Acute Kidney Injury in Patients with Liver Cirrhosis: From Past to Present Definition and Diagnosis
Abstract
1. Introduction
2. Progressive Definition of AKI
3. Diagnostic Difficulties and Renal Function Evaluation in Cirrhosis-Associated AKI
3.1. Biomarkers for the Assessment of Kidney Function
3.2. Biomarkers for Defining the Phenotype of AKI (Tubular Injury Biomarkers)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACLF | Acute-on-chronic liver failure |
AKI | Acute kidney injury |
AKIN | Acute Kidney Injury Network |
ATI | Acute tubular injury |
CKD | Chronic kidney disease |
CLIF-C ACLF | CLIF Consortium ACLF score |
CysC | Cystatin C |
DC | Decompensated cirrhosis |
eGFR | Estimated glomerular filtration rate |
FENa | Fractional excretion of sodium |
FEUrea | Fractional excretion of urea |
GFR | Glomerular filtration rate |
HCC | Hepatocellular carcinoma |
HRS | Hepatorenal syndrome |
HRS-AKD | HRS-acute kidney disease |
HRS-CKD | HRS-chronic kidney disease |
HRS-AKI | HRS-acute kidney injury |
HRS-NAKI | Hepatorenal syndrome–non-acute kidney injury |
ICA | International Club of Ascites |
IGFBP7 | Insulin-like growth factor binding protein 7 |
IL-18 | Interleukin-18 |
KDIGO | Kidney Disease: Improving Global Outcomes |
KIM-1 | Kidney injury molecule-1 |
L-FABP | Liver-type fatty acid-binding protein |
MELD | Model for End-stage Liver Disease |
MELD-Na | MELD with sodium |
NAG | N-acetyl-β-D-glucosaminidase |
NGAL | Neutrophil gelatinase-associated lipocalin |
RIFLE | Risk, Injury, Failure, Loss and End-stage Kidney Disease |
RRT | Renal replacement therapy |
sCr | Serum creatinine |
sCysC | Serum cystatin C |
TIMP-2 | Tissue inhibitor of metalloproteinases-2 |
uNGAL | Urine neutrophil gelatinase-associated lipocalin |
References
- Velez, J.C.Q.; Therapondos, G.; Juncos, L.A. Reappraising the Spectrum of AKI and Hepatorenal Syndrome in Patients with Cirrhosis. Nat. Rev. Nephrol. 2020, 16, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Umemura, T.; Joshita, S.; Shibata, S.; Sugiura, A.; Yamazaki, T.; Fujimori, N.; Matsumoto, A.; Tanaka, E. Renal Impairment Is Associated with Increased Risk of Mortality in Patients with Cirrhosis: A Retrospective Cohort Study. Medicine 2019, 98, e14475. [Google Scholar] [CrossRef]
- Peng, J.L.; Techasatian, W.; Hato, T.; Liangpunsakul, S. Role of Endotoxemia in Causing Renal Dysfunction in Cirrhosis. J. Investig. Med. 2020, 68, 26–29. [Google Scholar] [CrossRef]
- Juanola, A.; Ma, A.T.; Gratacós-Ginès, J.; Soria, A.; Solé, C.; Pose, E.; Ginès, P. Renal Complications in Portal Hypertension. Clin. Liver Dis. 2024, 28, 503–523. [Google Scholar] [CrossRef]
- Flamm, S.L.; Wong, F.; Ahn, J.; Kamath, P.S. AGA Clinical Practice Update on the Evaluation and Management of Acute Kidney Injury in Patients with Cirrhosis: Expert Review. Clin. Gastroenterol. Hepatol. 2022, 20, 2707–2716. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Martin, A. Acute Kidney Injury in Critical Care. Anaesth. Intensive Care Med. 2024, 25, 308–315. [Google Scholar] [CrossRef]
