Modes of Fatty Acid Desaturation in Cyanobacteria: An Update
Abstract
:1. Introduction
Organism | Fatty Acids | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
14:0 | 14:1 | 16:0 | 16:1 | 16:2 | 18:0 | 18:1 | 18:2 | α18:3 | γ18:3 | 18:4 | ||
Δ9 | Δ9 | Δ9,12 | Δ9 | Δ9,12 | Δ9,12,15 | Δ6,9,12 | Δ6,9,12,15 | |||||
Group 1 | ||||||||||||
Mastigocladus laminosus | F | + | − | + | + | − | + | + | − | − | − | − |
Synechococcus PCC 7942 | U | + | − | + | + | − | + | + | − | − | − | − |
Synechococcus PCC 6301 | U | + | − | + | + | − | + | + | − | − | − | − |
Synechococcus lividus | U | − | − | + | + | − | + | + | − | − | − | − |
Group 2 | ||||||||||||
Plectonema boryanum | F | + | − | + | + | − | + | + | + | + | − | − |
Nostoc muscorum | F | + | − | + | + | − | + | + | + | + | − | − |
Anabaena variabilis | F | − | − | + | + | + | + | + | + | + | − | − |
Synechococcus PCC 7002 | U | + | − | + | + | − | + | + | + | + | − | − |
Group 3 | ||||||||||||
Arthrospira platensis | F | + | + | + | + | − | + | + | + | − | + | − |
Synechocystis PCC 6714 | U | + | + | + | + | − | + | + | + | − | + | − |
Group 4 | ||||||||||||
Tolypothrix tenius | F | − | − | + | + | − | + | + | + | + | + | + |
Synechocystis PCC 6803 | U | − | − | + | + | − | + | + | + | + | + | + |
2. Results and Discussion
2.1. Cyanobacteria of Group 1
Organism | Fatty Acids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
14:0 | 14:1 | 16:0 | 16:1 | 16:2 e | 18:0 | 18:1 | 18:2 | α18:3 | γ18:3 | 18:4 | |
Δ9 | Δ9 | Δ9,12 | Δ9 | Δ9,12 | Δ9,12,15 | Δ6,9,12 | Δ6,9,12,15 | ||||
Group 1 | |||||||||||
Synechococcus elongatus PCC 7942 a | − | − | + | + | − | + | + | − | − | − | − |
Mastigocladus laminosus | − | − | + | + | − | + | + | − | − | − | − |
Synechococcus lividus | − | − | + | + | − | + | + | − | − | − | − |
Synechococcus vulcanus | + | + | + | + | − | + | + | − | − | − | − |
Cyanobacterium stanieri PCC 7202 a | − | − | + | + | − | + | + | − | − | − | − |
Cyanobacterium sp. B−1200 b | + | + | + | + | − | + | + | − | − | − | − |
Synechococcus cedrorum | − | − | + | + | − | + | + | − | − | − | − |
Group 2 | |||||||||||
Prochlorococcus marinus c | − | − | + | + | + | + | + | + | − | − | − |
Synechococcus sp. (marine) d | − | − | + | + | − | + | + | + | − | − | − |
Prochlorothrix hollandica e | + | + | + | + | + | + | + | + | − | − | − |
Group 3α | |||||||||||
Leptolyngbya boryana | − | − | + | + | − | + | + | + | + | − | − |
Nostoc sp. | − | − | + | + | − | + | + | + | + | − | − |
Anabaena sp. f | − | − | + | + | − | + | + | + | + | − | − |
Synechococcus sp. PCC 7002 a | − | − | + | + | − | + | + | + | + | − | |
Gloeobacter violaceus | − | − | + | + | − | + | + | + | + | − | − |
Trichodesmium erythraeum | − | − | + | + | − | + | + | + | + | − | − |
Group 3γ | |||||||||||
Arthrospira platensis B-256 b | + | − | + | + | − | + | + | + | − | + | − |
Synechocystis sp. PCC 6714 a | − | − | + | + | − | + | + | + | − | + | − |
Synechocystis sp. B-274 b | − | − | + | + | + | + | + | + | − | + | − |
Group 4 | |||||||||||
Tolypothrix tenius | + | + | + | + | + | + | + | + | + | + | + |
Synechocystis sp. PCC 6803 a | − | − | + | + | − | + | + | + | + | + | + |
Lyngbya sp. PCC 8106 a | − | − | + | + | − | + | + | + | + | + | + |
Nodularia spumigena | − | − | + | + | − | + | + | + | + | + | + |
2.2. Cyanobacteria of Group 2
2.3. Cyanobacteria of Group 3
2.4. Cyanobacteria of Group 4
2.5. Adaptive and Taxonomic Impact of Cyanobacterial Fatty Acid Composition
