Neuronal and Glial α7 Nicotinic Acetylcholine Receptors: Role in Alzheimer’s Disease Pathophysiology
Abstract
1. Introduction
2. Cholinergic Receptors
3. The α7 Nicotinic Receptor
4. α7nAChR Alterations in AD
5. Physiological and Pathological Effects of Aβ
6. Aβ Interaction with α7nAChR
7. Aβ Alters Somatodendritic and Presynaptic α7nAChR Activity
8. Aβ-α7nAChR Interactions Regulate Excitation/Inhibition Balance
9. α7nAChR Mediates Aβ Effects on Synaptic Plasticity
10. α7nAChR and Aβ-Induced Neurotoxicity
11. α7nAChR and Intraneuronal Amyloid
12. Relationship of α7nAChR to Tau Phosphorylation
13. Heteromeric α7β2 Receptors
14. Astrocytic α7nAChR in AD
15. Microglial α7nAChR in AD
16. Effects of α7nAChR Knockout on AD Pathology In Vivo
17. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACh | acetylcholine |
AChE | acetylcholinesterase |
AD | Alzheimer’s disease |
ApoE | apolipoproteinE |
APP | amyloid precursor protein |
AR | autoradiography |
ATP | adenosine triphosphate |
Aβ | beta amyloid |
α-BTX | alpha-bungarotoxin |
BACE1 | beta-site amyloid precursor protein cleaving enzyme 1 |
BFCS | basal forebrain cholinergic system |
CA1 | cornu ammonis 1 |
CA3 | cornu ammonis 3 |
CaMKII | Ca2+/calmodulin-dependent protein kinase II |
CAP | cholinergic anti-inflammatory pathway |
CD | cluster of differentiation |
E-LTP | early long-term potentiation |
eNMDAR | extrasynaptic NMDA receptor |
EphB2 | ephrin type-B receptor 2 |
ERK | extracellular signal-regulated kinase |
GABA | gamma-aminobutyric acid |
GCLC | glutamate-cysteine ligase catalytic subunit |
GLAST | glutamate aspartate transporter |
GSK | glycogen synthase kinase |
HO1 | heme oxygenase I |
IHC | immunohistochemistry |
IkBa | NF-κB inhibitor alpha |
IL | interleukin |
IP3 | inositol triphosphate |
ISH | in situ hybridization |
JAK2 | Janus kinase 2 |
L-LTP | late-long-term potentiation |
LPS | lipopolysaccharide |
LTD | long-term depression |
LTP | long-term potentiation |
mAChR | muscarinic acetylcholine receptor |
MAPK | mitogen-activated protein kinase |
MCI | mild cognitive impairment |
mEPSC | miniature excitatory postsynaptic current |
MIP-1α | macrophage inflammatory protein-1 alpha |
MLA | methyllycaconitine |
MPP+ | 1-methyl-4-phenylpyridinium |
nAChR | nicotinic acetylcholine receptor |
NADPH | nicotinamide adenine dinucleotide phosphate |
NF-kB | nuclear factor-kappa B |
NGF | nerve growth factor |
NgR1 | nogo receptor 1 |
NMDA | N-methyl-D-aspartate |
Nrf-2 | nuclear factor erythroid 2–related factor 2 |
P2X7R | purinergic P2X7 receptor |
p75NTR | p75 neurotrophin receptor |
PAMP | pathogen-associated molecular pattern |
PET | positron emission tomography |
PI3K | phosphoinositide 3-kinase |
PKA | protein kinase A |
PKC | protein kinase C |
PLC | phospholipase C |
PP2B | Serine/threonine protein phosphatase 2B (calcineurin) |
Prpc | cellular prion protein |
PS1 | presenilin 1 |
RAGE | receptor for advanced glycation end products |
RANTES | regulated on activation, normal T cell expressed and secreted |
ROS | reactive oxygen species |
shRNA | short hairpin RNA |
STAT3 | signal transducer and activator of transcription 3 |
STEP | Striatal-enriched phosphatase |
TNF | tumor necrosis factor |
TR-FRET | time-resolved fluorescence energy transfer |
TXNRD1 | thioredoxin reductase 1 |
VGCC | voltage-gated Ca2+ channel |
WB | Western blot |
References
- Deture, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Arendt, T. The Significance of the Cholinergic System in the Brain during Aging and in Alzheimer’s Disease. J. Neural Transm. 2006, 113, 1625–1644. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Li, Y.; Deng, H.; Zuo, H. Advances in the Study of Cholinergic Circuits in the Central Nervous System. Ann. Clin. Transl. Neurol. 2023, 10, 2179–2191. [Google Scholar] [CrossRef]
- Colangelo, C.; Shichkova, P.; Keller, D.; Markram, H.; Ramaswamy, S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front. Neural Circuits 2019, 13, 24. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron 2012, 76, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Filardo, J.; Mellor, J.R. Neuromodulation of Hippocampal Long-Term Synaptic Plasticity. Curr. Opin. Neurobiol. 2019, 54, 37–43. [Google Scholar] [CrossRef]
- Ananth, M.R.; Rajebhosale, P.; Kim, R.; Talmage, D.A.; Role, L.W. Basal Forebrain Cholinergic Signalling: Development, Connectivity and Roles in Cognition. Nat. Rev. Neurosci. 2023, 24, 233–251. [Google Scholar] [CrossRef]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s Disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef]
- Hasselmo, M.E. The Role of Acetylcholine in Learning and Memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef]
- Solari, N.; Hangya, B. Cholinergic Modulation of Spatial Learning, Memory and Navigation. Eur. J. Neurosci. 2018, 48, 2199–2230. [Google Scholar] [CrossRef]
- Davies, P.; Maloney, A.J.F. Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet 1976, 2, 1403. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer’s Disease and Senile Dementia: Loss of Neurons in the Basal Forebrain. Science 1982, 215, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.A.; Leavitt, J. Human Memory and the Cholinergic System: A Relationship to Aging? Arch. Neurol. 1974, 30, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Khachaturian, A.S.; Vergallo, A.; Farlow, M.R.; Snyder, P.J.; Giacobini, E.; Khachaturian, Z.S. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. J. Prev. Alzheimers Dis. 2019, 6, 2–15. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Summers, W.K.; Majovski, L.V.; Marsh, G.M.; Tachiki, K.; Kling, A. Oral Tetrahydroaminoacridine in Long-Term Treatment of Senile Dementia, Alzheimer Type. N. Engl. J. Med. 1986, 315, 1241–1245. [Google Scholar] [CrossRef]
- Fernández-Cabello, S.; Kronbichler, M.; van Dijk, K.R.A.; Goodman, J.A.; Nathan Spreng, R.; Schmitz, T.W. Basal Forebrain Volume Reliably Predicts the Cortical Spread of Alzheimer’s Degeneration. Brain 2020, 143, 993–1009. [Google Scholar] [CrossRef]
- Schmitz, T.W.; Nathan Spreng, R. Basal Forebrain Degeneration Precedes and Predicts the Cortical Spread of Alzheimer’s Pathology. Nat. Commun. 2016, 7, 13249. [Google Scholar] [CrossRef]