- Tamargo, C.; Hanouneh, M.; Cervantes, C.E. Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations. J. Clin. Med. 2024, 13, 2455. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Garcia-Tsao, G.; Hardin, C.C. Acute Kidney Injury in Patients with Cirrhosis. N. Engl. J. Med. 2023, 388, 733–745. [Google Scholar] [CrossRef]
- Matchett, C.L.; Simonetto, D.A.; Kamath, P.S. Renal Insufficiency in Patients with Cirrhosis. Clin. Liver Dis. 2023, 27, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Arroyo, V.; Bernardi, M.; Epstein, M.; Henriksen, J.H.; Rodés, J. Peripheral Arterial Vasodilation Hypothesis: A Proposal for the Initiation of Renal Sodium and Water Retention in Cirrhosis. Hepatology 1988, 8, 1151. [Google Scholar] [CrossRef]
- Allegretti, A.S.; Solà, E.; Ginès, P. Clinical Application of Kidney Biomarkers in Cirrhosis. Am. J. Kidney Dis. 2020, 76, 710–719. [Google Scholar] [CrossRef]
- Jung, C.-Y.; Chang, J.W. Hepatorenal Syndrome: Current Concepts and Future Perspectives. Clin. Mol. Hepatol. 2023, 29, 891. [Google Scholar] [CrossRef]
- Nigam, P.K. Bilirubin Interference in Serum Creatinine Estimation by Jaffe’s Kinetic Method and Its Rectification in Three Different Kits. Indian J. Clin. Biochem. 2016, 31, 237–239. [Google Scholar] [CrossRef]
- Belcher, J.M. Hepatorenal Syndrome. Med. Clin. N. Am. 2023, 107, 781–792. [Google Scholar] [CrossRef]
- Carrion, A.F.; Martin, P. Renal Dysfunction in Cirrhotic Patients. Off. J. Am. Coll. Gastroenterol. ACG 2019, 114, 1407–1410. [Google Scholar] [CrossRef]
- Park, S.Y.; Jung, S.E.; Jeong, W.K.; Kim, C.K.; Park, B.K.; Choi, D. Renal Function Impairment in Liver Cirrhosis: Preliminary Results with Diffusion-Weighted Imaging at 3 T. Am. J. Roentgenol. 2015, 204, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Angeli, P.; Ginès, P.; Wong, F.; Bernardi, M.; Boyer, T.D.; Gerbes, A.; Moreau, R.; Jalan, R.; Sarin, S.K.; Piano, S. Diagnosis and Management of Acute Kidney Injury in Patients with Cirrhosis: Revised Consensus Recommendations of the International Club of Ascites. Gut 2015, 64, 531–537. [Google Scholar] [CrossRef]
- Kumar, R.; Priyadarshi, R.N.; Anand, U. Chronic Renal Dysfunction in Cirrhosis: A New Frontier in Hepatology. World J. Gastroenterol. 2021, 27, 990–1005. [Google Scholar] [CrossRef] [PubMed]
- Rognant, N. Evaluation of Renal Function in Patients with Cirrhosis: Where Are We Now? World J. Gastroenterol. 2014, 20, 2533. [Google Scholar] [CrossRef] [PubMed]
- Gambino, C.; Piano, S.; Stenico, M.; Tonon, M.; Brocca, A.; Calvino, V.; Incicco, S.; Zeni, N.; Gagliardi, R.; Cosma, C. Diagnostic and Prognostic Performance of Urinary Neutrophil Gelatinase-Associated Lipocalin in Patients with Cirrhosis and Acute Kidney Injury. Hepatology 2023, 77, 1630–1638. [Google Scholar] [CrossRef]
- Mazumder, N.R.; Junna, S.; Sharma, P. The Diagnosis and Non-Pharmacological Management of Acute Kidney Injury in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2023, 21, S11–S19. [Google Scholar] [CrossRef]
