] [CrossRef]
- Halevy, I.; Head, J.W. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 2014, 7, 865–868. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Fassett, C.I.; Schon, S.C.; Head, J.W.; Des Marais, D.J.; Grant, J.A.; Murchie, S.L. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 2008, 1, 355–358. [Google Scholar] [CrossRef]
- Merriman, R.J. Clay minerals and sedimentary basin history. Eur. J. Mineral. 2005, 17, 7–20. [Google Scholar] [CrossRef]
- Milliken, R.E.; Bish, D.L. Sources and sinks of clay minerals on Mars. Philos. Mag. 2010, 90, 2293–2308. [Google Scholar] [CrossRef]
- Morgan, A.M.; Howard, A.D.; Hobley, D.E.J.; Moore, J.M.; Dietrich, W.E.; Williams, R.M.E.; Burr, D.M.; Grant, J.A.; Wilson, S.A.; Matsubara, Y.; et al. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert. Icarus 2014, 229, 131–156. [Google Scholar] [CrossRef]
- Kochel, R.C.; Trop, J.M. Earth analog for high-latitude landforms and recent flows on Mars: Icy debris fans in the Wrangell Volcanic Field, Alaska. Icarus 2008, 196, 63–77. [Google Scholar] [CrossRef]
- Lee, P.; Osinski, G.R. The Haughton-Mars Project: Overview of science investigations at the Haughton impact structure and surrounding terrains, and relevance to planetary studies. Meteorit. Planet. Sci. 2005, 40, 1755–1758. [Google Scholar] [CrossRef]
- Pollard, W.; Haltigin, T.; Whyte, L.; Niederberger, T.; Andersen, D.; Omelon, C.; Nadeau, J.; Ecclestone, M.; Lebeuf, M. Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic. Planet. Space Sci. 2009, 57, 646–659. [Google Scholar] [CrossRef]
- McLennan, S.M. Geochemistry of sedimentary processes on Mars. In Sedimentary Geology of Mars; SEPM Special Publication No. 102; Society for Sedimentary Geology (SEPM): Tulsa, OK, USA, 2012; pp. 119–138. [Google Scholar]
- Schmidt, M.E.; Campbell, J.L.; Gellert, R.; Perrett, G.M.; Treiman, A.H.; Blaney, D.L.; Olilla, A.; Calef, F.J.; Edgar, L.; Elliott, B.E.; et al. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source. J. Geophys. Res. Planets 2014, 119, 64–81. [Google Scholar] [CrossRef]
- McLennan, S.M.; Anderson, R.B.; Bell, J.F., III; Bridges, J.C.; Calef, F., III; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; et al. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343. [Google Scholar] [CrossRef] [PubMed]
- Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; et al. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343. [Google Scholar] [CrossRef] [PubMed]
- McSween, H.Y.; Taylor, G.J.; Wyatt, M.B. Elemental composition of the Martian crust. Science 2009, 324, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Hook, S.J.; Baldridge, A.M.; Crowley, J.K.; Bridges, N.T.; Thomson, B.J.; Marion, G.M.; de Souza Filho, C.R.; Bishop, J.L. Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. 2010, 297, 174–182. [Google Scholar] [CrossRef]
- Morris, R.V.; Klingelhöfer, G.; Schröder, C.; Fleischer, I.; Ming, D.W.; Yen, A.S.; Gellert, R.; Arvidson, R.E.; Rodionov, D.S.; Crumpler, L.S.; et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Giuseppe, A.M.; Davila, A.F.; Tornabene, L.L.; Dohm, J.M.; Fairén, A.G.; Gross, C.; Kneissl, T.; Bishop, J.L.; Roush, T.L.; McKay, C.P.; et al. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 2010, 208, 667–683. [Google Scholar] [CrossRef]
- Greenberger, R.N.; Mustard, J.F.; Kumar, P.S.; Dyar, M.D.; Breves, E.A.; Sklute, E.C. Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Gudmundssen, A. Dynamics of volcanic systems in Iceland: Example of Tectonism and Volcanism at Juxtaposed Hot Spot and Mid-Ocean Ridge Systems. Annu. Rev. Earth Planet. Sci. 2000, 28, 107–140. [Google Scholar] [CrossRef]
- Jakobsson, S.P.; Jonasson, K.; Sigurdsson, A. The three igneous rock series of Iceland. JÖKULL 2008, 58, 117–138. [Google Scholar]
- Sigmarsson, O.; Steinthorsson, S. Origin of Icelandic basalts: A review of their petrology and geochemistry. J. Geodyn. 2007, 43, 87–100. [Google Scholar] [CrossRef]