- Shafiee, N.; Fonov, V.; Dadar, M.; Spreng, R.N.; Collins, D.L. Degeneration in Nucleus Basalis of Meynert Signals Earliest Stage of Alzheimer’s Disease Progression. Neurobiol. Aging 2024, 139, 54–63. [Google Scholar] [CrossRef]
- Lebois, E.P.; Thorn, C.; Edgerton, J.R.; Popiolek, M.; Xi, S. Muscarinic Receptor Subtype Distribution in the Central Nervous System and Relevance to Aging and Alzheimer’s Disease. Neuropharmacology 2018, 136, 362–373. [Google Scholar] [CrossRef]
- Gotti, C.; Clementi, F.; Fornari, A.; Gaimarri, A.; Guiducci, S.; Manfredi, I.; Moretti, M.; Pedrazzi, P.; Pucci, L.; Zoli, M. Structural and Functional Diversity of Native Brain Neuronal Nicotinic Receptors. Biochem. Pharmacol. 2009, 78, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.X.; Yakel, J.L. Nicotinic Acetylcholine Receptor-Mediated Calcium Signaling in the Nervous System. Acta Pharmacol. Sin. 2009, 30, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Karlin, A. Emerging Structure of the Nicotinic Acetylcholine Receptors. Nat. Rev. Neurosci. 2002, 3, 102–114. [Google Scholar] [CrossRef]
- Zoli, M.; Pistillo, F.; Gotti, C. Diversity of Native Nicotinic Receptor Subtypes in Mammalian Brain. Neuropharmacology 2015, 96, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Hung, S.Y. Physiologic Functions and Therapeutic Applications of A7 Nicotinic Acetylcholine Receptor in Brain Disorders. Pharmaceutics 2022, 15, 31. [Google Scholar] [CrossRef]
- Uteshev, V.V. A7 Nicotinic ACh Receptors as a Ligand-Gated Source of Ca2+ Ions: The Search for a Ca2+ Optimum. Adv. Exp. Med. Biol. 2012, 740, 603. [Google Scholar] [CrossRef]
- Sinclair, P.; Kabbani, N. Ionotropic and Metabotropic Responses by α7 Nicotinic Acetylcholine Receptors. Pharmacol. Res. 2023, 197, 106975. [Google Scholar] [CrossRef]
- Kabbani, N.; Nichols, R.A. Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors. Trends Pharmacol. Sci. 2018, 39, 354–366. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Mikkelsen, J.D. The α7 Nicotinic Acetylcholine Receptor Complex: One, Two or Multiple Drug Targets? Curr. Drug Targets 2013, 13, 707–720. [Google Scholar] [CrossRef]
- Horenstein, N.A.; Papke, R.L. Anti-Inflammatory Silent Agonists. ACS Med. Chem. Lett. 2017, 8, 989–991. [Google Scholar] [CrossRef]
- Abbondanza, A.; Urushadze, A.; Alves-Barboza, A.R.; Janickova, H. Expression and Function of Nicotinic Acetylcholine Receptors in Specific Neuronal Populations: Focus on Striatal and Prefrontal Circuits. Pharmacol. Res. 2024, 204, 107190. [Google Scholar] [CrossRef] [PubMed]
- Letsinger, A.C.; Gu, Z.; Yakel, J.L. A7 Nicotinic Acetylcholine Receptors in the Hippocampal Circuit: Taming Complexity. Trends Neurosci. 2022, 45, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Dani, J.A.; Bertrand, D. Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 699–729. [Google Scholar] [CrossRef]
- Fabian-Fine, R.; Skehel, P.; Errington, M.L.; Davies, H.A.; Sher, E.; Stewart, M.G.; Fine, A. Ultrastructural Distribution of the α7 Nicotinic Acetylcholine Receptor Subunit in Rat Hippocampus. J. Neurosci. 2001, 21, 7993–8003. [Google Scholar] [CrossRef]
- Cheng, Q.; Yakel, J.L. The Effect of A7 Nicotinic Receptor Activation on Glutamatergic Transmission in the Hippocampus. Biochem. Pharmacol. 2015, 97, 439–444. [Google Scholar] [CrossRef]
- Pastor, V.; Medina, J.H. A7 Nicotinic Acetylcholine Receptor in Memory Processing. Eur. J. Neurosci. 2024, 59, 2138–2154. [Google Scholar] [CrossRef]
- Koukouli, F.; Maskos, U. The Multiple Roles of the A7 Nicotinic Acetylcholine Receptor in Modulating Glutamatergic Systems in the Normal and Diseased Nervous System. Biochem. Pharmacol. 2015, 97, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Bürli, T.; Baer, K.; Ewers, H.; Sidler, C.; Fuhrer, C.; Fritschy, J.M. Single Particle Tracking of A7 Nicotinic AChR in Hippocampal Neurons Reveals Regulated Confinement at Glutamatergic and GABAergic Perisynaptic Sites. PLoS ONE 2010, 5, e11507. [Google Scholar] [CrossRef]
- Ji, D.; Lape, R.; Dani, J.A. Timing and Location of Nicotinic Activity Enhances or Depresses Hippocampal Synaptic Plasticity. Neuron 2001, 31, 131–141. [Google Scholar] [CrossRef]
- Gu, Z.; Yakel, J.L. Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity. Neuron 2011, 71, 155–165. [Google Scholar] [CrossRef]
- Borroni, V.; Barrantes, F.J. Homomeric and Heteromeric A7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. Membranes 2021, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Terry, A.V.; Jones, K.; Bertrand, D. Nicotinic Acetylcholine Receptors in Neurological and Psychiatric Diseases. Pharmacol. Res. 2023, 191, 106764. [Google Scholar] [CrossRef]
- Sharma, G.; Vijayaraghavan, S. Nicotinic Cholinergic Signaling in Hippocampal Astrocytes Involves Calcium-Induced Calcium Release from Intracellular Stores. Proc. Natl. Acad. Sci. USA 2001, 98, 4148–4153. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.X.; Yakel, J.L. Functional A7 Nicotinic ACh Receptors on Astrocytes in Rat Hippocampal CA1 Slices. J. Mol. Neurosci. 2012, 48, 14–21. [Google Scholar] [CrossRef]
- Shytle, R.D.; Mori, T.; Townsend, K.; Vendrame, M.; Sun, N.; Zeng, J.; Ehrhart, J.; Silver, A.A.; Sanberg, P.R.; Tan, J. Cholinergic Modulation of Microglial Activation by A7 Nicotinic Receptors. J. Neurochem. 2004, 89, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hide, I.; Matsubara, A.; Hama, C.; Harada, K.; Miyano, K.; Andrä, M.; Matsubayashi, H.; Sakai, N.; Kohsaka, S.; et al. Microglial A7 Nicotinic Acetylcholine Receptors Drive a Phospholipase C/IP3 Pathway and Modulate the Cell Activation toward a Neuroprotective Role. J. Neurosci. Res. 2006, 83, 1461–1470. [Google Scholar] [CrossRef]
- Hawkins, B.T.; Egleton, R.D.; Davis, T.P. Modulation of Cerebral Microvascular Permeability by Endothelial Nicotinic Acetylcholine Receptors. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, 212–219. [Google Scholar] [CrossRef]
