Therapeutic Potential of Astrocyte-Derived Extracellular Vesicles in Post-Stroke Recovery: Behavioral and MRI-Based Insights from a Rat Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
- (1)
- Intact controls;
- (2)
- tMCAO plus intracerebroventricular (i.c.v.) injection of vehicle (0.9% NaCl);
- (3)
- tMCAO plus i.c.v. astrocyte-derived extracellular vesicles obtained under hypoxic conditions (HxEVs).
2.3. MCAO Stroke Model
2.4. Postoperative Care
2.5. Primary Astrocyte Cultures and EV Isolation
2.6. Exosome Characterization and Administration
2.7. Behavioral Assessments
2.8. Magnetic Resonance Imaging
- T1-weighted (3D TFE): TE 4.6 ms, TR 9.9 ms, voxel 0.8 × 0.8 × 0.8 mm, 140 slices.
- T2-weighted (SE): TE 250 ms, TR 2500 ms, voxel 0.9 × 0.9 × 0.9 mm, 346 slices.
- DTI: 32 directions, b = 800 s/mm2, TE 84 ms, TR 2521 ms, voxel 1.51 × 1.54 × 1.5 mm.
2.9. Assessment of Infarct Volume and Neurological Function
2.10. Immunofluorescence and Confocal Microscopy
2.11. Summary of Experimental Strategy
2.12. Statistical Analysis
3. Results
3.1. Astrocyte-Derived EVs Reduce Infarct Volume and Improve Neurofunctional Recovery After Ischemic Stroke
- Total neurological score (Figure 4A): HxEV-treated rats scored consistently higher from day 1 onward (p < 0.05).
- Motor subscore (Figure 4B): Recovery was faster and more pronounced in the HxEV group beginning on day 1 (p < 0.05).
- Sensory subscore (Figure 4C): Treated animals showed progressive sensory improvement versus Vehicle (p < 0.05).
- Sensorimotor score (Figure 4D): HxEVs improved integrative sensorimotor function, with significant differences from Vehicle by day 7 and persisting through day 21 (p < 0.05).
3.2. Diffusion Tensor Imaging Reveals Microstructural Restoration Mediated by HxEVs
3.3. Structural Correlates of Neural Repair and Validation of DTI Findings
4. Discussion
4.1. Reparative Potential of Hypoxia-Derived EVs in Ischemic Stroke
4.2. Longitudinal Structural Recovery Evidenced by DTI
4.3. Diffusion Parameters Reflect Distinct Microstructural Processes
4.4. Regional Differences in Treatment Response
4.5. Correlation Between Dendro-Axonal Integrity and Histological Validation
4.6. Regional Recovery Dynamics and Comparative Performance of DTI Biomarkers
4.7. DTI Biomarkers as Non-Invasive Tools for Therapy Monitoring
4.8. Limitations of the Study
4.9. Future Perspectives and Potential Applications
4.10. Relevance of Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADEV | astrocyte-derived extracellular vesicle |
HxEV | hypoxia-conditioned extracellular vesicle |
EV | extracellular vesicle |
DTI | diffusion tensor imaging |
MRI | magnetic resonance imaging |
FA | fractional anisotropy |
RD | radial diffusivity |
AD | axial diffusivity |
MD | mean diffusivity |
tMCAO | transient middle cerebral artery occlusion |
MCAO | middle cerebral artery occlusion |
MCA | middle cerebral artery |
CCA | common carotid artery |
ICA | internal carotid artery |
ECA | external carotid artery |
CBF | cerebral blood flow |
i.c.v. | intracerebroventricular |
FSEMS | fast spin echo multislice |
ROI | region of interest |
GFAP | glial fibrillary acidic protein |
PFA | paraformaldehyde |
BSA | bovine serum albumin |
DAPI | 4′,6-diamidino-2-phenylindole |
PBS | phosphate-buffered saline |
TEM | transmission electron microscopy |
MRS | magnetic resonance spectroscopy |
NODDI | neurite orientation dispersion and density imaging |
HARDI | high-angular-resolution diffusion imaging |
mNSS | modified neurological severity score |
CSF | cerebrospinal fluid |