- Calleri, A.; Alessandria, C. Renal Damage in Hepatorenal Syndrome: A Still Unsolved Issue. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102178. [Google Scholar] [CrossRef] [PubMed]
- Cullaro, G.; Kanduri, S.R.; Velez, J.C.Q. Acute Kidney Injury in Patients with Liver Disease. Clin. J. Am. Soc. Nephrol. 2022, 17, 1674–1684. [Google Scholar] [CrossRef]
- Fagundes, C.; Barreto, R.; Guevara, M.; Garcia, E.; Solà, E.; Rodríguez, E.; Graupera, I.; Ariza, X.; Pereira, G.; Alfaro, I. A Modified Acute Kidney Injury Classification for Diagnosis and Risk Stratification of Impairment of Kidney Function in Cirrhosis. J. Hepatol. 2013, 59, 474–481. [Google Scholar] [CrossRef]
- Asrani, S.K.; Shankar, N.; Da Graca, B.; Nadim, M.K.; Cardenas, A. Role of Novel Kidney Biomarkers in Patients with Cirrhosis and After Liver Transplantation. Liver Transplant. 2022, 28, 466–482. [Google Scholar] [CrossRef]
- Francoz, C.; Nadim, M.K.; Durand, F. Kidney Biomarkers in Cirrhosis. J. Hepatol. 2016, 65, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Bassegoda, O.; Huelin, P.; Ariza, X.; Solé, C.; Juanola, A.; Gratacós-Ginès, J.; Carol, M.; Graupera, I.; Pose, E.; Napoleone, L.; et al. Development of Chronic Kidney Disease after Acute Kidney Injury in Patients with Cirrhosis Is Common and Impairs Clinical Outcomes. J. Hepatol. 2020, 72, 1132–1139. [Google Scholar] [CrossRef]
- Basthi Mohan, P.; Nagaraju, S.P.; Rangaswamy, D.; Musunuri, B.; Prabhu Attur, R.; Bhat, G.; Shailesh; Shetty, S. Urinary Neutrophil Gelatinase-Associated Lipocalin: Acute Kidney Injury in Liver Cirrhosis. Clin. Chim. Acta 2021, 523, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Lum, E.L.; Homkrailas, P.; Bunnapradist, S. Evaluation of Renal Disease in Patients with Cirrhosis. J. Clin. Gastroenterol. 2020, 54, 314–321. [Google Scholar] [CrossRef]
- Piano, S.; Romano, A.; Di Pascoli, M.; Angeli, P. Why and How to Measure Renal Function in Patients with Liver Disease. Liver Int. 2017, 37, 116–122. [Google Scholar] [CrossRef]
- Patidar, K.R.; Belcher, J.M.; Regner, K.R.; Hillien, S.A.S.; Simonetto, D.A.; Asrani, S.K.; Neyra, J.A.; Sharma, P.; Velez, J.C.Q.; Wadei, H. Incidence and Outcomes of Acute Kidney Injury Including Hepatorenal Syndrome in Hospitalized Patients with Cirrhosis in the US. J. Hepatol. 2023, 79, 1408–1417. [Google Scholar] [CrossRef]
- Lee, H.A.; Seo, Y.S. Current Knowledge about Biomarkers of Acute Kidney Injury in Liver Cirrhosis. Clin. Mol. Hepatol. 2022, 28, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Campion, D.; Rizzi, F.; Bonetto, S.; Giovo, I.; Roma, M.; Saracco, G.M.; Alessandria, C. Assessment of Glomerular Filtration Rate in Patients with Cirrhosis: Available Tools and Perspectives. Liver Int. 2022, 42, 2360–2376. [Google Scholar] [CrossRef] [PubMed]
- Sagheb, M.M.; Namazi, S.; Geramizadeh, B.; Karimzadeh, A.; Oghazian, M.B.; Karimzadeh, I. Serum Cystatin C as a Marker of Renal Function in Critically Ill Patients with Normal Serum Creatinine. Nephro-Urol. Mon. 2014, 6, e15224. [Google Scholar] [CrossRef]