- Vélez-Fort, M.; Audinat, E.; Angulo, M.C. Functional A7-Containing Nicotinic Receptors of NG2-Expressing Cells in the Hippocampus. Glia 2009, 57, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Hellström-Lindahl, E.; Mousavi, M.; Zhang, X.; Ravid, R.; Nordberg, A. Regional Distribution of Nicotinic Receptor Subunit MRNAs in Human Brain: Comparison between Alzheimer and Normal Brain. Brain Res. Mol. Brain Res. 1999, 66, 94–103. [Google Scholar] [CrossRef]
- Davies, P.; Feisullin, S. Postmortem Stability of α-Bungarotoxin Binding Sites in Mouse and Human Brain. Brain Res. 1981, 216, 449–454. [Google Scholar] [CrossRef]
- Yu, W.F.; Guan, Z.Z.; Bogdanovic, N.; Nordberg, A. High Selective Expression of A7 Nicotinic Receptors on Astrocytes in the Brains of Patients with Sporadic Alzheimer’s Disease and Patients Carrying Swedish APP 670/671 Mutation: A Possible Association with Neuritic Plaques. Exp. Neurol. 2005, 192, 215–225. [Google Scholar] [CrossRef]
- Lang, W.; Henke, H. Cholinergic Receptor Binding and Autoradiography in Brains of Non-Neurological and Senile Dementia of Alzheimer-Type Patients. Brain Res. 1983, 267, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, K.; Giacobini, E.; Chiappinelli, V.A. Nicotinic Acetylcholine Receptor Subtypes in Human Frontal Cortex: Changes in Alzheimer’s Disease. J. Neurosci. Res. 1990, 27, 349–359. [Google Scholar] [CrossRef]
- Reid, R.T.; Sabbagh, M.N.; CoreyBloom, J.; Tiraboschi, P.; Thal, L.J. Nicotinic Receptor Losses in Dementia with Lewy Bodies: Comparisons with Alzheimer’s Disease. Neurobiol. Aging 2000, 21, 741–746. [Google Scholar] [CrossRef]
- Guan, Z.Z.; Zhang, X.; Ravid, R.; Nordberg, A. Decreased Protein Levels of Nicotinic Receptor Subunits in the Hippocampus and Temporal Cortex of Patients with Alzheimer’s Disease. J. Neurochem. 2000, 74, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Burghaus, L.; Schütz, U.; Krempel, U.; De Vos, R.A.I.; Jansen Steur, E.N.H.; Wevers, A.; Lindstrom, J.; Schröder, H. Quantitative Assessment of Nicotinic Acetylcholine Receptor Proteins in the Cerebral Cortex of Alzheimer Patients. Mol. Brain Res. 2000, 76, 385–388. [Google Scholar] [CrossRef]
- Wevers, A.; Burghaus, L.; Moser, N.; Witter, B.; Steinlein, O.K.; Schütz, U.; Achnitz, B.; Krempel, U.; Nowacki, S.; Pilz, K.; et al. Expression of Nicotinic Acetylcholine Receptors in Alzheimer’s Disease: Postmortem Investigations and Experimental Approaches. Behav. Brain Res. 2000, 113, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Engidawork, E.; Gulesserian, T.; Balic, N.; Cairns, N.; Lubec, G. Changes in Nicotinic Acetylcholine Receptor Subunits Expression in Brain of Patients with Down Syndrome and Alzheimer’s Disease. In Protein Expression in Down Syndrome Brain; Springer: Vienna, Austria, 2001; pp. 211–222. [Google Scholar] [CrossRef]
- Martin-Ruiz, C.M.; Court, J.A.; Molnar, E.; Lee, M.; Gotti, C.; Mamalaki, A.; Tsouloufis, T.; Tzartos, S.; Ballard, C.; Perry, R.H.; et al. α4 but Not α3 and α7 Nicotinic Acetylcholine Receptor Subunits Are Lost from the Temporal Cortex in Alzheimer’s Disease. J. Neurochem. 1999, 73, 1635–1640. [Google Scholar] [CrossRef]
- Wevers, A.; Monteggia, L.; Nowacki, S.; Bloch, W.; Schutz, U.; Lindstrom, J.; Pereira, E.F.R.; Eisenberg, H.; Giacobini, E.; De Vos, R.A.I.; et al. Expression of Nicotinic Acetylcholine Receptor Subunits in the Cerebral Cortex in Alzheimer’s Disease: Histotopographical Correlation with Amyloid Plaques and Hyperphosphorylated-Tau Protein. Eur. J. Neurosci. 1999, 11, 2551–2565. [Google Scholar] [CrossRef]
- Banerjee, C.; Nyengaard, J.R.; Wevers, A.; De Vos, R.A.I.; Steur, E.N.H.J.; Lindstrom, J.; Pilz, K.; Nowacki, S.; Bloch, W.; Schröder, H. Cellular Expression of A7 Nicotinic Acetylcholine Receptor Protein in the Temporal Cortex in Alzheimer’s and Parkinson’s Disease--a Stereological Approach. Neurobiol. Dis. 2000, 7, 666–672. [Google Scholar] [CrossRef]
- Counts, S.E.; He, B.; Che, S.; Ikonomovic, M.D.; DeKosky, S.T.; Ginsberg, S.D.; Mufson, E.J. A7 Nicotinic Receptor Up-Regulation in Cholinergic Basal Forebrain Neurons in Alzheimer Disease. Arch. Neurol. 2007, 64, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Garg, B.K.; Loring, R.H. Evaluating Commercially Available Antibodies for Rat A7 Nicotinic Acetylcholine Receptors. J. Histochem. Cytochem. 2017, 65, 499. [Google Scholar] [CrossRef] [PubMed]
- Herber, D.L.; Severance, E.G.; Cuevas, J.; Morgan, D.; Gordon, M.N. Biochemical and Histochemical Evidence of Nonspecific Binding of A7nAChR Antibodies to Mouse Brain Tissue. J. Histochem. Cytochem. 2004, 52, 1367–1375. [Google Scholar] [CrossRef]
- Jones, I.W.; Wonnacott, S. Why Doesn’t Nicotinic ACh Receptor Immunoreactivity Knock Out? Trends Neurosci. 2005, 28, 343–345. [Google Scholar] [CrossRef]
- Moser, N.; Mechawar, N.; Jones, I.; Gochberg-Sarver, A.; Orr-Urtreger, A.; Plomann, M.; Salas, R.; Molles, B.; Marubio, L.; Roth, U.; et al. Evaluating the Suitability of Nicotinic Acetylcholine Receptor Antibodies for Standard Immunodetection Procedures. J. Neurochem. 2007, 102, 479–492. [Google Scholar] [CrossRef]
- Horti, A.G.; Gao, Y.; Kuwabara, H.; Wang, Y.; Abazyan, S.; Yasuda, R.P.; Tran, T.; Xiao, Y.; Sahibzada, N.; Holt, D.P.; et al. 18F-ASEM, a Radiolabeled Antagonist for Imaging the A7-Nicotinic Acetylcholine Receptor with PET. J. Nucl. Med. 2014, 55, 672–677. [Google Scholar] [CrossRef]
- Wong, D.F.; Kuwabara, H.; Horti, A.G.; Roberts, J.M.; Nandi, A.; Cascella, N.; Brasic, J.; Weerts, E.M.; Kitzmiller, K.; Phan, J.A.; et al. Brain PET Imaging of A7-NAChR with [18F]ASEM: Reproducibility, Occupancy, Receptor Density, and Changes in Schizophrenia. Int. J. Neuropsychopharmacol. 2018, 21, 656–667. [Google Scholar] [CrossRef]
- Wong, D.F.; Kuwabara, H.; Pomper, M.; Holt, D.P.; Brasic, J.R.; George, N.; Frolov, B.; Willis, W.; Gao, Y.; Valentine, H.; et al. Human Brain Imaging of A7 NAChR with [(18)F]ASEM: A New PET Radiotracer for Neuropsychiatry and Determination of Drug Occupancy. Mol. Imaging Biol. 2014, 16, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, J.M.; Rubin, L.H.; Du, Y.; Rowe, S.P.; Crawford, J.L.; Rosenthal, H.B.; Frey, S.M.; Marshall, E.S.; Shinehouse, L.K.; Chen, A.; et al. High Availability of the A7-Nicotinic Acetylcholine Receptor in Brains of Individuals with Mild Cognitive Impairment: A Pilot Study Using 18F-ASEM PET. J. Nucl. Med. 2020, 61, 423–426. [Google Scholar] [CrossRef]