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schopf, J.W. Microfossils of the early Archean apex chert: New evidence of the antiquity of life. Science 1993, 260, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Segreev, V.N.; Gerasimenko, L.M.; Zavarzin, G.A. The Proterozoic history and present state of cyanobacteria. Microbiology 2002, 71, 623–637. [Google Scholar] [CrossRef]
- Rozanov, A.Y.; Astafieva, M.M. The evolution of the early precambrian geobiological systems. Paleontol. J. 2009, 43, 911–927. [Google Scholar] [CrossRef]
- Blank, C.E.; Sánchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria—A key to understanding the rise in atmospheric oxygen. Geobiology 2010, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Mironov, K.S.; Allakhverdiev, S.I. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 2013, 116, 489–509. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta 1998, 1394, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 2004, 1666, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Parker, P.L.; van Baalen, C.; Maurer, L. Fatty acids in eleven species of blue-green algae: Geochemical significance. Science 1967, 155, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Holton, R.W.; Blecker, H.H.; Stevens, T.S. Fatty acids in blue-green algae: Possible relation to phylogenetic position. Science 1968, 160, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.N.; Stanier, R.Y. Possible evolutionary significance of polyunsaturated fatty acids in blue-green algae. Nature 1970, 227, 1164–1166. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.N. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 1972, 109, 827–834. [Google Scholar] [PubMed]
- Kenyon, C.N.; Rippka, R.; Stanier, R.Y. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Microbiol. 1972, 83, 216–236. [Google Scholar]
- Murata, N.; Wada, H.; Gombos, Z. Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol. 1992, 33, 933–941. [Google Scholar]
- Higashi, S.; Murata, N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC 6803. Plant Physiol. 1993, 102, 1275–1278. [Google Scholar] [PubMed]
- Guy, J.E.; Whittle, E.; Moche, M.; Lengqvist, J.; Lindqvist, Y.; Shanklin, J. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases. Proc. Natl. Acad. Sci. USA 2011, 108, 16594–16599. [Google Scholar] [CrossRef] [PubMed]
- Mironov, K.S.; Sidorov, R.A.; Trofimova, M.S.; Bedbenov, V.S.; Tsydendambaev, V.D.; Allakhverdiev, S.I.; Los, D.A. Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochim. Biophys. Acta 2012, 1817, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Yang, Q.; Zhao, F.; Qin, S.; Yang, Y.; Shen, J.; Lin, H. Comparative analysis of fatty acid desaturases in cyanobacterial genomes. Comp. Funct. Genomics 2008. [Google Scholar] [CrossRef]
- Sarsekeyeva, F.K.; Usserbaeva, A.A.; Zayadan, B.K.; Mironov, K.S.; Sidorov, R.A.; Kozlova, A.Y.; Kupriyanova, E.V.; Sinetova, M.A.; Los, D.A. Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition. Adv. Microbiol. 2014, 4, 1033–1043. [Google Scholar] [CrossRef]
- Komarek, J.; Kopecky, J.; Cepak, V. Generic characters of the simplest cyanoprokaryotes, Cyanobium, Cyanobacterium and Synechococcus. Cryptogam. Algol. 1999, 20, 209–222. [Google Scholar] [CrossRef]
- Hirayama, O.; Kishida, T. Temperature-induced changes in the lipid molecular species of a thermophilic cyanobacterium, Mastigocladus laminosus. Agric. Biol. Chem. 1991, 55, 781–785. [Google Scholar] [CrossRef]
- Chintalapati, S.; Prakash, J.S.; Gupta, P.; Ohtani, S.; Suzuki, I.; Sakamoto, T.; Murata, N.; Shivaji, S. A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem. J. 2006, 398, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.D.; Zhang, H.; Farrall, L.; Ripp, K.G.; Tomb, J.-F.; Hollerbach, D.; Yadav, N.S. Identification of bifunctional ∆12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proc. Natl. Acad. Sci. USA 2006, 103, 9446–9451. [Google Scholar] [CrossRef] [PubMed]