SEM | standard error of the mean |
TE | echo time |
TR | repetition time |
Appendix A
Domain | Functional Category | Scoring Criteria (0–3) | Max Score |
---|---|---|---|
Spontaneous Activity | Sensorimotor | 0: No exploration 1: Explores <10 sec 2: Explores 10–20 sec 3: Explores >20 sec | 3 |
Gait Coordination | Motor | 0: No support 1: Drags dorsum 2: Supports ulnar side 3: Symmetrical movement | 3 |
Forelimb Grasp | Motor | 0: Falls 1: Cannot grasp 2: Asymmetric grip 3: Symmetrical grip | 3 |
Suspension Response | Motor | 0: No response 1: Asymmetrical lift 2: Symmetrical lift | 3 |
Circling Behavior | Motor | 0: No movement 1: Stimulus-induced circles 2: Sporadic spontaneous circles 3: Constant spontaneous circling | 3 |
Cylinder Test | Sensorimotor | 0: No support 1: Unequal forelimb use 2: Equal forelimb support | 3 |
Body Posture | Sensorimotor | 0: Cannot maintain posture 1: Body tilt 2: Head tilt with forelimb extension 3: Balanced posture | 3 |
Forelimb Retraction | Sensorimotor | 0: No flexion 1: Slight ipsilateral movement 2: Asymmetric retraction 3: Symmetric retraction and displacement | 3 |
Vibrissae Stimulation | Sensory | 0: No response bilaterally 1: Absent contralateral response 2: Moderate contralateral response 3: Symmetric vibrissae response | 3 |
Body Proprioception | Sensory | 0: No bilateral response 1: No response on affected side 2: No thoracic response 3: Symmetrical response to bilateral tactile stimulation | 3 |
References
- Liu, S.; Li, Y.; Lan, X.; Wang, L.; Li, H.; Gu, D.; Wang, M.; Liu, J. Global, regional, and national trends in ischaemic stroke burden and risk factors among adults aged 20 + years (1990–2021): A systematic analysis of data from the global burden of disease study 2021 with projections into 2050. Front. Public Health 2025, 13, 1567275. [Google Scholar] [CrossRef]
- Saini, V.; Guada, L.; Yavagal, D.R. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 2021, 97, S6–S16. [Google Scholar] [CrossRef]
- Gualerzi, A.; Picciolini, S.; Roda, F.; Bedoni, M. Extracellular vesicles in regeneration and rehabilitation recovery after stroke. Biology 2021, 10, 843. [Google Scholar] [CrossRef]
- Mosquera-Heredia, M.I.; Morales, L.C.; Vidal, O.M.; Barcelo, E.; Silvera-Redondo, C.; Velez, J.I.; Garavito-Galofre, P. Exosomes: Potential disease biomarkers and new therapeutic targets. Biomedicines 2021, 9, 1061. [Google Scholar] [CrossRef]
- Jung, H.; Jung, Y.; Seo, J.; Bae, Y.; Kim, H.S.; Jeong, W. Roles of extracellular vesicles from mesenchymal stem cells in regeneration. Mol. Cells 2024, 47, 100151. [Google Scholar] [CrossRef]
- Wang, X.; Li, A.; Fan, H.; Li, Y.; Yang, N.; Tang, Y. Astrocyte-derived extracellular vesicles for ischemic stroke: Therapeutic potential and prospective. Aging Dis. 2024, 15, 1227–1254. [Google Scholar]
- Mukerjee, N.; Bhattacharya, A.; Maitra, S.; Kaur, M.; Ganesan, S.; Mishra, S.; Ashraf, A.; Rizwan, M.; Kesari, K.K.; Tabish, T.A.; et al. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater. Today Bio 2025, 31, 101613. [Google Scholar] [CrossRef]
- Mondragon-Lozano, R.; Diaz-Ruiz, A.; Rios, C.; Olayo Gonzalez, R.; Favila, R.; Salgado-Ceballos, H.; Roldan-Valadez, E. Feasibility of in vivo quantitative magnetic resonance imaging with diffusion weighted imaging, t2-weighted relaxometry, and diffusion tensor imaging in a clinical 3 tesla magnetic resonance scanner for the acute traumatic spinal cord injury of rats: Technical note. Spine 2013, 38, E1242–E1249. [Google Scholar] [PubMed]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow. Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Curtin, L.I.; Grakowsky, J.A.; Suarez, M.; Thompson, A.C.; DiPirro, J.M.; Martin, L.B.; Kristal, M.B. Evaluation of buprenorphine in a postoperative pain model in rats. Comp. Med. 2009, 59, 60–71. [Google Scholar] [PubMed]