- Thy, P. Phase relations in transitional and alkali basaltic glasses from Iceland. Contrib. Mineral. Petrol. 1982, 82, 232–251. [Google Scholar] [CrossRef]
- Björnsson, H.; Pálsson, F. Icelandic glaciers. JÖKULL 2008, 58, 365–386. [Google Scholar]
- Scanlon, K.E.; Head, J.W.; Wilson, L.; Marchant, D.R. Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits. Icarus 2014, 237, 315–339. [Google Scholar] [CrossRef]
- Scanlon, K.E.; Head, J.W.; Marchant, D.R. Volcanism-induced, local wet-based glacial conditions recorded in the Late Amazonian Arsia Mons tropical mountain glacier deposits. Icarus 2015, 250, 18–31. [Google Scholar] [CrossRef]
- Cousins, C.R.; Crawford, I.A.; Gunn, M.; Carrivick, J.L.; Harris, J.K.; Kee, T.P.; Karlsson, M.; Carmody, L.; Cockell, C.; Herschy, B.; et al. Mars analogue glaciovolcanic hydrothermal environments in Iceland: Detection and implications for astrobiology. J. Volcanol. Geotherm. Res. 2013, 256, 61–77. [Google Scholar] [CrossRef]
- Cousins, C.R.; Crawford, I.A. Volcano—Ice Interaction as a Microbial Habitat on Earth and Mars. Astrobiology 2011, 11, 695–710. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ehlmann, B.L.; Bish, D.L.; Ruff, S.W.; Mustard, J.F. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Thorsteinsson, T.; Sigurdsson, F. Martian hillside gullies and Icelandic analogs. Icarus 2003, 162, 259–277. [Google Scholar] [CrossRef]
- Burr, D.M.; Carling, P.A.; Baker, V.R. (Eds.) Megaflooding on Earth and Mars; Cambridge University Press: Cambridge, UK, 2009.
- Warner, N.H.; Farmer, J.D. Subglacial Hydrothermal Alteration Minerals in Jökulhlaup Deposits of Southern Iceland, with Implications for Detecting Past or Present Habitable Environments on Mars. Astrobiology 2010, 10, 523–547. [Google Scholar] [CrossRef] [PubMed]
- White, J.D.L.; Riggs, N.R. Introduction: Styles and significance of lacustrine volcaniclastic sedimentation. In Volcaniclastic Sedimentation in Lacustrine Settings; Wiley: New York, NY, USA, 2001; pp. 1–6. [Google Scholar]
- Björnsson, H. Jökulhlaups in Iceland: Sources, release and drainage. In Megaflooding on Earth and Mars; Burr, D.M., Carling, P.A., Baker, V.R., Eds.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Gudmundsson, M.T.; Högnadóttir, T. Volcanic systems and calderas in the Vatnajokull region, central Iceland: Constraints on crustal structure from gravity data. J. Geodyn. 2007, 43, 153–169. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Sigmundsson, F.; Björnsson, H. Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 1997, 389, 954–957. [Google Scholar] [CrossRef]
- Björnsson, H. Subglacial lakes and Jökulhlaups in Iceland. Glob. Planet. Chang. 2002, 35, 255–271. [Google Scholar] [CrossRef]
- Gaidos, E. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland. Astrobiology 2004, 4, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Jóhannesson, T.; Thorsteinsson, T.; Stefánsson, A.; Gaidos, E.; Einarsson, B. Circulation and thermodynamics in a subglacial geothermal lake under the Western Skaftá cauldron of the Vatnajökull ice cap, Iceland. Geophy. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Gaidos, E.; Marteinsson, V.; Thorsteinsson, T.; Jóhannesson, H.; Rafnsson, A.R.; Stefansson, A.; Glazer, B.; Lanoil, B.; Skidmore, M.; Han, S.; et al. An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J. 2008, 3, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Marteinsson, V.T.; Rúnarsson, Á.; Stefánsson, A.; Thorsteinsson, T.; Jóhannesson, T.; Magnússon, S.H.; Reynisson, E.; Einarsson, B.; Wade, N.; Morrison, H.G.; et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J. 2013, 7, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Ólafsson, M.; Torfason, H.; Grönvold, K. Surface exploration and monitoring of geothermal activity in the Kverkfjöll geothermal area, central Iceland. In Proceedings of the World Geothermal Congress, Kyushu-Tohohu, Japan, 28 May–10 June 2000; pp. 1539–1545.