- Shemet, V.; Karduck, P.; Hoven, H.; Grushko, B.; Fischer, W.; Quadakkers, W.J.; Carpenter, E.J.; Harvey, H.R.; Fry, B.; Capone, D.G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep Sea Res. Part I Oceanogr. Res. Pap. 1997, 44, 27–38. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kaneko, T.; Sato, S.; Mimuro, M.; Miyashita, H.; Tsuchiya, T.; Sasamoto, S.; Watanabe, A.; Kawashima, K.; Kishida, Y.; et al. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids (Supplement). DNA Res. 2003, 10, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Wada, H.; Nishida, I.; Ohmori, M.; Murata, N. Δ9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. J. Biol. Chem. 1994, 269, 25576–25580. [Google Scholar] [PubMed]
- Shanklin, J.; Guy, J.E.; Mishra, G.; Lindqvist, Y. Desaturases: Emerging models for understanding functional diversification of diiron-containing enzymes. J. Biol. Chem. 2009, 284, 18559–18563. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, A.P.; Rafferty, J.B.; Sedelnikova, S.E.; Slabas, A.R.; Schierer, T.P.; Kroon, J.T.M.; Simon, J.W.; Fawcett, T.; Nishida, I.; Murata, N.; et al. Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase. Structure 2001, 9, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Selstam, E.; Campbell, D. Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch. Microbiol. 1996, 166, 132–135. [Google Scholar] [CrossRef]
- Maslova, I.P.; Mouradyan, E.A.; Lapina, S.S.; Klyachko-Gurvich, G.L.; Los, D.A. Lipid fatty acid composition and thermophilicity of cyanobacteria. Russ. J. Plant Physiol. 2004, 51, 353–360. [Google Scholar] [CrossRef]
- Zhou, X.R.; Green, A.G.; Singh, S.P. Caenorhabditis elegans ∆12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the ∆12 and ∆15 positions. J. Biol. Chem. 2011, 286, 43644–43650. [Google Scholar] [CrossRef] [PubMed]
- Gombos, Z.; Murata, N. Lipids and fatty acids of Prochlorothrix hollandica. Plant Cell Physiol. 1991, 32, 73–77. [Google Scholar]
- Kaneko, T.; Nakamura, Y.; Wolk, C.P.; Kuritz, T.; Sasamoto, S.; Watanabe, A.; Iriguchi, M.; Ishikawa, A.; Kawashima, K.; Kimura, T.; et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 2001, 8, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Bryant, D.A. Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by next-gen (SOLiD™) sequencing of cDNA. Front. Microbiol. 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Meeks, J.C.; Elhai, J.; Thiel, T.; Potts, M.; Larimer, F.; Lamerdin, J.; Predki, P.; Atlas, R. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth. Res. 2001, 70, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Watanabe, M.M. Fatty acid composition of planktonic species of Anabaena (Cyanobacteria) with coiled trichomes exhibited a significant taxonomic value. Curr. Microbiol. 2004, 49, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Higashi, S.; Wada, H.; Murata, N.; Bryant, D.A. Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiol. Lett. 1997, 152, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Temina, M.; Rezankova, H.; Rezanka, T.; Dembitsky, V.M. Diversity of the fatty acids of the Nostoc species and their statistical analysis. Microbiol. Res. 2007, 162, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Gugger, M.; Lyra, C.; Suominen, I.; Tsitko, I.; Humbert, J.F.; Salkinoja-Salonen, M.S.; Sivonen, K. Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). Int. J. Syst. Evol. Microbiol. 