Association Between Physical Performance, Gait Variability, and Fall Risk in Community-Dwelling Older Adults: Predictive Validity of Step-Width Variability for Screening of Fall Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Data Collection
2.2.1. Physical Performance
2.2.2. Spatiotemporal Gait Parameter and Variability
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaishya, R.; Vaish, A. Falls in older adults are serious. Indian J. Orthop. 2020, 54, 69–74. [Google Scholar] [CrossRef]
- Ang, G.C.; Low, S.L.; How, C.H. Approach to falls among the elderly in the community. Singap. Med. J. 2020, 61, 116. [Google Scholar] [CrossRef]
- Kim, T.; Choi, S.D.; Xiong, S. Epidemiology of fall and its socioeconomic risk factors in community-dwelling Korean elderly. PLoS ONE 2020, 15, e0234787. [Google Scholar] [CrossRef]
- Salech, F.; Marquez, C.; Lera, L.; Angel, B.; Saguez, R.; Albala, C. Osteosarcopenia predicts falls, fractures, and mortality in Chilean community-dwelling older adults. J. Am. Med. Dir. Assoc. 2021, 22, 853–858. [Google Scholar] [CrossRef]
- Lee, A.; McArthur, C.; Ioannidis, G.; Duque, G.; Adachi, J.D.; Griffith, L.E.; Thabane, L.; Papaioannou, A. Associations between Osteosarcopenia and Falls, Fractures, and Frailty in older adults: Results from the Canadian longitudinal study on aging (CLSA). J. Am. Med. Dir. Assoc. 2024, 25, 167–176.e6. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, S.; Takahashi, J.; Uehara, M.; Tokida, R.; Nishimura, H.; Sakai, A.; Kato, H. Physical performance reflects cognitive function, fall risk, and quality of life in community-dwelling older people. Sci. Rep. 2019, 9, 12242. [Google Scholar] [CrossRef]
- Simpkins, C.; Yang, F. Muscle power is more important than strength in preventing falls in community-dwelling older adults. J. Biomech. 2022, 134, 111018. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; McNeil, J.J.; Barker, A.L.; Orchard, S.G.; Newman, A.B.; Robb, C.; Ernst, M.E.; Espinoza, S.; Woods, R.L.; Nelson, M.R. Longitudinal association between handgrip strength, gait speed and risk of serious falls in a community-dwelling older population. PLoS ONE 2023, 18, e0285530. [Google Scholar] [CrossRef]
- Köseoğlu, A.; Altunok, M.K.; Kethüdaoğlu, M.O.; Aydın, S.; Albayrak, H.E.; Göçen, H.B.; Özsezikli, B.A. Investigation of the Effects of Age-Related Changes in the Vestibular System on Balance: A Review. Dokuz Eylül Univ. Tıp Fak. Derg. 2024, 37, 309–321. [Google Scholar] [CrossRef]
- Teramoto, W. Age-related changes in visuo-proprioceptive processing in perceived body position. Sci. Rep. 2022, 12, 8330. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Sun, W.; Song, Q. Balancing sensory inputs: Somatosensory reweighting from proprioception to tactile sensation in maintaining postural stability among older adults with sensory deficits. Front. Public Health 2023, 11, 1165010. [Google Scholar] [CrossRef]
- Oxley, J.; O’Hern, S.; Burtt, D.; Rossiter, B. Falling while walking: A hidden contributor to pedestrian injury. Accid. Anal. Prev. 2018, 114, 77–82. [Google Scholar] [CrossRef]
- Rodríguez-Molinero, A.; Herrero-Larrea, A.; Miñarro, A.; Narvaiza, L.; Gálvez-Barrón, C.; Gonzalo León, N.; Valldosera, E.; de Mingo, E.; Macho, O.; Aivar, D. The spatial parameters of gait and their association with falls, functional decline and death in older adults: A prospective study. Sci. Rep. 2019, 9, 8813. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.C.; Baudendistel, S.T.; Fallon, M.S.; Roper, J.A.; Hass, C.J. Assessing the relationship between the enhanced gait variability index and falls in individuals with Parkinson’s disease. Park. Dis. 2020, 2020, 5813049. [Google Scholar] [CrossRef]