- Ikonomovic, M.D.; Wecker, L.; Abrahamson, E.E.; Wuu, J.; Counts, S.E.; Ginsberg, S.D.; Mufson, E.J.; DeKosky, S.T. Cortical A7 Nicotinic Acetylcholine Receptor and β-Amyloid Levels in Early Alzheimer Disease. Arch. Neurol. 2009, 66, 646–651. [Google Scholar] [CrossRef]
- Ren, J.M.; Zhang, S.L.; Wang, X.L.; Guan, Z.Z.; Qi, X.L. Expression Levels of the A7 Nicotinic Acetylcholine Receptor in the Brains of Patients with Alzheimer’s Disease and Their Effect on Synaptic Proteins in SH-SY5Y Cells. Mol. Med. Rep. 2020, 22, 2063–2075. [Google Scholar] [CrossRef]
- Ngo, A.; Karim, F.; Keerthisinghe, O.V.; Danh, T.B.; Liang, C.; Mukherjee, J. Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic Acetylcholinergic Receptors in Hippocampus–Subiculum of Postmortem Human Alzheimer’s Disease Brain. Receptors 2025, 4, 7. [Google Scholar] [CrossRef]
- Teaktong, T.; Graham, A.; Court, J.; Perry, R.; Jaros, E.; Johnson, M.; Hall, R.; Perry, E. Alzheimer’s Disease Is Associated with a Selective Increase in α7 Nicotinic Acetylcholine Receptor Immunoreactivity in Astrocytes. Glia 2003, 41, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Teaktong, T.; Graham, A.J.; Court, J.A.; Perry, R.H.; Jaros, E.; Johnson, M.; Hall, R.; Perry, E.K. Nicotinic Acetylcholine Receptor Immunohistochemistry in Alzheimer’s Disease and Dementia with Lewy Bodies: Differential Neuronal and Astroglial Pathology. J. Neurol. Sci. 2004, 225, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Hellström-Lindahl, E.; Court, J.; Keverne, J.; Svedberg, M.; Lee, M.; Marutle, A.; Thomas, A.; Perry, E.; Bednar, I.; Nordberg, A. Nicotine Reduces Aβ in the Brain and Cerebral Vessels of APPsw Mice. Eur. J. Neurosci. 2004, 19, 2703–2710. [Google Scholar] [CrossRef]
- Nagele, R.G.; D’Andrea, M.R.; Lee, H.; Venkataraman, V.; Wang, H.Y. Astrocytes Accumulate Aβ42 and Give Rise to Astrocytic Amyloid Plaques in Alzheimer Disease Brains. Brain Res. 2003, 971, 197–209. [Google Scholar] [CrossRef]
- Bednar, I.; Paterson, D.; Marutle, A.; Pham, T.M.; Svedberg, M.; Hellström-Lindahl, E.; Mousavi, M.; Court, J.; Morris, C.; Perry, E.; et al. Selective Nicotinic Receptor Consequences in APPSWE Transgenic Mice. Mol. Cell. Neurosci. 2002, 20, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Dineley, K.T.; Xia, X.; Bui, D.; David Sweatt, J.; Zheng, H. Accelerated Plaque Accumulation, Associative Learning Deficits, and up-Regulation of α7 Nicotinic Receptor Protein in Transgenic Mice Co-Expressing Mutant Human Presenilin 1 and Amyloid Precursor Proteins. J. Biol. Chem. 2002, 277, 22768–22780. [Google Scholar] [CrossRef]
- Dineley, K.T.; Westerman, M.; Bui, D.; Bell, K.; Ashe, K.H.; Sweatt, J.D. Beta-Amyloid Activates the Mitogen-Activated Protein Kinase Cascade via Hippocampal α7 Nicotinic Acetylcholine Receptors: In Vitro and in Vivo Mechanisms Related to Alzheimer’s Disease. J. Neurosci. 2001, 21, 4125–4133. [Google Scholar] [CrossRef]
- Jones, I.W.; Westmacott, A.; Chan, E.; Jones, R.W.; Dineley, K.; O’Neill, M.J.; Wonnacott, S. A7 Nicotinic Acetylcholine Receptor Expression in Alzheimer’s Disease: Receptor Densities in Brain Regions of the APP(SWE) Mouse Model and in Human Peripheral Blood Lymphocytes. J. Mol. Neurosci. 2006, 30, 83–84. [Google Scholar] [CrossRef]
- Lykhmus, O.; Tzeng, W.Y.; Koval, L.; Uspenska, K.; Zirdum, E.; Kalashnyk, O.; Garaschuk, O.; Skok, M. Impairment of Brain Function in a Mouse Model of Alzheimer’s Disease during the Pre-Depositing Phase: The Role of A7 Nicotinic Acetylcholine Receptors. Biomed. Pharmacother. 2024, 178, 117255. [Google Scholar] [CrossRef] [PubMed]
- Oddo, S.; Caccamo, A.; Green, K.N.; Liang, K.; Tran, L.; Chen, Y.; Leslie, F.M.; LaFerla, F.M. Chronic Nicotine Administration Exacerbates Tau Pathology in a Transgenic Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2005, 102, 3046–3051. [Google Scholar] [CrossRef]
- Marutle, A.; Unger, C.; Hellström-Lindahl, E.; Wang, J.; Puoliväli, J.; Tanila, H.; Nordberg, A.; Zhang, X. Elevated Levels of Aβ1–40 and Aβ1–42 Do Not Alter the Binding Sites of Nicotinic Receptor Subtypes in the Brain of APPswe and PS1 Double Transgenic Mice. Neurosci. Lett. 2002, 328, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; Bednar, I.; Nordberg, A. Selective Changes in Expression of Different Nicotinic Receptor Subtypes in Brain and Adrenal Glands of Mice Carrying Human Mutated Gene for APP or Over-Expressing Human Acetylcholinestrase. Int. J. Dev. Neurosci. 2004, 22, 545–549. [Google Scholar] [CrossRef]
- Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef]
- Kummer, M.P.; Heneka, M.T. Truncated and Modified Amyloid-Beta Species. Alzheimers Res. Ther. 2014, 6, 28. [Google Scholar] [CrossRef]
- Bitan, G.; Kirkitadze, M.D.; Lomakin, A.; Vollers, S.S.; Benedek, G.B.; Teplow, D.B. Amyloid β-Protein (Aβ) Assembly: Aβ40 and Aβ42 Oligomerize through Distinct Pathways. Proc. Natl. Acad. Sci. USA 2002, 100, 330. [Google Scholar] [CrossRef] [PubMed]
- Gravina, S.A.; Ho, L.; Eckman, C.B.; Long, K.E.; Otvos, L.; Younkin, L.H.; Suzuki, N.; Younkin, S.G. Amyloid β Protein (Aβ) in Alzheimer’s Disease Brain. Biochemical and Immunocytochemical Analysis with Antibodies Specific for Forms Ending at Aβ40 or Aβ42(43). J. Biol. Chem. 1995, 270, 7013–7016. [Google Scholar] [CrossRef]
- Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in Senile Plaques with End-Specific Aβ Monoclonals: Evidence That an Initially Deposited Species Is Aβ42(43). Neuron 1994, 13, 45–53. [Google Scholar] [CrossRef]
- Tomic, J.L.; Pensalfini, A.; Head, E.; Glabe, C.G. Soluble Fibrillar Oligomer Levels Are Elevated in Alzheimer’s Disease Brain and Correlate with Cognitive Dysfunction. Neurobiol. Dis. 2009, 35, 352–358. [Google Scholar] [CrossRef]
- McLean, C.A.; Cherny, R.A.; Fraser, F.W.; Hons, B.; Fuller, S.J.; Smith, M.J.; Beyreuther, K.; Bush, A.I.; Masters, C.L. Soluble Pool of Aβ Amyloid as a Determinant of Severity of Neurodegeneration in Alzheimer’s Disease. Ann. Neurol. 1999, 46, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.T.; Lourenco, M.V.; Oliveira, M.M.; De Felice, F.G. Soluble Amyloid-β Oligomers as Synaptotoxins Leading to Cognitive Impairment in Alzheimer’s Disease. Front. Cell. Neurosci. 2015, 9, 142972. [Google Scholar] [CrossRef] [PubMed]