- da Silveira, K.C.S.; Viau, C.M.; Colares, J.R.; Saffi, J.; Marroni, N.P.; Porawski, M. Cirrhosis Induces Apoptosis in Renal Tissue through Intracellular Oxidative Stress. Arq. Gastroenterol. 2015, 52, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Seo, Y.S.; Kang, S.H.; Kim, M.Y.; Kim, S.G.; Lee, H.Y.; Lee, J.-H.; Lee, Y.-S.; Kim, J.H.; Jeong, S.W.; et al. Prognosis Predictability of Serum and Urine Renal Markers in Patients with Decompensated Cirrhosis: A Multicentre Prospective Study. Liver Int. 2020, 40, 3083–3092. [Google Scholar] [CrossRef]
- Markwardt, D.; Holdt, L.; Steib, C.; Benesic, A.; Bendtsen, F.; Bernardi, M.; Moreau, R.; Teupser, D.; Wendon, J.; Nevens, F.; et al. Plasma Cystatin C Is a Predictor of Renal Dysfunction, Acute-on-Chronic Liver Failure, and Mortality in Patients with Acutely Decompensated Liver Cirrhosis. Hepatology 2017, 66, 1232–1241. [Google Scholar] [CrossRef]
- Gupta, K.; Bhurwal, A.; Law, C.; Ventre, S.; Minacapelli, C.D.; Kabaria, S.; Li, Y.; Tait, C.; Catalano, C.; Rustgi, V.K. Acute Kidney Injury and Hepatorenal Syndrome in Cirrhosis. World J. Gastroenterol. 2021, 27, 3984. [Google Scholar] [CrossRef]
- Smolders, E.J.; De Kanter, C.T.M.M.; Van Hoek, B.; Arends, J.E.; Drenth, J.P.H.; Burger, D.M. Pharmacokinetics, Efficacy, and Safety of Hepatitis C Virus Drugs in Patients with Liver and/or Renal Impairment. Drug Saf. 2016, 39, 589–611. [Google Scholar] [CrossRef]
- Gowda, Y.H.S.; Jagtap, N.; Karyampudi, A.; Rao, N.P.; Deepika, G.; Sharma, M.; Gupta, R.; Tandan, M.; Ramchandani, M.; John, P.; et al. Fractional Excretion of Sodium and Urea in Differentiating Acute Kidney Injury Phenotypes in Decompensated Cirrhosis. J. Clin. Exp. Hepatol. 2022, 12, 899–907. [Google Scholar] [CrossRef]
- Patidar, K.R.; Kang, L.; Bajaj, J.S.; Carl, D.; Sanyal, A.J. Fractional Excretion of Urea: A Simple Tool for the Differential Diagnosis of Acute Kidney Injury in Cirrhosis. Hepatology 2018, 68, 224–233. [Google Scholar] [CrossRef]
- Ariza, X.; Solà, E.; Elia, C.; Barreto, R.; Moreira, R.; Morales-Ruiz, M.; Graupera, I.; Rodríguez, E.; Huelin, P.; Solé, C.; et al. Analysis of a Urinary Biomarker Panel for Clinical Outcomes Assessment in Cirrhosis. PLoS ONE 2015, 10, e0128145. [Google Scholar] [CrossRef] [PubMed]
- Altran, W.S.; de Sousa, L.F.; dos Santos Cortinhas, R.; Ponce, D. The Role of Urinary Biomarkers in the Diagnosis of Acute Kidney Injury in Patients with Liver Cirrhosis. Sci. Rep. 2025, 15, 11575. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, I.; Barreto, E.F.; Kellum, J.A.; Awdishu, L.; Murray, P.T.; Ostermann, M.; Bihorac, A.; Mehta, R.L.; Goldstein, S.L.; Kashani, K.B.; et al. Moving toward a Contemporary Classification of Drug-Induced Kidney Disease. Crit. Care 2023, 27, 435. [Google Scholar] [CrossRef] [PubMed]
- Staufer, K.; Roedl, K.; Kivaranovic, D.; Drolz, A.; Horvatits, T.; Rasoul-Rockenschaub, S.; Zauner, C.; Trauner, M.; Fuhrmann, V. Renal Replacement Therapy in Critically Ill Liver Cirrhotic Patients—Outcome and Clinical Implications. Liver Int. 2017, 37, 843–850. [Google Scholar] [CrossRef]