- Dickens, A.M.; Tovar, Y.R.L.B.; Yoo, S.W.; Trout, A.L.; Bae, M.; Kanmogne, M.; Megra, B.; Williams, D.W.; Witwer, K.W.; Gacias, M.; et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal. 2017, 10, aai7696. [Google Scholar] [CrossRef]
- Burguete, M.C.; Torregrosa, G.; Perez-Asensio, F.J.; Castello-Ruiz, M.; Salom, J.B.; Gil, J.V.; Alborch, E. Dietary phytoestrogens improve stroke outcome after transient focal cerebral ischemia in rats. Eur. J. Neurosci. 2006, 23, 703–710. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Wang, W.; Gao, H. Rat model of focal cerebral ischemia in the dominant hemisphere. Int. J. Clin. Exp. Med. 2015, 8, 504–511. [Google Scholar]
- Oh, S.S.; Narver, H.L. Mouse and rat anesthesia and analgesia. Curr. Protoc. 2024, 4, e995. [Google Scholar] [CrossRef]
- Cortez-Conradis, D.; Favila, R.; Isaac-Olive, K.; Martinez-Lopez, M.; Rios, C.; Roldan-Valadez, E. Diagnostic performance of regional dti-derived tensor metrics in glioblastoma multiforme: Simultaneous evaluation of p, q, l, cl, cp, cs, ra, rd, ad, mean diffusivity and fractional anisotropy. Eur. Radiol. 2013, 23, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Scheulin, K.M.; Jurgielewicz, B.J.; Spellicy, S.E.; Waters, E.S.; Baker, E.W.; Kinder, H.A.; Simchick, G.A.; Sneed, S.E.; Grimes, J.A.; Zhao, Q.; et al. Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci. Rep. 2021, 11, 3814. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa-Prieto, C.; Laterza, C.; Gonzalez-Ramos, A.; Wattananit, S.; Ge, R.; Lindvall, O.; Tornero, D.; Kokaia, Z. Stroke alters behavior of human skin-derived neural progenitors after transplantation adjacent to neurogenic area in rat brain. Stem Cell Res. Ther. 2017, 8, 59. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Liang, F.; Huang, W. The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients. PLoS ONE 2015, 10, e0122615. [Google Scholar] [CrossRef]
- Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 2013, 33, 1711–1715. [Google Scholar] [CrossRef]
- Doeppner, T.R.; Kaltwasser, B.; Bahr, M.; Hermann, D.M. Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests. Front. Cell Neurosci. 2014, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.G.; Narayan, S.K.; Arumugam, M. Exosome therapies improve outcome in rodents with ischemic stroke; meta-analysis. Brain Res. 2023, 1803, 148228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Broughton, B.R.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke 2009, 40, e331–e339. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Askari, S.; Javadpour, P.; Hadjighassem, M.; Ghasemi, R. Potential role of exosome in post-stroke reorganization and/or neurodegeneration. EXCLI J. 2020, 19, 1590–1606. [Google Scholar]
- Arnberg, F.; Lundberg, J.; Soderman, M.; Damberg, P.; Holmin, S. Image-guided method in the rat for inducing cortical or striatal infarction and for controlling cerebral blood flow under mri. Stroke 2012, 43, 2437–2443. [Google Scholar] [CrossRef]
- Liu, F.; Yao, Y.; Zhu, B.; Yu, Y.; Ren, R.; Hu, Y. The novel imaging methods in diagnosis and assessment of cerebrovascular diseases: An overview. Front. Med. 2024, 11, 1269742. [Google Scholar] [CrossRef]