- Brothers, H.M.; Gosztyla, M.L.; Robinson, S.R. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 118. [Google Scholar] [CrossRef]
- Azargoonjahromi, A. The Duality of Amyloid-β: Its Role in Normal and Alzheimer’s Disease States. Mol. Brain 2024, 17, 44. [Google Scholar] [CrossRef]
- Cai, W.; Li, L.; Sang, S.; Pan, X.; Zhong, C. Physiological Roles of β-Amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci. Bull. 2023, 39, 1289–1308. [Google Scholar] [CrossRef]
- Puzzo, D.; Privitera, L.; Fa’, M.; Staniszewski, A.; Hashimoto, G.; Aziz, F.; Sakurai, M.; Ribe, E.M.; Troy, C.M.; Mercken, M.; et al. Endogenous Amyloid-β Is Necessary for Hippocampal Synaptic Plasticity and Memory. Ann. Neurol. 2011, 69, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Singh, N.; Yao, A.Y.; Zhou, J.; He, W.; Hu, X.; Yan, R. BACE1 Controls Synaptic Function through Modulating Release of Synaptic Vesicles. Mol. Psychiatry 2021, 26, 6394–6410. [Google Scholar] [CrossRef]
- Wang, H.; Song, L.; Laird, F.; Wong, P.C.; Lee, H.-K. BACE1 Knock-Outs Display Deficits in Activity-Dependent Potentiation of Synaptic Transmission at Mossy Fiber to CA3 Synapses in the Hippocampus. J. Neurosci. 2008, 28, 8677–8681. [Google Scholar] [CrossRef]
- Wang, H.; Song, L.; Lee, A.; Laird, F.; Wong, P.C.; Lee, H.-K. Mossy Fiber Long-Term Potentiation Deficits in BACE1 Knock-Outs Can Be Rescued by Activation of A7 Nicotinic Acetylcholine Receptors. J. Neurosci. 2010, 30, 13808–13813. [Google Scholar] [CrossRef]
- Garcia-Osta, A.; Alberini, C.M. Amyloid Beta Mediates Memory Formation. Learn. Mem. 2009, 16, 267–272. [Google Scholar] [CrossRef]
- Puzzo, D.; Privitera, L.; Leznik, E.; Fà, M.; Staniszewski, A.; Palmeri, A.; Arancio, O. Picomolar Amyloid-Beta Positively Modulates Synaptic Plasticity and Memory in Hippocampus. J. Neurosci. 2008, 28, 14537–14545. [Google Scholar] [CrossRef] [PubMed]
- Gulisano, W.; Melone, M.; Ripoli, C.; Tropea, M.R.; Li Puma, D.D.; Giunta, S.; Cocco, S.; Marcotulli, D.; Origlia, N.; Palmeri, A.; et al. Neuromodulatory Action of Picomolar Extracellular Aβ42 Oligomers on Presynaptic and Postsynaptic Mechanisms Underlying Synaptic Function and Memory. J. Neurosci. 2019, 39, 5986–6000. [Google Scholar] [CrossRef]
- Gulisano, W.; Melone, M.; Li Puma, D.D.; Tropea, M.R.; Palmeri, A.; Arancio, O.; Grassi, C.; Conti, F.; Puzzo, D. The Effect of Amyloid-β Peptide on Synaptic Plasticity and Memory Is Influenced by Different Isoforms, Concentrations, and Aggregation Status. Neurobiol. Aging 2018, 71, 51–60. [Google Scholar] [CrossRef]
- Morley, J.E.; Farr, S.A. Hormesis and Amyloid-β Protein: Physiology or Pathology? J. Alzheimers Dis. 2012, 29, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Puzzo, D.; Privitera, L.; Palmeri, A. Hormetic Effect of Amyloid-β Peptide in Synaptic Plasticity and Memory. Neurobiol. Aging 2012, 33, 1484.e15–1484.e24. [Google Scholar] [CrossRef] [PubMed]
- Karisetty, B.C.; Bhatnagar, A.; Armour, E.M.; Beaver, M.; Zhang, H.; Elefant, F. Amyloid-β Peptide Impact on Synaptic Function and Neuroepigenetic Gene Control Reveal New Therapeutic Strategies for Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13, 577622. [Google Scholar] [CrossRef]
- Smith, L.M.; Strittmatter, S.M. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity. Cold Spring Harb. Perspect. Med. 2017, 7, a024075. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lee, D.H.S.; D’Andrea, M.R.; Peterson, P.A.; Shank, R.P.; Reitz, A.B. β-Amyloid1-42 Binds to A7 Nicotinic Acetylcholine Receptor with High Affinity. Implications for Alzheimer’s Disease Pathology. J. Biol. Chem. 2000, 275, 5626–5632. [Google Scholar] [CrossRef]
- Roberts, J.P.; Stokoe, S.A.; Sathler, M.F.; Nichols, R.A.; Kim, S. Selective Coactivation of A7-and A4β2-Nicotinic Acetylcholine Receptors Reverses Beta-Amyloid-Induced Synaptic Dysfunction. J. Biol. Chem. 2021, 296, 100402. [Google Scholar] [CrossRef]
- Søderman, A.; Thomsen, M.S.; Hansen, H.H.; Nielsen, E.; Jensen, M.S.; West, M.J.; Mikkelsen, J.D. The Nicotinic α7 Acetylcholine Receptor Agonist Ssr180711 Is Unable to Activate Limbic Neurons in Mice Overexpressing Human Amyloid-Beta1-42. Brain Res. 2008, 1227, 240–247. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lee, D.H.S.; Davis, C.B.; Shank, R.P. Amyloid Peptide Aβ1-42 Binds Selectively and with Picomolar Affinity to A7 Nicotinic Acetylcholine Receptors. J. Neurochem. 2000, 75, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Cecon, E.; Dam, J.; Luka, M.; Gautier, C.; Chollet, A.M.; Delagrange, P.; Danober, L.; Jockers, R. Quantitative Assessment of Oligomeric Amyloid β Peptide Binding to A7 Nicotinic Receptor. Br. J. Pharmacol. 2019, 176, 3475–3488. [Google Scholar] [CrossRef]
- Espinoza-Fonseca, L.M. Molecular Docking of Four β-Amyloid 1-42 Fragments on the A7 Nicotinic Receptor: Delineating the Binding Site of the Aβ Peptides. Biochem. Biophys. Res. Commun. 2004, 323, 1191–1196. [Google Scholar] [CrossRef]
- Espinoza-Fonseca, L.M. Base Docking Model of the Homomeric A7 Nicotinic Receptor-β- Amyloid1-42 Complex. Biochem. Biophys. Res. Commun. 2004, 320, 587–591. [Google Scholar] [CrossRef]
- Tong, M.; Arora, K.; White, M.M.; Nichols, R.A. Role of Key Aromatic Residues in the Ligand-Binding Domain of A7 Nicotinic Receptors in the Agonist Action of β-Amyloid. J. Biol. Chem. 2011, 286, 34373–34381. [Google Scholar] [CrossRef] [PubMed]
- Maatuk, N.; Samson, A.O. Modeling the Binding Mechanism of Alzheimer’s Aβ1–42 to Nicotinic Acetylcholine Receptors Based on Similarity with Snake α-Neurotoxins. Neurotoxicology 2013, 34, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Ruttenberg, S.M.; Nowick, J.S. A Turn for the Worse: Aβ β-Hairpins in Alzheimer’s Disease. Bioorg. Med. Chem. 2024, 105, 117715. [Google Scholar] [CrossRef]
- De Fiebre, N.C.; De Fiebre, C.M. A7 Nicotinic Acetylcholine Receptor Knockout Selectively Enhances Ethanol-, but Not β-Amyloid-Induced Neurotoxicity. Neurosci. Lett. 2004, 373, 42–47. [Google Scholar] [CrossRef]