- Vistamehr, A.; Kautz, S.A.; Bowden, M.G.; Neptune, R.R. Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis. J. Biomech. 2016, 49, 396–400. [Google Scholar] [CrossRef]
- Molina, L.K.; Small, G.H.; Neptune, R.R. The influence of step width on balance control and response strategies during perturbed walking in healthy young adults. J. Biomech. 2023, 157, 111731. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.D.; Donelan, J.M. Dynamic principles of gait and their clinical implications. Phys. Ther. 2010, 90, 157–174. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Masani, K. Effects of age on dynamic balance measures and their correlation during walking across the adult lifespan. Sci. Rep. 2022, 12, 14301. [Google Scholar] [CrossRef]
- Avvari, R.K.; Baig, M.K.; Arunachalam, T. Gait analysis: An effective tool to measure human performance. In Advances in Computational Approaches in Biomechanics; IGI Global Scientific Publishing: Hershey, PA, USA, 2022; pp. 65–87. [Google Scholar]
- Gamwell, H.E.; Wait, S.O.; Royster, J.T.; Ritch, B.L.; Powell, S.C.; Skinner, J.W. Aging and gait function: Examination of multiple factors that influence gait variability. Gerontol. Geriatr. Med. 2022, 8, 23337214221080304. [Google Scholar] [CrossRef]
- Skiadopoulos, A.; Moore, E.E.; Sayles, H.R.; Schmid, K.K.; Stergiou, N. Step width variability as a discriminator of age-related gait changes. J. Neuroeng. Rehabil. 2020, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Lim, J.; Park, Y.; Bae, Y. Predicting fall risk through step width variability at increased gait speed in community dwelling older adults. Sci. Rep. 2025, 15, 16915. [Google Scholar] [CrossRef]
- Benton, M.J.; Spicher, J.M.; Silva-Smith, A.L. Validity and reliability of handgrip dynamometry in older adults: A comparison of two widely used dynamometers. PLoS ONE 2022, 17, e0270132. [Google Scholar] [CrossRef]
- Kristensen, M.T.; Bloch, M.L.; Jønsson, L.R.; Jakobsen, T.L. Interrater reliability of the standardized Timed Up and Go Test when used in hospitalized and community-dwelling older individuals. Physiother. Res. Int. 2019, 24, e1769. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bermejo, L.; Adsuar, J.C.; Mendoza-Muñoz, M.; Barrios-Fernández, S.; Garcia-Gordillo, M.A.; Pérez-Gómez, J.; Carlos-Vivas, J. Test-retest reliability of five times sit to stand test (FTSST) in adults: A systematic review and meta-analysis. Biology 2021, 10, 510. [Google Scholar] [CrossRef]
- Özüdoğru, A.; Canlı, M.; Gürses, Ö.A.; Alkan, H.; Yetiş, A. Determination of five times-sit-to-stand test performance in patients with multiple sclerosis: Validity and reliability. Somatosens. Mot. Res. 2023, 40, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.F.; Urry, S.R.; Wearing, S.C. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system. BMC Musculoskelet. Disord. 2013, 14, 249. [Google Scholar] [CrossRef]
- Bedla, M.; Pięta, P.; Kaczmarski, D.; Deniziak, S. Estimation of gross motor functions in children with cerebral palsy using Zebris FDM-T treadmill. J. Clin. Med. 2022, 11, 954. [Google Scholar] [CrossRef]
- Gaßner, H.; Jensen, D.; Marxreiter, F.; Kletsch, A.; Bohlen, S.; Schubert, R.; Muratori, L.M.; Eskofier, B.; Klucken, J.; Winkler, J. Gait variability as digital biomarker of disease severity in Huntington’s disease. J. Neurol. 2020, 267, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Oliveira-Zmuda, G.G.; Soldera, C.L.C.; Jovanov, E.; Bós, Â.J.G. Timed Up and Go test phases as predictors of future falls in community-dwelling older adults. Fisioter. Mov. 2022, 35, e35142. [Google Scholar] [CrossRef]