- Milidonis, X.; Marshall, I.; Macleod, M.R.; Sena, E.S. Magnetic resonance imaging in experimental stroke and comparison with histology: Systematic review and meta-analysis. Stroke 2015, 46, 843–851. [Google Scholar] [CrossRef]
- Zaidi, S.F.; Aghaebrahim, A.; Urra, X.; Jumaa, M.A.; Jankowitz, B.; Hammer, M.; Nogueira, R.; Horowitz, M.; Reddy, V.; Jovin, T.G. Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke 2012, 43, 3238–3244. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Henning, E.C.; Miracle, A.; Luby, M.; Warach, S.; Latour, L.L. Establishing final infarct volume: Stroke lesion evolution past 30 days is insignificant. Stroke 2008, 39, 2765–2768. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Jiang, Y.; Ji, Q. Comparative efficacy of neuroprotective agents for improving neurological function and prognosis in acute ischemic stroke: A network meta-analysis. Front. Neurosci. 2024, 18, 1530987. [Google Scholar] [CrossRef]
- Ouro, A.; Rodriguez-Diaz, A.; Lopez-Gonzalez, T.; Romaus-Sanjurjo, D.; Estevez-Salguero, A.; Iglesias-Rey, R.; Rodriguez-Arrizabalaga, M.; Fernandez-Sanmartin, P.; Castro-Mosquera, M.; Debasa-Mouce, M.; et al. Neuroprotective effect of small extracellular vesicle-mediated targeting of ampkalpha2 in cerebral ischemia. Metabolism 2025, 167, 156160. [Google Scholar] [CrossRef]
- Zhang, H.X.; Tao, L.Q.; Chen, Y.H.; Jiang, T.Y.; Ye, Z.Y.; She, W.; Chen, C.Y.; Han, Y.L.; Qi, C.; Shen, C.; et al. Enhanced therapeutic effects of extracellular vesicles targeting mir-137 contribute to functional recovery by attenuating neuronal injury after ischemic stroke. Neurosci. Bull. 2025, ahead of print. [Google Scholar] [CrossRef]
- Ahmed, W.; Kuniyan, M.S.; Jawed, A.M.; Chen, L. Engineered extracellular vesicles for drug delivery in therapy of stroke. Pharmaceutics 2023, 15, 2173. [Google Scholar] [CrossRef]
- Hermann, D.M.; Peruzzotti-Jametti, L.; Giebel, B.; Pluchino, S. Extracellular vesicles set the stage for brain plasticity and recovery by multimodal signalling. Brain 2024, 147, 372–389. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Choudhri, A.F.; Chin, E.M.; Blitz, A.M.; Gandhi, D. Diffusion tensor imaging of cerebral white matter: Technique, anatomy, and pathologic patterns. Radiol. Clin. North. Am. 2014, 52, 413–425. [Google Scholar] [CrossRef]
- Lepomaki, V.K.; Paavilainen, T.P.; Hurme, S.A.; Komu, M.E.; Parkkola, R.K.; group, P.s. Fractional anisotropy and mean diffusivity parameters of the brain white matter tracts in preterm infants: Reproducibility of region-of-interest measurements. Pediatr. Radiol. 2012, 42, 175–182. [Google Scholar] [CrossRef]
- Mendez Colmenares, A.; Hefner, M.B.; Calhoun, V.D.; Salerno, E.A.; Fanning, J.; Gothe, N.P.; McAuley, E.; Kramer, A.F.; Burzynska, A.Z. Symmetric data-driven fusion of diffusion tensor mri: Age differences in white matter. Front. Neurol. 2023, 14, 1094313. [Google Scholar] [CrossRef] [PubMed]
- Doughty, C.; Wang, J.; Feng, W.; Hackney, D.; Pani, E.; Schlaug, G. Detection and predictive value of fractional anisotropy changes of the corticospinal tract in the acute phase of a stroke. Stroke 2016, 47, 1520–1526. [Google Scholar] [CrossRef]
- Moulton, E.; Amor-Sahli, M.; Perlbarg, V.; Pires, C.; Crozier, S.; Galanaud, D.; Valabregue, R.; Yger, M.; Baronnet-Chauvet, F.; Samson, Y.; et al. Axial diffusivity of the corona radiata at 24 hours post-stroke: A new biomarker for motor and global outcome. PLoS ONE 2015, 10, e0142910. [Google Scholar] [CrossRef] [PubMed]
- Oida, T.; Nagahara, S.; Kobayashi, T. Acquisition parameters for diffusion tensor imaging to emphasize fractional anisotropy: Phantom study. Magn. Reson. Med. Sci. 2011, 10, 121–128. [Google Scholar] [CrossRef]