2002, 52, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Narikawa, R.; Okamoto, S.; Ehira, S.; Yoshimura, H.; Suzuki, I.; Masuda, T.; Mochimaru, M.; Takaichi, S.; Awai, K.; et al. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res. 2010, 17, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Cheevadhanarak, S.; Paithoonrangsarid, K.; Prommeenate, P.; Kaewngam, W.; Musigkain, A.; Tragoonrung, S.; Tabata, S.; Kaneko, T.; Chaijaruwanich, J.; Sangsrakru, D.; et al. Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand. Genomic Sci. 2012, 6, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Deshnium, P.; Paithoonrangsarid, K.; Suphatrakul, A.; Meesapyodsuk, D.; Tanticharoen, M.; Cheevadhanarak, S. Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiol. Lett. 2000, 184, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Kopf, M.; Klähn, S.; Pade, N.; Weingärtner, C.; Hagemann, M.; Voß, B.; Hess, W.R. Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res. 2014, 21, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Murata, N. Temperature-induced changes in the fatty acids composition of the cyanobacterium, Synechocystis PCC 6803. Plant Physiol. 1990, 92, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.; Miyajima, N.; Hirosawa, M.; Sugiura, M.; Sasamoto, S.; et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996, 3, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Ray, M.K.; Murata, N. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol. Microbiol. 1997, 25, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Lukavský, J.; Siristova, L.; Sigler, K. Regioisomer separation and identification of triacylglycerols containing vaccenic and oleic acids, and α- and γ-linolenic acids, in thermophilic cyanobacteria Mastigocladus laminosus and Tolypothrix sp. Phytochemistry 2012, 78, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Murata, N. Studies on the temperature shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in the blue-green alga (Cyanobacterium) Anabaena variabilis. Plant Cell Physiol. 1981, 22, 1043–1050. [Google Scholar]
- Honda, D.; Yokota, A.; Sugiyama, J. Detection of 7 major evolutionary lineages in cyanobacteria based on the 16S ribosomal-RNA gene sequence-analysis with new sequences of 5 marine Synechococcus strains. J. Mol. Evol. 1999, 48, 723–739. [Google Scholar] [CrossRef] [PubMed]
- Robertson, B.R.; Tezuka, N.; Watanabe, M.M. Phylogenetic analyses of Synechococcus strains (Cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 2001, 51, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Cyanobacterial systematics and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy/International Journal of Systematic Bacteriology/International Journal of Systematic and Evolutionary Microbiology. Int. J. Syst. Evol. Microbiol. 2011, 61, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Komarek, J. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 2010, 639, 245–259. [Google Scholar] [CrossRef]
- Schwarz, D.; Orf, I.; Kopka, J.; Hagemann, M. Recent applications of metabolomics toward cyanobacteria. Metabolites 2013, 3, 72–100. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Los, D.A.; Mironov, K.S. Modes of Fatty Acid Desaturation in Cyanobacteria: An Update. Life 2015, 5, 554-567. https://doi.org/10.3390/life5010554
Los DA, Mironov KS. Modes of Fatty Acid Desaturation in Cyanobacteria: An Update. Life. 2015; 5(1):554-567. https://doi.org/10.3390/life5010554
Chicago/Turabian StyleLos, Dmitry A., and Kirill S. Mironov. 2015. "Modes of Fatty Acid Desaturation in Cyanobacteria: An Update" Life 5, no. 1: 554-567. https://doi.org/10.3390/life5010554