- Barykin, E.P.; Garifulina, A.I.; Kruykova, E.V.; Spirova, E.N.; Anashkina, A.A.; Adzhubei, A.A.; Shelukhina, I.V.; Kasheverov, I.E.; Mitkevich, V.A.; Kozin, S.A.; et al. Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the A7 Nicotinic Receptor and Promotes Neurotoxicity. Cells 2019, 8, 771. [Google Scholar] [CrossRef]
- Small, D.H.; Maksel, D.; Kerr, M.L.; Ng, J.; Hou, X.; Chu, C.; Mehrani, H.; Unabia, S.; Azari, M.F.; Loiacono, R.; et al. The β-Amyloid Protein of Alzheimer’s Disease Binds to Membrane Lipids but Does Not Bind to the A7 Nicotinic Acetylcholine Receptor. J. Neurochem. 2007, 101, 1527–1538. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, Z.; Zhao, W.; Yang, J. Interactions between Amyloid β Peptide and Lipid Membranes. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Campos-Peña, V.; Pichardo-Rojas, P.; Sánchez-Barbosa, T.; Ortíz-Islas, E.; Rodríguez-Pérez, C.E.; Montes, P.; Ramos-Palacios, G.; Silva-Adaya, D.; Valencia-Quintana, R.; Cerna-Cortes, J.F.; et al. Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12092. [Google Scholar] [CrossRef]
- Ananchenko, A.; Hussein, T.O.K.; Mody, D.; Thompson, M.J.; Baenziger, J.E. Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules 2022, 12, 814. [Google Scholar] [CrossRef]
- Khan, G.M.; Tong, M.; Jhun, M.; Arora, K.; Nichols, R.A. β-Amyloid Activates Presynaptic A7 Nicotinic Acetylcholine Receptors Reconstituted into a Model Nerve Cell System: Involvement of Lipid Rafts. Eur. J. Neurosci. 2010, 31, 788–796. [Google Scholar] [CrossRef]
- Smith, L.M.; Kostylev, M.A.; Lee, S.; Strittmatter, S.M. Systematic and Standardized Comparison of Reported Amyloid-β Receptors for Sufficiency, Affinity, and Alzheimer’s Disease Relevance. J. Biol. Chem. 2019, 294, 6042–6053. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Matta, J.A.; Lord, B.; Harrington, A.W.; Sutton, S.W.; Davini, W.B.; Bredt, D.S. Brain A7 Nicotinic Acetylcholine Receptor Assembly Requires NACHO. Neuron 2016, 89, 948–955. [Google Scholar] [CrossRef]
- Kass, B.; Schemmert, S.; Zafiu, C.; Pils, M.; Bannach, O.; Kutzsche, J.; Bujnicki, T.; Willbold, D. Aβ Oligomer Concentration in Mouse and Human Brain and Its Drug-Induced Reduction Ex Vivo. Cell Rep. Med. 2022, 3, 100630. [Google Scholar] [CrossRef]
- Raskatov, J.A. What Is the “Relevant” Amyloid β 42 Concentration? Chembiochem 2019, 20, 1725. [Google Scholar] [CrossRef] [PubMed]
- Dineley, K.T.; Bell, K.A.; Bui, D.; Sweatt, J.D. Beta-Amyloid Peptide Activates α7 Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes. J. Biol. Chem. 2002, 277, 25056–25061. [Google Scholar] [CrossRef]
- Grassi, F.; Palma, E.; Tonini, R.; Amici, M.; Ballivet, M.; Eusebi, F. Amyloid Beta(1-42) Peptide Alters the Gating of Human and Mouse α-Bungarotoxin-Sensitive Nicotinic Receptors. J. Physiol. 2003, 547, 147–157. [Google Scholar] [CrossRef]
- Pym, L.; Kemp, M.; Raymond-Delpech, V.; Buckingham, S.; Boyd, C.A.R.; Sattelle, D. Subtype-Specific Actions of Beta-Amyloid Peptides on Recombinant Human Neuronal Nicotinic Acetylcholine Receptors (α7, α4β2, α 3β4) Expressed in Xenopus Laevis Oocytes. Br. J. Pharmacol. 2005, 146, 964–971. [Google Scholar] [CrossRef]
- Spencer, J.P.; Weil, A.; Hill, K.; Hussain, I.; Richardson, J.C.; Cusdin, F.S.; Chen, Y.H.; Randall, A.D. Transgenic Mice Over-Expressing Human Beta-Amyloid Have Functional Nicotinic α7 Receptors. Neuroscience 2006, 137, 795–805. [Google Scholar] [CrossRef]
- Liu, Q.S.; Kawai, H.; Berg, D.K. Beta-Amyloid Peptide Blocks the Response of α7-Containing Nicotinic Receptors on Hippocampal Neurons. Proc. Natl. Acad. Sci. USA 2001, 98, 4734–4739. [Google Scholar] [CrossRef] [PubMed]
- Pettit, D.L.; Shao, Z.; Yakel, J.L. Beta-Amyloid(1-42) Peptide Directly Modulates Nicotinic Receptors in the Rat Hippocampal Slice. J. Neurosci. 2001, 21, RC120. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, E.L.M.; Chattopadhyay, A.; McNamee, M.G. Desensitization of the Nicotinic Acetylcholine Receptor: Molecular Mechanisms and Effect of Modulators. Cell. Mol. Neurobiol. 1989, 9, 141–178. [Google Scholar] [CrossRef] [PubMed]
- Noviello, C.M.; Gharpure, A.; Mukhtasimova, N.; Cabuco, R.; Baxter, L.; Borek, D.; Sine, S.M.; Hibbs, R.E. Structure and Gating Mechanism of the A7 Nicotinic Acetylcholine Receptor. Cell 2021, 184, 2121–2134.e13. [Google Scholar] [CrossRef]
- Lasala, M.; Fabiani, C.; Corradi, J.; Antollini, S.; Bouzat, C. Molecular Modulation of Human A7 Nicotinic Receptor by Amyloid-β Peptides. Front. Cell. Neurosci. 2019, 13, 436947. [Google Scholar] [CrossRef]
- Mehta, T.K.; Dougherty, J.J.; Wu, J.; Choi, C.H.; Khan, G.M.; Nichols, R.A. Defining Pre-Synaptic Nicotinic Receptors Regulated by Beta Amyloid in Mouse Cortex and Hippocampus with Receptor Null Mutants. J. Neurochem. 2009, 109, 1452–1458. [Google Scholar] [CrossRef]
- Dougherty, J.J.; Wu, J.; Nichols, R.A. Beta-Amyloid Regulation of Presynaptic Nicotinic Receptors in Rat Hippocampus and Neocortex. J. Neurosci. 2003, 23, 6740–6747. [Google Scholar] [CrossRef]
- Lazarevic, V.; Fieńko, S.; Andres-Alonso, M.; Anni, D.; Ivanova, D.; Montenegro-Venegas, C.; Gundelfinger, E.D.; Cousin, M.A.; Fejtova, A. Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via α7 Acetylcholine Receptor and CDK5/Calcineurin Signaling. Front. Mol. Neurosci. 2017, 10, 269667. [Google Scholar] [CrossRef]
- Hascup, K.N.; Hascup, E.R. Soluble Amyloid-Β42 Stimulates Glutamate Release through Activation of the A7 Nicotinic Acetylcholine Receptor. J. Alzheimer’s Dis. 2016, 53, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, C.; Antollini, S.S. Alzheimer’s Disease as a Membrane Disorder: Spatial Cross-Talk among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front. Cell. Neurosci. 2019, 13, 454393. [Google Scholar] [CrossRef]
- Sperling, R.; Mormino, E.; Johnson, K. The Evolution of Preclinical Alzheimer’s Disease: Implications for Prevention Trials. Neuron 2014, 84, 608–622. [Google Scholar] [CrossRef]