- Lipton, M.L.; Kim, N.; Park, Y.K.; Hulkower, M.B.; Gardin, T.M.; Shifteh, K.; Kim, M.; Zimmerman, M.E.; Lipton, R.B.; Branch, C.A. Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: Intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 2012, 6, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Pool, R.; Zainos, A.; Alvarez, M.; Diaz-deLeon, G.; Romo, R. A continuum of invariant sensory and behavioral-context perceptual coding in secondary somatosensory cortex. Nat. Commun. 2021, 12, 2000. [Google Scholar] [CrossRef]
- Bauer, A.Q.; Kraft, A.W.; Wright, P.W.; Snyder, A.Z.; Lee, J.M.; Culver, J.P. Optical imaging of disrupted functional connectivity following ischemic stroke in mice. Neuroimage 2014, 99, 388–401. [Google Scholar] [CrossRef]
- Song, S.K.; Sun, S.W.; Ju, W.K.; Lin, S.J.; Cross, A.H.; Neufeld, A.H. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003, 20, 1714–1722. [Google Scholar] [CrossRef]
- Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—A technical review. NMR Biomed. 2002, 15, 435–455. [Google Scholar] [CrossRef]
- Tuch, D.S.; Reese, T.G.; Wiegell, M.R.; Makris, N.; Belliveau, J.W.; Wedeen, V.J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 2002, 48, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. Noddi: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61, 1000–1016. [Google Scholar] [CrossRef] [PubMed]
- Westin, C.F.; Maier, S.E.; Mamata, H.; Nabavi, A.; Jolesz, F.A.; Kikinis, R. Processing and visualization for diffusion tensor mri. Med. Image Anal. 2002, 6, 93–108. [Google Scholar]
- Ranzenberger, L.R.; Snyder, T. Diffusion Tensor Imaging; Statpearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Pinter, D.; Gattringer, T.; Fandler-Hofler, S.; Kneihsl, M.; Eppinger, S.; Deutschmann, H.; Pichler, A.; Poltrum, B.; Reishofer, G.; Ropele, S.; et al. Early progressive changes in white matter integrity are associated with stroke recovery. Transl. Stroke Res. 2020, 11, 1264–1272. [Google Scholar] [CrossRef]
- Roldan-Valadez, E.; Rios-Piedra, E.; Favila, R.; Alcauter, S.; Rios, C. Diffusion tensor imaging-derived measures of fractional anisotropy across the pyramidal tract are influenced by the cerebral hemisphere but not by gender in young healthy volunteers: A split-plot factorial analysis of variance. Chin. Med. J. 2012, 125, 2180–2187. [Google Scholar]
- Flores-Alvarez, E.; Durand-Munoz, C.; Cortes-Hernandez, F.; Munoz-Hernandez, O.; Moreno-Jimenez, S.; Roldan-Valadez, E. Clinical significance of fractional anisotropy measured in peritumoral edema as a biomarker of overall survival in glioblastoma: Evidence using correspondence analysis. Neurol. India 2019, 67, 1074–1081. [Google Scholar] [CrossRef]
- Roldan-Valadez, E.; Anaya-Sanchez, S.; Rivera-Sotelo, N.; Moreno-Jimenez, S. Diffusion tensor imaging-derived biomarkers performance in glioblastoma tumor regions: Exploratory data analysis using zombie plots and diagnostic tests. Gac. Med. Mex. 2022, 158, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Aung, W.Y.; Mar, S.; Benzinger, T.L. Diffusion tensor mri as a biomarker in axonal and myelin damage. Imaging Med. 2013, 5, 427–440. [Google Scholar] [CrossRef]
- Fan, Q.; Tian, Q.; Ohringer, N.A.; Nummenmaa, A.; Witzel, T.; Tobyne, S.M.; Klawiter, E.C.; Mekkaoui, C.; Rosen, B.R.; Wald, L.L.; et al. Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion mri. Neuroimage 2019, 191, 325–336. [Google Scholar] [CrossRef]