- Almannavarnadeildar Ríkislögreglustjóra. Available online: http://www.almannavarnir.is/default.asp (accessed on 16 August 2013). (In Icelandic)
- Bhatia, M.P.; Das, S.B.; Longnecker, K.; Charette, M.A.; Kujawinski, E.B. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochem. Cosmochim. Acta 2010, 74, 3768–3784. [Google Scholar] [CrossRef]
- Marren, P.M.; Russell, A.J.; Rushmer, E.L. Sedimentology of a sandur formed by multiple jökulhlaups, Kverkfjöll, Iceland. Sediment. Geol. 2009, 213, 77–88. [Google Scholar] [CrossRef]
- Dunning, S.A.; Large, A.R.G.; Russell, A.J.; Roberts, M.J.; Duller, R.; Woodward, J.; Meriaux, A.-S.; Tweed, F.S.; Lim, M. The role of multiple glacier outburst floods in proglacial landscale evolution: The 2010 Eyjafjallajökull eruption, Iceland. Geology 2013, 41, 1123–1126. [Google Scholar] [CrossRef]
- Magnússon, E.; Gudmundsson, M.T.; Roberts, M.J.; Sigurdsson, G.; Höskuldsson, F.; Oddsson, B. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Knudsen, Ó.; Marren, P.M. Sedimentation in a volcanically dammed valley, Brúarjökull, northeast Iceland. Quat. Sci. Rev. 2002, 21, 1677–1692. [Google Scholar] [CrossRef]
- Gerisdóttir, Á.; Eiriksson, J. Growth of an Intermittent Ice Sheet in Iceland during the Late Pliocene and Early Pleistocene. Quat. Res. 1994, 42, 115–130. [Google Scholar] [CrossRef]
- Geirsdóttir, Á.; Miller, G.; Andrews, J.T. Glaciation, erosion, and landscape evolution of Iceland. J. Geodyn. 2007, 43, 170–186. [Google Scholar] [CrossRef]
- Goudge, T.A.; Head, J.W.; Mustard, J.F.; Fassett, C.I. An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 2012, 219, 211–229. [Google Scholar] [CrossRef]
- Galeczka, I.; Oelkers, E.H.; Gislason, S.R. The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland. J. Volcanol. Geotherm. Res. 2014, 273, 41–57. [Google Scholar] [CrossRef]
- Stefánsdóttir, M.B.; Gíslason, S.R. The erosion and suspended matter/seawater interaction during and after the 1996 outburst flood from the Vatnajökull Glacier, Iceland. Earth Planet. Sci. Lett. 2005, 237, 433–452. [Google Scholar] [CrossRef]
- Gislason, S.R.; Snorrason, A.; Kristmannsdottir, H.K.; Sveinbjornsdottir, A.E.; Torsander, P.; Olafsson, J.; Castet, S.; Dupre, B. Effects of volcanic eruptions on the CO2 content of the atmosphere and the oceans: The 1996 eruption and flood within the Vatnajokull Glacier, Iceland. Chem. Geol. 2002, 190, 181–205. [Google Scholar] [CrossRef]
- Old, G.H.; Lawler, D.M.; Snorrason, Á. Discharge and suspended sediment dynamics during two jökulhlaups in the Skaftá river, Iceland. Earth Surf. Process. Landf. 2005, 30, 1441–1460. [Google Scholar] [CrossRef]
- Marren, P.M. Fluvial-lacustrine interaction on Skeiðarársandur, Iceland: Implications for sandur evolution. Sediment. Geol. 2002, 149, 43–58. [Google Scholar] [CrossRef]
- Yingst, R.A.; Schmidt, M.E.; Lentz, R.C.F.; Janzen, J.L.; Kuhlman, K.R. A Mars-oriented image database of hand lens-scale features and textures: The Skeiðarársandur jökulhlaup example. In Analogs for Planetary Exploration: Geological Society of America Special Paper; Garry, W.B., Bleacher, J.E., Eds.; Geological Society of America Publications: New York, NY, USA, 2011; pp. 301–315. [Google Scholar]
- Williams, R.M.E.; Grotzinger, J.P.; Dietrich, W.E.; Gupta, S.; Sumner, D.Y.; Wiens, R.C.; Mangold, N.; Malin, M.C.; Edgett, K.S.; Maurice, S.; et al. Martian Fluvial Conglomerates at Gale Crater. Science 2013, 340, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.J.; Tweed, F.S.; Roberts, M.J.; Harris, T.D.; Gudmundsson, M.T.; Knudsen, Ó.; Marren, P.M. An unusual jokulhlaup resulting from subglacial volcanism, Sólheimajökull, Iceland. Quat. Sci. Rev. 2010, 29, 1363–1381. [Google Scholar] [CrossRef]
- Banks, M.E.; Lang, N.P.; Kargel, J.S.; McEwen, A.S.; Baker, V.R.; Grant, J.A.; Pelletier, J.D.; Strom, R.G. An analysis of sinuous ridges in the southern Argyre Planitia, Mars using HiRISE and CTX images and MOLA data. J. Geophys. Res. 2009, 114, E09003. [Google Scholar]
- Grotzinger, J.P.; Crisp, J.; Vasavada, A.R.; Anderson, R.C.; Baker, C.J.; Barry, R.; Ferdowski, B.; Gilbert, J.B.; Golombek, M.; Jandura, L.; et al. Mars Science Laboratory Mission and Science Investigation. Space Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cousins, C. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars. Life 2015, 5, 568-586. https://doi.org/10.3390/life5010568
Cousins C. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars. Life. 2015; 5(1):568-586. https://doi.org/10.3390/life5010568
Chicago/Turabian StyleCousins, Claire. 2015. "Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars" Life 5, no. 1: 568-586. https://doi.org/10.3390/life5010568