- Busche, M.A.; Chen, X.; Henning, H.A.; Reichwald, J.; Staufenbiel, M.; Sakmann, B.; Konnerth, A. Critical Role of Soluble Amyloid-β for Early Hippocampal Hyperactivity in a Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2012, 109, 8740–8745. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, K.; Li, N.; Wang, X.; Xiao, X.; Li, L.; Li, L.; He, Y.; Zhang, J.; Wo, J.; et al. Reversible GABAergic Dysfunction Involved in Hippocampal Hyperactivity Predicts Early-Stage Alzheimer Disease in a Mouse Model. Alzheimers Res. Ther. 2021, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Loghinov, I.; Ravindranath, V.; Barth, A.L. Early Hippocampal Hyperexcitability and Synaptic Reorganization in Mouse Models of Amyloidosis. Iscience 2024, 27, 110629. [Google Scholar] [CrossRef]
- Zott, B.; Simon, M.M.; Hong, W.; Unger, F.; Chen-Engerer, H.J.; Frosch, M.P.; Sakmann, B.; Walsh, D.M.; Konnerth, A. A Vicious Cycle of β Amyloid−dependent Neuronal Hyperactivation. Science 2019, 365, 559–565. [Google Scholar] [CrossRef]
- Toniolo, S.; Sen, A.; Husain, M. Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 9138. [Google Scholar] [CrossRef]
- Ziyatdinova, S.; Rönnbäck, A.; Gurevicius, K.; Miszczuk, D.; Graff, C.; Winblad, B.; Pitkänen, A.; Tanila, H. Increased Epileptiform EEG Activity and Decreased Seizure Threshold in Arctic APP Transgenic Mouse Model of Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 817–830. [Google Scholar] [CrossRef]
- Reyes-Marin, K.E.; Nuñez, A. Seizure Susceptibility in the APP/PS1 Mouse Model of Alzheimer’s Disease and Relationship with Amyloid β Plaques. Brain Res. 2017, 1677, 93–100. [Google Scholar] [CrossRef]
- Vossel, K.A.; Tartaglia, M.C.; Nygaard, H.B.; Zeman, A.Z.; Miller, B.L. Epileptic Activity in Alzheimer’s Disease: Causes and Clinical Relevance. Lancet Neurol. 2017, 16, 311–322. [Google Scholar] [CrossRef]
- Palop, J.J.; Chin, J.; Roberson, E.D.; Wang, J.; Thwin, M.T.; Bien-Ly, N.; Yoo, J.; Ho, K.O.; Yu, G.Q.; Kreitzer, A.; et al. Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer’s Disease. Neuron 2007, 55, 697–711. [Google Scholar] [CrossRef]
- Minkeviciene, R.; Rheims, S.; Dobszay, M.B.; Zilberter, M.; Hartikainen, J.; Fülöp, L.; Penke, B.; Zilberter, Y.; Harkany, T.; Pitkänen, A.; et al. Amyloid Beta-Induced Neuronal Hyperexcitability Triggers Progressive Epilepsy. J. Neurosci. 2009, 29, 3453–3462. [Google Scholar] [CrossRef]
- Westmark, C.J.; Westmark, P.R.; Beard, A.M.; Hildebrandt, S.M.; Malter, J.S. Seizure Susceptibility and Mortality in Mice That Over-Express Amyloid Precursor Protein. Int. J. Clin. Exp. Pathol. 2008, 1, 157. [Google Scholar] [PubMed]
- O’Brien, J.L.; O’Keefe, K.M.; Laviolette, P.S.; Deluca, A.N.; Blacker, D.; Dickerson, B.C.; Sperling, R.A. Longitudinal FMRI in Elderly Reveals Loss of Hippocampal Activation with Clinical Decline. Neurology 2010, 74, 1969–1976. [Google Scholar] [CrossRef]
- Targa Dias Anastacio, H.; Matosin, N.; Ooi, L. Neuronal Hyperexcitability in Alzheimer’s Disease: What Are the Drivers behind This Aberrant Phenotype? Transl. Psychiatry 2022, 12, 257. [Google Scholar] [CrossRef] [PubMed]
- Halff, A.W.; Gómez-Varela, D.; John, D.; Berg, D.K. A Novel Mechanism for Nicotinic Potentiation of Glutamatergic Synapses. J. Neurosci. 2014, 34, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, I.; Gu, Z.; Yakel, J.L.; Gutkin, B.S. Recurring Cholinergic Inputs Induce Local Hippocampal Plasticity through Feedforward Disinhibition. eneuro 2022, 9, 0389-21. [Google Scholar] [CrossRef]
- Wanaverbecq, N.; Semyanov, A.; Pavlov, I.; Walker, M.C.; Kullmann, D.M. Cholinergic Axons Modulate GABAergic Signaling among Hippocampal Interneurons via Postsynaptic A7 Nicotinic Receptors. J. Neurosci. 2007, 27, 5683–5693. [Google Scholar] [CrossRef]
- Leão, R.N.; Mikulovic, S.; Leão, K.E.; Munguba, H.; Gezelius, H.; Enjin, A.; Patra, K.; Eriksson, A.; Loew, L.M.; Tort, A.B.L.; et al. OLM Interneurons Differentially Modulate CA3 and Entorhinal Inputs to Hippocampal CA1 Neurons. Nat. Neurosci. 2012, 15, 1524–1530. [Google Scholar] [CrossRef]
- Kalappa, B.I.; Gusev, A.G.; Uteshev, V.V. Activation of Functional A7-Containing NAChRs in Hippocampal CA1 Pyramidal Neurons by Physiological Levels of Choline in the Presence of PNU-120596. PLoS ONE 2010, 5, e13964. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, D.G.; Ye, X.M. Nicotinic Acetylcholine Receptor A7 Subunit Is an Essential Regulator of Seizure Susceptibility. Front. Neurol. 2021, 12, 656752. [Google Scholar] [CrossRef]
- Sun, J.L.; Stokoe, S.A.; Roberts, J.P.; Sathler, M.F.; Nip, K.A.; Shou, J.; Ko, K.; Tsunoda, S.; Kim, S. Co-Activation of Selective Nicotinic Acetylcholine Receptors Is Required to Reverse Beta Amyloid–Induced Ca2+ Hyperexcitation. Neurobiol. Aging 2019, 84, 166–177. [Google Scholar] [CrossRef]
- Alkondon, M.; Albuquerque, E.X. Nicotinic Acetylcholine Receptor A7 and A4β2 Subtypes Differentially Control GABAergic Input to CA1 Neurons in Rat Hippocampus. J. Neurophysiol. 2001, 86, 3043–3055. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.M.; Radcliffe, K.A.; Chen, D.; Patrick, J.W.; Dani, J.A. Distributions of Nicotinic Acetylcholine Receptor A7 and Β2 Subunits on Cultured Hippocampal Neurons. Neuroscience 1999, 88, 755–764. [Google Scholar] [CrossRef]
- Gray, R.; Rajan, A.S.; Radcliffe, K.A.; Yakehiro, M.; Dani, J.A. Hippocampal Synaptic Transmission Enhanced by Low Concentrations of Nicotine. Nature 1996, 383, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Wirths, O.; Zampar, S. Neuron Loss in Alzheimer’s Disease: Translation in Transgenic Mouse Models. Int. J. Mol. Sci. 2020, 21, 8144. [Google Scholar] [CrossRef]
- Hernández-Frausto, M.; Bilash, O.M.; Masurkar, A.V.; Basu, J. Local and Long-Range GABAergic Circuits in Hippocampal Area CA1 and Their Link to Alzheimer’s Disease. Front. Neural Circuits 2023, 17, 1223891. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, X.; Lukas, R.J.; St. John, P.A.; Wu, J. A Novel Nicotinic Mechanism Underlies β-Amyloid-Induced Neuronal Hyperexcitation. J. Neurosci. 2013, 33, 7253–7263. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, X.; Emadi, S.; Sierks, M.R.; Wu, J. A Novel Nicotinic Mechanism Underlies β-Amyloid-Induced Neurotoxicity. Neuropharmacology 2015, 97, 457–463. [Google Scholar] [CrossRef]