- Hinman, J.D. The back and forth of axonal injury and repair after stroke. Curr. Opin. Neurol. 2014, 27, 615–623. [Google Scholar] [CrossRef]
- Cisneros-Mejorado, A.J.; Garay, E.; Ortiz-Retana, J.; Concha, L.; Moctezuma, J.P.; Romero, S.; Arellano, R.O. Demyelination-remyelination of the rat caudal cerebellar peduncle evaluated with magnetic resonance imaging. Neuroscience 2020, 439, 255–267. [Google Scholar] [CrossRef]
- Becerra-Laparra, I.; Cortez-Conradis, D.; Garcia-Lazaro, H.G.; Martinez-Lopez, M.; Roldan-Valadez, E. Radial diffusivity is the best global biomarker able to discriminate healthy elders, mild cognitive impairment, and alzheimer’s disease: A diagnostic study of dti-derived data. Neurol. India 2020, 68, 427–434. [Google Scholar]
- DiBella, E.V.R.; Sharma, A.; Richards, L.; Prabhakaran, V.; Majersik, J.J.; HashemizadehKolowri, S.K. Beyond diffusion tensor mri methods for improved characterization of the brain after ischemic stroke: A review. AJNR Am. J. Neuroradiol. 2022, 43, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, B.M.; Mayer, E.; Harris, R.J.; Ashe-McNally, C.; Naliboff, B.D.; Labus, J.S.; Tillisch, K. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain 2013, 154, 1528–1541. [Google Scholar] [CrossRef] [PubMed]
- Baron, C.A.; Kate, M.; Gioia, L.; Butcher, K.; Emery, D.; Budde, M.; Beaulieu, C. Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke 2015, 46, 2136–2141. [Google Scholar] [CrossRef] [PubMed]
- Pasco, A.; Ter Minassian, A.; Chapon, C.; Lemaire, L.; Franconi, F.; Darabi, D.; Caron, C.; Benoit, J.P.; Le Jeune, J.J. Dynamics of cerebral edema and the apparent diffusion coefficient of water changes in patients with severe traumatic brain injury. A prospective mri study. Eur. Radiol. 2006, 16, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.B.; Schwerin, S.C.; Avram, A.V.; Juliano, S.L.; Pierpaoli, C. Diffusion mri and the detection of alterations following traumatic brain injury. J. Neurosci. Res. 2018, 96, 612–625. [Google Scholar] [CrossRef]
- Wang, L.E.; Tittgemeyer, M.; Imperati, D.; Diekhoff, S.; Ameli, M.; Fink, G.R.; Grefkes, C. Degeneration of corpus callosum and recovery of motor function after stroke: A multimodal magnetic resonance imaging study. Hum. Brain Mapp. 2012, 33, 2941–2956. [Google Scholar] [CrossRef]
- Weber, R.A.; Hui, E.S.; Jensen, J.H.; Nie, X.; Falangola, M.F.; Helpern, J.A.; Adkins, D.L. Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes. Stroke 2015, 46, 545–550. [Google Scholar]
- Palacios, E.M.; Owen, J.P.; Yuh, E.L.; Wang, M.B.; Vassar, M.J.; Ferguson, A.R.; Diaz-Arrastia, R.; Giacino, J.T.; Okonkwo, D.O.; Robertson, C.S.; et al. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal dti and noddi study. Sci. Adv. 2020, 6, eaaz6892. [Google Scholar] [CrossRef]
- Barbaresi, P.; Fabri, M.; Lorenzi, T.; Sagrati, A.; Morroni, M. Intrinsic organization of the corpus callosum. Front. Physiol. 2024, 15, 1393000. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Zou, P.; Zong, X.; Zhang, Q. Myelin dysfunction in aging and brain disorders: Mechanisms and therapeutic opportunities. Mol. Neurodegener. 2025, 20, 69. [Google Scholar] [CrossRef]
- Babaeeghazvini, P.; Rueda-Delgado, L.M.; Gooijers, J.; Swinnen, S.P.; Daffertshofer, A. Brain structural and functional connectivity: A review of combined works of diffusion magnetic resonance imaging and electro-encephalography. Front. Hum. Neurosci. 2021, 15, 721206. [Google Scholar] [CrossRef]