- Choo, P.L.; Tou, N.X.; Pang, B.W.J.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Chen, K.K.; Ng, T.P.; Wee, S.-L. Timed Up and Go (TUG) reference values and predictive cutoffs for fall risk and disability in Singaporean community-dwelling adults: Yishun cross-sectional study and Singapore longitudinal aging study. J. Am. Med. Dir. Assoc. 2021, 22, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Wald, P.; Chocano-Bedoya, P.O.; Meyer, U.; Orav, E.J.; Egli, A.; Theiler, R.; Bischoff-Ferrari, H.A. Comparative effectiveness of functional tests in fall prediction after hip fracture. J. Am. Med. Dir. Assoc. 2020, 21, 1327–1330. [Google Scholar] [CrossRef]
- Chow, R.B.; Lee, A.; Kane, B.G.; Jacoby, J.L.; Barraco, R.D.; Dusza, S.W.; Meyers, M.C.; Greenberg, M.R. Effectiveness of the “Timed Up and Go”(TUG) and the Chair test as screening tools for geriatric fall risk assessment in the ED. Am. J. Emerg. Med. 2019, 37, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Ma, J. Predicting TUG score from gait characteristics with video analysis and machine learning. In Proceedings of the Chinese Intelligent Automation Conference, Nanjing, China, 2–5 October 2023; pp. 1–12. [Google Scholar]
- Ibeneme, S.C.; Eze, J.C.; Okonkwo, U.P.; Ibeneme, G.C.; Fortwengel, G. Evaluating the discriminatory power of the velocity field diagram and timed-up-and-go test in determining the fall status of community-dwelling older adults: A cross-sectional observational study. BMC Geriatr. 2022, 22, 658. [Google Scholar] [CrossRef]
- Gatenio-Hefling, O.; Tzemah-Shahar, R.; Asraf, K.; Dilian, O.; Gil, E.; Agmon, M. Revisiting the “Timed Up and Go” test: A 12-s cut-off can predict Hospitalization Associated Functional Decline in older adults. GeroScience 2024, 47, 1039–1048. [Google Scholar] [CrossRef]
- Heredia-Jimenez, J.; Orantes-Gonzalez, E.; Soto-Hermoso, V. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia. Gait Posture 2016, 45, 41–44. [Google Scholar] [CrossRef]
- Plotnik, M.; Wagner, J.M.; Adusumilli, G.; Gottlieb, A.; Naismith, R.T. Gait asymmetry, and bilateral coordination of gait during a six-minute walk test in persons with multiple sclerosis. Sci. Rep. 2020, 10, 12382. [Google Scholar] [CrossRef]
- Ma, L.; Mi, T.-M.; Jia, Q.; Han, C.; Chhetri, J.K.; Chan, P. Gait variability is sensitive to detect Parkinson’s disease patients at high fall risk. Int. J. Neurosci. 2022, 132, 888–893. [Google Scholar] [CrossRef]
- Bogen, B.; Aaslund, M.K.; Ranhoff, A.H.; Moe-Nilssen, R. Two-year changes in gait variability in community-living older adults. Gait Posture 2019, 72, 142–147. [Google Scholar] [CrossRef]
- Van Leeuwen, A.; Van Dieën, J.; Daffertshofer, A.; Bruijn, S. Active foot placement control ensures stable gait: Effect of constraints on foot placement and ankle moments. PLoS ONE 2020, 15, e0242215. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, D.; Bertozzi, F.; Zago, M.; Ferreira, C.L.P.; Boari, G.; Sforza, C.; Galvani, C. Study of the association between gait variability and physical activity. Eur. Rev. Aging Phys. Act. 2017, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: A systematic review and meta-analysis. BMC Geriatr 2014, 14, 14. [Google Scholar] [CrossRef] [PubMed]
Fall-Experienced Group (n = 145) | Non-Fall-Experienced Group (n = 301) | t/X2 | p | |
---|---|---|---|---|
Sex (male/female) | 47 (32.5)/98 (67.6) | 118 (39.2)/183 (60.8) | 1.935 | 0.164 |
Age (years) | 79.64 ± 8.07 | 77.90± 6.63 | 2.416 | 0.016 |
Height (cm) | 155.53 ± 8.10 | 157.32 ± 11.93 | −1.637 | 0.102 |