- Romejko, K.; Markowska, M.; Niemczyk, S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int. J. Mol. Sci. 2023, 24, 10470. [Google Scholar] [CrossRef]
- Crescenzi, E.; Leonardi, A.; Pacifico, F. NGAL as a Potential Target in Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 12333. [Google Scholar] [CrossRef]
- Fagundes, C.; Pépin, M.-N.; Guevara, M.; Barreto, R.; Casals, G.; Solà, E.; Pereira, G.; Rodríguez, E.; Garcia, E.; Prado, V.; et al. Urinary Neutrophil Gelatinase-Associated Lipocalin as Biomarker in the Differential Diagnosis of Impairment of Kidney Function in Cirrhosis. J. Hepatol. 2012, 57, 267–273. [Google Scholar] [CrossRef]
- Hamdy, H.S.; El-Ray, A.; Salaheldin, M.; Lasheen, M.; Aboul-Ezz, M.; Abdel-Moaty, A.S.; Abdel-Rahim, A. Urinary Neutrophil Gelatinase-Associated Lipocalin in Cirrhotic Patients with Acute Kidney Injury. Ann. Hepatol. 2018, 17, 624–630. [Google Scholar] [CrossRef]
- Slack, A.J.; McPhail, M.J.W.; Ostermann, M.; Bruce, M.; Sherwood, R.; Musto, R.; Dew, T.; Auzinger, G.; Bernal, W.; O’Grady, J.; et al. Predicting the Development of Acute Kidney Injury in Liver Cirrhosis—An Analysis of Glomerular Filtration Rate, Proteinuria and Kidney Injury Biomarkers. Aliment. Pharmacol. Ther. 2013, 37, 989–997. [Google Scholar] [CrossRef]
- Singal, A.K.; Ong, S.; Satapathy, S.K.; Kamath, P.S.; Wiesner, R.H. Simultaneous Liver Kidney Transplantation. Transpl. Int. 2019, 32, 343–352. [Google Scholar] [CrossRef]
- Belcher, J.M.; Garcia-Tsao, G.; Sanyal, A.J.; Thiessen-Philbrook, H.; Peixoto, A.J.; Perazella, M.A.; Ansari, N.; Lim, J.; Coca, S.G.; Parikh, C.R. Urinary Biomarkers and Progression of AKI in Patients with Cirrhosis. Clin. J. Am. Soc. Nephrol. 2014, 9, 1857. [Google Scholar] [CrossRef] [PubMed]
- Puthumana, J.; Ariza, X.; Belcher, J.M.; Graupera, I.; Ginès, P.; Parikh, C.R. Urine Interleukin 18 and Lipocalin 2 Are Biomarkers of Acute Tubular Necrosis in Patients with Cirrhosis: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2017, 15, 1003–1013.e3. [Google Scholar] [CrossRef] [PubMed]
- Huelin, P.; Solà, E.; Elia, C.; Solé, C.; Risso, A.; Moreira, R.; Carol, M.; Fabrellas, N.; Bassegoda, O.; Juanola, A.; et al. Neutrophil Gelatinase-Associated Lipocalin for Assessment of Acute Kidney Injury in Cirrhosis: A Prospective Study. Hepatology 2019, 70, 319–333. [Google Scholar] [CrossRef]
- Yoo, J.-J.; Kwon, J.H.; Kim, Y.S.; Nam, S.W.; Park, J.W.; Kim, H.Y.; Kim, C.W.; Shin, S.K.; Chon, Y.E.; Jang, E.S.; et al. The Role of Urinary N-Acetyl-β-d-Glucosaminidase in Cirrhotic Patients with Acute Kidney Injury: Multicenter, Prospective Cohort Study. J. Clin. Med. 2021, 10, 4328. [Google Scholar] [CrossRef]
- Karmakova, T.A.; Sergeeva, N.S.; Kanukoev, K.Y.; Alekseev, B.Y.; Kaprin, A.D. Kidney Injury Molecule 1 (KIM-1): A Multifunctional Glycoprotein and Biological Marker (Review). Coвpeмeнныe Texнoлoгии B Meдицинe 2021, 13, 64–78. [Google Scholar] [CrossRef]