- de Rezende, V.L.; Mathias, K.; de Aguiar da Costa, M.; Goncalves, C.L.; Barichello, T.; Petronilho, F. The role of extracellular vesicles in brain-peripheral communication following ischemic stroke: Implications for neural repair and regeneration. J. Neurochem. 2025, 169, e70155. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.H.; Jia, F.; Ahmed, W.; Zhang, G.L.; Wang, H.; Lin, C.Q.; Chen, W.H.; Chen, L.K. Neural stem cell-derived exosome as a nano-sized carrier for bdnf delivery to a rat model of ischemic stroke. Neural Regen. Res. 2023, 18, 404–409. [Google Scholar]
- Waseem, A.; Saudamini; Haque, R.; Janowski, M.; Raza, S.S. Mesenchymal stem cell-derived exosomes: Shaping the next era of stroke treatment. Neuroprotection 2023, 1, 99–116. [Google Scholar] [PubMed]
- Da Silva, J.S.; Medina, M.; Zuliani, C.; Di Nardo, A.; Witke, W.; Dotti, C.G. Rhoa/rock regulation of neuritogenesis via profilin iia-mediated control of actin stability. J. Cell Biol. 2003, 162, 1267–1279. [Google Scholar] [PubMed]
- Bradke, F.; Fawcett, J.W.; Spira, M.E. Assembly of a new growth cone after axotomy: The precursor to axon regeneration. Nat. Rev. Neurosci. 2012, 13, 183–193. [Google Scholar] [CrossRef]
- Robinson, R.A.; Griffiths, S.C.; van de Haar, L.L.; Malinauskas, T.; van Battum, E.Y.; Zelina, P.; Schwab, R.A.; Karia, D.; Malinauskaite, L.; Brignani, S.; et al. Simultaneous binding of guidance cues net1 and rgm blocks extracellular neo1 signaling. Cell 2021, 184, 2103–2120.E31. [Google Scholar] [CrossRef] [PubMed]
- Mages, B.; Fuhs, T.; Aleithe, S.; Blietz, A.; Hobusch, C.; Hartig, W.; Schob, S.; Krueger, M.; Michalski, D. The cytoskeletal elements map2 and nf-l show substantial alterations in different stroke models while elevated serum levels highlight especially map2 as a sensitive biomarker in stroke patients. Mol. Neurobiol. 2021, 58, 4051–4069. [Google Scholar] [CrossRef]
- Umesh Rudrapatna, S.; Wieloch, T.; Beirup, K.; Ruscher, K.; Mol, W.; Yanev, P.; Leemans, A.; van der Toorn, A.; Dijkhuizen, R.M. Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology. Neuroimage 2014, 97, 363–373. [Google Scholar]
- Jiang, Q.; Zhang, Z.G.; Ding, G.L.; Silver, B.; Zhang, L.; Meng, H.; Lu, M.; Pourabdillah-Nejed, D.S.; Wang, L.; Savant-Bhonsale, S.; et al. Mri detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 2006, 32, 1080–1089. [Google Scholar]
- Winklewski, P.J.; Sabisz, A.; Naumczyk, P.; Jodzio, K.; Szurowska, E.; Szarmach, A. Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front. Neurol. 2018, 9, 92. [Google Scholar] [CrossRef]
- Rehman, S.; Nadeem, A.; Akram, U.; Sarwar, A.; Quraishi, A.; Siddiqui, H.; Malik, M.A.J.; Nabi, M.; Ul Haq, I.; Cho, A.; et al. Molecular mechanisms of ischemic stroke: A review integrating clinical imaging and therapeutic perspectives. Biomedicines 2024, 12, 812. [Google Scholar] [CrossRef]
- Cirillo, C.; Brihmat, N.; Castel-Lacanal, E.; Le Friec, A.; Barbieux-Guillot, M.; Raposo, N.; Pariente, J.; Viguier, A.; Simonetta-Moreau, M.; Albucher, J.F.; et al. Post-stroke remodeling processes in animal models and humans. J. Cereb. Blood Flow Metab. 2020, 40, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Lake, E.M.R.; Bazzigaluppi, P.; Mester, J.; Thomason, L.A.M.; Janik, R.; Brown, M.; McLaurin, J.; Carlen, P.L.; Corbett, D.; Stanisz, G.J.; et al. Neurovascular unit remodelling in the subacute stage of stroke recovery. Neuroimage 2017, 146, 869–882. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Alfieri, A.; Allan, S.M.; Carswell, H.V.; Deuchar, G.A.; Farr, T.D.; Flecknell, P.; Gallagher, L.; Gibson, C.L.; Haley, M.J.; et al. The improve guidelines (ischaemia models: Procedural refinements of in vivo experiments). J. Cereb. Blood Flow. Metab. 2017, 37, 3488–3517. [Google Scholar] [CrossRef]