Weight (Kg) | 59.27 ± 9.19 | 61.38 ± 9.80 | −2.786 | 0.031 |
K-MMSE (score) | 25.39 ± 3.92 | 26.00 ± 3.27 | −1.737 | 0.083 |
Fall frequency | 1.50 ± 1.07 | 0 | 24.193 | <0.001 |
HGS (kg) | 20.61 ± 7.71 | 22.68 ± 8.32 | −2.517 | 0.012 |
TUG (s) | 13.41 ± 4.37 | 10.54 ± 2.56 | 8.673 | <0.001 |
5TSTS (s) | 14.90 ± 5.16 | 11.81 ± 3.60 | 7.308 | <0.001 |
Stride length (cm) | 73.63 ± 25.23 | 76.28 ± 23.40 | −1.092 | 0.275 |
CV (%) | 7.33 ± 6.19 | 6.41 ± 6.14 | 1.471 | 0.142 |
Step width (cm) | 11.50 ± 3.43 | 11.35 ± 3.44 | 0.432 | 0.666 |
CV (%) | 21.84 ± 10.85 | 14.35 ± 6.04 | 9.337 | <0.001 |
Velocity (km/h) | 2.43 ± 0.94 | 2.57 ± 0.88 | −1.505 | 0.133 |
CV (%) | 8.04 ± 5.86 | 6.49 ± 6.56 | 2.418 | 0.016 |
Cadence (step/min) | 110.57 ± 18.85 | 112.57 ± 18.06 | −1.076 | 0.283 |
CV (%) | 4.84 ± 3.94 | 4.34 ± 4.84 | 1.072 | 0.284 |
Variable | B | Odds Ratio (OR) | 95% CI | p-Value |
---|---|---|---|---|
Physical performance | ||||
Age | 0.004 | 1.004 | 0.973–1.004 | 0.794 |
Sex | −0.235 | 0.791 | 0.422–1.481 | 0.463 |
Height | −0.008 | 0.992 | 0.961–1.024 | 0.625 |
Weight | 0.024 | 1.024 | 0.995–1.054 | 0.101 |
HGS (kg) | −0.011 | 0.989 | 0.948–1.032 | 0.625 |
TUG (s) | −0.199 | 0.820 | 0.751–0.895 | <0.001 |
5TSTS (s) | −0.079 | 0.924 | 0.869–0.983 | 0.016 |
Gait parameter and variability | ||||
Age | −0.032 | 0.968 | 0.931–1.007 | 0.106 |
Sex | −0.003 | 0.997 | 0.575–1.729 | 0.991 |
Height | −0.006 | 0.994 | 0.969–1.020 | 0.660 |
Weight | 0.024 | 1.024 | 0.997–1.053 | 0.086 |
Stride length (cm) | 0.000 | 1.000 | 0.945–1.059 | 0.990 |
CV (%) | 0.026 | 1.026 | 0.965–1.091 | 0.413 |
Step width (cm) | −0.068 | 0.934 | 0.874–0.998 | 0.044 |
CV (%) | −0.127 | 0.881 | 0.853–0.910 | <0.001 |
Velocity (km/h) | 0.022 | 0.954 | 0.197–5.298 | 0.979 |
CV (%) | −0.047 | 1.005 | 0.897–1.016 | 0.141 |
Cadence (step/min) | −0.002 | 0.998 | 0.984–1.012 | 0.768 |
CV (%) | 0.041 | 1.042 | 0.973–1.116 | 0.240 |
Variable | AUC | 95% CI | p-Value |
---|---|---|---|
Physical performance | |||
Grip strength | 0.428 | 0.638–0.745 | 0.012 |
TUG (s) | 0.708 | 0.653–0.754 | <0.001 |
5TSTS (s) | 0.692 | 0.371–0.484 | <0.001 |
Gait parameter and variability | |||
Stride length (cm) | 0.477 | 0.418–0.535 | 0.430 |
CV (%) | 0.552 | 0.495–0.609 | 0.072 |
Step width (cm) | 0.514 | 0.457–0.572 | 0.625 |
CV (%) | 0.715 | 0.664–0.766 | <0.001 |
Velocity (km/h) | 0.457 | 0.399–0.515 | 0.145 |
CV (%) | 0.605 | 0.548–0.661 | <0.001 |
Cadence (step/min) | 0.469 | 0.411–0.527 | 0.298 |
CV (%) | 0.573 | 0.517–0.630 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Bae, Y. Association Between Physical Performance, Gait Variability, and Fall Risk in Community-Dwelling Older Adults: Predictive Validity of Step-Width Variability for Screening of Fall Risk. Life 2025, 15, 1469. https://doi.org/10.3390/life15091469
Park Y, Bae Y. Association Between Physical Performance, Gait Variability, and Fall Risk in Community-Dwelling Older Adults: Predictive Validity of Step-Width Variability for Screening of Fall Risk. Life. 2025; 15(9):1469. https://doi.org/10.3390/life15091469
Chicago/Turabian StylePark, Yongnam, and Youngsook Bae. 2025. "Association Between Physical Performance, Gait Variability, and Fall Risk in Community-Dwelling Older Adults: Predictive Validity of Step-Width Variability for Screening of Fall Risk" Life 15, no. 9: 1469. https://doi.org/10.3390/life15091469
APA StylePark, Y., & Bae, Y. (2025). Association Between Physical Performance, Gait Variability, and Fall Risk in Community-Dwelling Older Adults: Predictive Validity of Step-Width Variability for Screening of Fall Risk. Life, 15(9), 1469. https://doi.org/10.3390/life15091469