- Juanola, A.; Graupera, I.; Elia, C.; Piano, S.; Solé, C.; Carol, M.; Pérez-Guasch, M.; Bassegoda, O.; Escudé, L.; Rubio, A.-B.; et al. Urinary L-FABP Is a Promising Prognostic Biomarker of ACLF and Mortality in Patients with Decompensated Cirrhosis. J. Hepatol. 2022, 76, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am. J. Kidney Dis. 2016, 68, 19–28. [Google Scholar] [CrossRef]
- Guzzi, L.M.; Bergler, T.; Binnall, B.; Engelman, D.T.; Forni, L.; Germain, M.J.; Gluck, E.; Göcze, I.; Joannidis, M.; Koyner, J.L.; et al. Clinical Use of [TIMP-2]•[IGFBP7] Biomarker Testing to Assess Risk of Acute Kidney Injury in Critical Care: Guidance from an Expert Panel. Crit. Care 2019, 23, 225. [Google Scholar] [CrossRef]
- Suksamai, A.; Khaoprasert, S.; Chaiprasert, A.; Chirapongsathorn, S. Urine TIMP2.IGFBP7 Reflects Kidney Injury After Moderate Volume Paracentesis in Patients with Ascites: A Randomized Control Study. JGH Open 2025, 9, e70168. [Google Scholar] [CrossRef]
Criteria | Stage | sCr or GFR Criteria | Urine Output Criteria | References |
---|---|---|---|---|
Risk, Injury, Failure, Loss and End-stage Kidney Disease (RIFLE) criteria in 2004 | Stage 1 (Risk) | Increased sCr ≥ 1.5 × baseline or GFR decreased >25% | <0.5 mL/kg/h for ≥6 h | [9,15,16] |
Stage 2 (Injury) | Increased sCr ≥ 2 × baseline or GFR decreased >50% | <0.5 mL/kg/h for ≥12 h | ||
Stage 3 (Failure) | Increased sCr ≥ 3 × baseline or GFR decreased >75% | <0.3 mL/kg/h for ≥24 h | ||
Loss | Persistent acute renal failure > 4 weeks | - | ||
End-stage | Complete loss of kidney function > 3 months | - | ||
Acute Kidney Injury Network (AKIN) in 2007 | Stage 1 | Increased sCr ≥ 1.5 × baseline or ≥0.3 mg/dL within 48 h | <0.5 mL/kg/h for ≥6 h | |
Stage 2 | Increased sCr ≥ 2 × baseline | <0.5 mL/kg/h for ≥12 h | ||
Stage 3 | Increased sCr ≥ 3 × baseline | <0.3 mL/kg/h for ≥24 h or anuria ≥ 12 h | ||
Kidney Disease: Improving Global Outcomes (KDIGO) in 2012 | Stage 1 | Increased sCr ≥ 1.5–2 × baseline or ≥ 0.3 mg/dL | <0.5 mL/kg/h for ≥6–12 h | |
Stage 2 | Increased sCr ≥ 2–3 × baseline | <0.5 mL/kg/h for ≥12 h | ||
Stage 3 | Increased sCr ≥ 3 × baseline or sCr ≥ 4.0 mg/dL | <0.3 mL/kg/h for 24 h or anuria ≥ 12 h |
Category | Criteria | References |
---|---|---|
Definition of baseline sCr | A value of sCr obtained in the previous 3 months. In patients with more than one value, the closest and lowest to hospital admission should be used. In patients without a previous value, the admission value should be used as baseline. | [4,9,19,20] |
Definition of AKI | Increase in sCr ≥ 0.3 mg/dL (26.5 µmol/L) within 48 h OR Increase in sCr ≥ 50% from baseline within the prior 7 days. | |
AKI Staging | ||
Stage 1A | Increase in sCr ≥ 0.3 mg/dL (26.5 µmol/L) to a value < 1.5 mg/dL (133 µmol/L) from baseline at AKI diagnosis. | |
Stage 1B | Increase in sCr ≥ 0.3 mg/dL (26.5 µmol/L) to a value ≥ 1.5 mg/dL (133 µmol/L) from baseline at AKI diagnosis. | |
Stage 2 | Increase in sCr 2-fold to 3-fold from baseline. | |