- Sun, X.; Jung, J.H.; Arvola, O.; Santoso, M.R.; Giffard, R.G.; Yang, P.C.; Stary, C.M. Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Front. Cell. Neurosci. 2019, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Flores-Alvarez, E.; Anselmo Rios Piedra, E.; Cruz-Priego, G.A.; Durand-Munoz, C.; Moreno-Jimenez, S.; Roldan-Valadez, E. Correlations between dti-derived metrics and mrs metabolites in tumour regions of glioblastoma: A pilot study. Radiol. Oncol. 2020, 54, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Kim, E.H.; Cho, Y.H.; Oh, M.J.; Chung, J.W.; Chang, W.H.; Kim, Y.H.; Yang, S.W.; Chopp, M. Circulating extracellular vesicles in stroke patients treated with mesenchymal stem cells: A biomarker analysis of a randomized trial. Stroke 2022, 53, 2276–2286. [Google Scholar] [CrossRef]
- Otero-Ortega, L.; Laso-Garcia, F.; Gomez-de Frutos, M.D.; Rodriguez-Frutos, B.; Pascual-Guerra, J.; Fuentes, B.; Diez-Tejedor, E.; Gutierrez-Fernandez, M. White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci. Rep. 2017, 7, 44433. [Google Scholar] [CrossRef]
- Heras-Romero, Y.; Morales-Guadarrama, A.; Santana-Martinez, R.; Ponce, I.; Rincon-Heredia, R.; Poot-Hernandez, A.C.; Martinez-Moreno, A.; Urrieta, E.; Bernal-Vicente, B.N.; Campero-Romero, A.N.; et al. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles. Mol. Ther. 2022, 30, 798–815. [Google Scholar] [CrossRef]
- Bernal Vicente, B.N.; Ponce, I.; Santos Gutierrez, M.; Rios Castro, E.; Tovar, Y.R.L.B. Neuroprotective proteins in hypoxia-stressed astrocyte-derived extracellular vesicles. Curr. Neuropharmacol. 2025, ahead of print. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Yang, G.Y. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc. Neurol. 2021, 6, 483–495. [Google Scholar] [CrossRef]
Biomarker | Global Effectiveness | Most Responsive Region | Peak Differential Time | Intergroup Significance |
---|---|---|---|---|
FA | High | Corpus callosum | Day 7 | <0.0001 |
RD | High | Striatum | Days 7–14 | <0.01 |
AD | Moderate | Cortex | Day 21 | <0.05 |
MD | Low | Cortex | Day 1 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heras-Romero, Y.; Morales-Guadarrama, A.; Tovar-y-Romo, L.B.; Londoño, D.O.; Olayo-González, R.; Roldan-Valadez, E. Therapeutic Potential of Astrocyte-Derived Extracellular Vesicles in Post-Stroke Recovery: Behavioral and MRI-Based Insights from a Rat Model. Life 2025, 15, 1418. https://doi.org/10.3390/life15091418
Heras-Romero Y, Morales-Guadarrama A, Tovar-y-Romo LB, Londoño DO, Olayo-González R, Roldan-Valadez E. Therapeutic Potential of Astrocyte-Derived Extracellular Vesicles in Post-Stroke Recovery: Behavioral and MRI-Based Insights from a Rat Model. Life. 2025; 15(9):1418. https://doi.org/10.3390/life15091418
Chicago/Turabian StyleHeras-Romero, Yessica, Axayácatl Morales-Guadarrama, Luis B. Tovar-y-Romo, Diana Osorio Londoño, Roberto Olayo-González, and Ernesto Roldan-Valadez. 2025. "Therapeutic Potential of Astrocyte-Derived Extracellular Vesicles in Post-Stroke Recovery: Behavioral and MRI-Based Insights from a Rat Model" Life 15, no. 9: 1418. https://doi.org/10.3390/life15091418
APA StyleHeras-Romero, Y., Morales-Guadarrama, A., Tovar-y-Romo, L. B., Londoño, D. O., Olayo-González, R., & Roldan-Valadez, E. (2025). Therapeutic Potential of Astrocyte-Derived Extracellular Vesicles in Post-Stroke Recovery: Behavioral and MRI-Based Insights from a Rat Model. Life, 15(9), 1418. https://doi.org/10.3390/life15091418