Stage 3 | Increase in sCr ≥ 3-fold from baseline OR sCr ≥ 4.0 mg/dL (353.6 µmol/L) with an acute increase of ≥0.3 mg/dL (26.5 µmol/L) OR Initiation of renal replacement therapy (RRT). |
|
|
|
|
|
|
Syndrome/Criteria | Old Term | Definition | HRS Prerequisites | New Term | References |
---|---|---|---|---|---|
AKI | HRS-1 | - Stage 1: Increase in baseline sCr of either ≥0.3 mg/dL in 48 h or ≥1.5–1.9 × baseline in the last 7 d or urinary output ≤ 0.5 mg/kg body weight in ≥6 h - Stage 2: ≥2–2.9 × baseline sCr - Stage 3: ≥3 × baseline sCr or sCr ≥ 4 mg/dL or KRT | - Decompensated cirrhosis (DC) - Absence of shock - No treatment with nephrotoxic medications - No response to volume expansion - Absence of parenchymal disease (proteinuria: >500 mg/d; hematuria: <50 RBCs per HPF) - Suggestion of kidney vasoconstriction with FENa < 0.2% | HRS-AKI | [12,23] |
AKD | HRS-2 | eGFR < 60 mL/min per 1.73 m2 for <3 mo | Same as AKI | HRS-AKD | |
CKD | N/A | eGFR < 60 mL/min per 1.73 m2 for ≥3 mo | Same as AKI | HRS-CKD | |
Serum Creatinine Criteria Evolution | N/A | - 1996: sCr > 1.5 mg/dL - 2007: sCr ≥ 2.5 mg/dL - 2015: Increase in sCr ≥ 0.3 mg/dL in 48 h or ≥50% from baseline - 2019: Baseline sCr < 3 months | Varies by year, with evolving inclusion of structural kidney disease, urine sodium levels, and hemodynamic parameters | N/A | |
Urine Sodium | N/A | - 1996: <10 mEq/L - 2007: <30 mEq/L - 2015: FENa < 0.2% | Absence of structural kidney disease | N/A | |
Urine Volume | N/A | - 1996: <500 mL/day - 2015: <0.5 mL/kg/h for 6 h | Absence of structural kidney disease | N/A | |
Urine Sediment | N/A | - 1996: No proteinuria - 2015: No significant proteinuria | No active urinary sediment | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lungu, A.; Sarbu, G.-E.; Cotlet, A.S.; Savin, I.-A.; Damian, I.-R.; Juncu, S.; Muzica, C.; Girleanu, I.; Sîngeap, A.-M.; Stanciu, C.; et al. Acute Kidney Injury in Patients with Liver Cirrhosis: From Past to Present Definition and Diagnosis. Life 2025, 15, 1249. https://doi.org/10.3390/life15081249
Lungu A, Sarbu G-E, Cotlet AS, Savin I-A, Damian I-R, Juncu S, Muzica C, Girleanu I, Sîngeap A-M, Stanciu C, et al. Acute Kidney Injury in Patients with Liver Cirrhosis: From Past to Present Definition and Diagnosis. Life. 2025; 15(8):1249. https://doi.org/10.3390/life15081249
Chicago/Turabian StyleLungu, Andreea, Georgiana-Elena Sarbu, Alexandru Sebastian Cotlet, Ilie-Andreas Savin, Ioana-Roxana Damian, Simona Juncu, Cristina Muzica, Irina Girleanu, Ana-Maria Sîngeap, Carol Stanciu, and et al. 2025. "Acute Kidney Injury in Patients with Liver Cirrhosis: From Past to Present Definition and Diagnosis" Life 15, no. 8: 1249. https://doi.org/10.3390/life15081249
APA StyleLungu, A., Sarbu, G.-E., Cotlet, A. S., Savin, I.-A., Damian, I.-R., Juncu, S., Muzica, C., Girleanu, I., Sîngeap, A.-M., Stanciu, C., Trifan, A., & Cojocariu, C. (2025). Acute Kidney Injury in Patients with Liver Cirrhosis: From Past to Present Definition and Diagnosis. Life, 15(8), 1249. https://doi.org/10.3390/life15081249