- Jin, Y.; Tsuchiya, A.; Kanno, T.; Nishizaki, T. Amyloid-β Peptide Increases Cell Surface Localization of A7 ACh Receptor to Protect Neurons from Amyloid β-Induced Damage. Biochem. Biophys. Res. Commun. 2015, 468, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, C.Z.; Barrall, E.A.; Rissman, R.A.; Joiner, W.J. Unbalanced Regulation of A7 NAChRs by Ly6h and NACHO Contributes to Neurotoxicity in Alzheimer’s Disease. J. Neurosci. 2021, 41, 8461–8474. [Google Scholar] [CrossRef]
- Hector, A.; Brouillette, J. Hyperactivity Induced by Soluble Amyloid-β Oligomers in the Early Stages of Alzheimer’s Disease. Front. Mol. Neurosci. 2021, 13, 600084. [Google Scholar] [CrossRef]
- Hahm, E.T.; Nagaraja, R.Y.; Waro, G.; Tsunoda, S. Cholinergic Homeostatic Synaptic Plasticity Drives the Progression of Aβ-Induced Changes in Neural Activity. Cell Rep. 2018, 24, 342–354. [Google Scholar] [CrossRef]
- Chen, L.; Yamada, K.; Nabeshima, T.; Sokabe, M. α7 Nicotinic Acetylcholine Receptor as a Target to Rescue Deficit in Hippocampal LTP Induction in Beta-Amyloid Infused Rats. Neuropharmacology 2006, 50, 254–268. [Google Scholar] [CrossRef]
- Kroker, K.S.; Moreth, J.; Kussmaul, L.; Rast, G.; Rosenbrock, H. Restoring Long-Term Potentiation Impaired by Amyloid-Beta Oligomers: Comparison of an Acetylcholinesterase Inhibitior and Selective Neuronal Nicotinic Receptor Agonists. Brain Res. Bull. 2013, 96, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Ondrejcak, T.; Wang, Q.; Kew, J.N.C.; Virley, D.J.; Upton, N.; Anwyl, R.; Rowan, M.J. Activation of A7 Nicotinic Acetylcholine Receptors Persistently Enhances Hippocampal Synaptic Transmission and Prevents Aß-Mediated Inhibition of LTP in the Rat Hippocampus. Eur. J. Pharmacol. 2012, 677, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Wu, M.N.; Wang, X.H.; Yuan, L.; Yang, D.; Qi, J.S. Requirement of A7 Nicotinic Acetylcholine Receptors for Amyloid β Protein-Induced Depression of Hippocampal Long-Term Potentiation in CA1 Region of Rats in Vivo. Synapse 2011, 65, 1136–1143. [Google Scholar] [CrossRef]
- Snyder, E.M.; Nong, Y.; Almeida, C.G.; Paul, S.; Moran, T.; Choi, E.Y.; Nairn, A.C.; Salter, M.W.; Lombroso, P.J.; Gouras, G.K.; et al. Regulation of NMDA Receptor Trafficking by Amyloid-Beta. Nat. Neurosci. 2005, 8, 1051–1058. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.; Hui, Y.; Zhu, C.; Wu, J.; Taylor, D.H.; Ji, J.; Fan, W.; Huang, Z.; Hu, J. Activation of A7 Nicotinic Acetylcholine Receptors Protects Astrocytes against Oxidative Stress-Induced Apoptosis: Implications for Parkinson’s Disease. Neuropharmacology 2015, 91, 87–96. [Google Scholar] [CrossRef]
- Martin, S.E.; De Fiebre, N.E.C.; De Fiebre, C.M. The α7 Nicotinic Acetylcholine Receptor-Selective Antagonist, Methyllycaconitine, Partially Protects against Beta-Amyloid1-42 Toxicity in Primary Neuron-Enriched Cultures. Brain Res. 2004, 1022, 254–256. [Google Scholar] [CrossRef]
- Lukas, R.J.; Lucero, L.; Buisson, B.; Galzi, J.L.; Puchacz, E.; Fryer, J.D.; Changeux, J.P.; Bertrand, D. Neurotoxicity of Channel Mutations in Heterologously Expressed A7-Nicotinic Acetylcholine Receptors. Eur. J. Neurosci. 2001, 13, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Álvarez, M.; Moreno-Ortega, A.J.; Navarro, E.; Fernández-Morales, J.C.; Egea, J.; Lõpez, M.G.; Cano-Abad, M.F. Positive Allosteric Modulation of α-7 Nicotinic Receptors Promotes Cell Death by Inducing Ca(2+) Release from the Endoplasmic Reticulum. J. Neurochem. 2015, 133, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.L.; Nordberg, A.; Xiu, J.; Guan, Z.Z. The Consequences of Reducing Expression of the A7 Nicotinic Receptor by RNA Interference and of Stimulating Its Activity with an A7 Agonist in SH-SY5Y Cells Indicate That This Receptor Plays a Neuroprotective Role in Connection with the Pathogenesis of Alzheimer’s Disease. Neurochem. Int. 2007, 51, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.Y.; Huang, W.P.; Liou, H.C.; Fu, W.M. Autophagy Protects Neuron from Aβ-Induced Cytotoxicity. Autophagy 2009, 5, 502–510. [Google Scholar] [CrossRef]
- Bell, M.; Zempel, H. SH-SY5Y-Derived Neurons: A Human Neuronal Model System for Investigating TAU Sorting and Neuronal Subtype-Specific TAU Vulnerability. Rev. Neurosci. 2022, 33, 1–15. [Google Scholar] [CrossRef]
- Xie, D.; Deng, T.; Zhai, Z.; Sun, T.; Xu, Y. The Cellular Model for Alzheimer’s Disease Research: PC12 Cells. Front. Mol. Neurosci. 2023, 15, 1016559. [Google Scholar] [CrossRef]
- Mugayar, A.A.; da Silva Guimarães, G.; de Oliveira, P.H.T.; Miranda, R.L.; dos Santos, A.A. Apoptosis in the Neuroprotective Effect of A7 Nicotinic Receptor in Neurodegenerative Models. J. Neurosci. Res. 2023, 101, 1795–1802. [Google Scholar] [CrossRef]
- Shimohama, S.; Kawamata, J. Roles of Nicotinic Acetylcholine Receptors in the Pathology and Treatment of Alzheimer’s and Parkinson’s Diseases. In Nicotinic Acetylcholine Receptor Signaling in Neuroprotection; Springer: Singapore, 2018; pp. 137–158. [Google Scholar] [CrossRef]
- Akaike, A.; Takada-Takatori, Y.; Kume, T.; Izumi, Y. Mechanisms of Neuroprotective Effects of Nicotine and Acetylcholinesterase Inhibitors: Role of A4 and A7 Receptors in Neuroprotection. J. Mol. Neurosci. 2010, 40, 211–216. [Google Scholar] [CrossRef]
- Besson, M.; Granon, S.; Mameli-Engvall, M.; Cloëz-Tayarani, I.; Maubourguet, N.; Cormier, A.; Cazala, P.; David, V.; Changeux, J.P.; Faure, P. Long-Term Effects of Chronic Nicotine Exposure on Brain Nicotinic Receptors. Proc. Natl. Acad. Sci. USA 2007, 104, 8155–8160. [Google Scholar] [CrossRef]
- Jonnala, R.R.; Buccafusco, J.J. Relationship between the Increased Cell Surface A7 Nicotinic Receptor Expression and Neuroprotection Induced by Several Nicotinic Receptor Agonists. J. Neurosci. Res. 2001, 66, 565–572. [Google Scholar] [CrossRef]
- Zhang, Y.; McLaughlin, R.; Goodyer, C.; LeBlanc, A. Selective Cytotoxicity of Intracellular Amyloid β Peptide1-42 through P53 and Bax in Cultured Primary Human Neurons. J. Cell Biol. 2002, 156, 519–529. [Google Scholar] [CrossRef]
- Bayer, T.A.; Wirths, O. Intracellular Accumulation of Amyloid-Beta—A Predictor for Synaptic Dysfunction and Neuron Loss in Alzheimer’s Disease. Front. Aging Neurosci. 2010, 2, 1359. [Google Scholar] [CrossRef]
- Gouras, G.K.; Tampellini, D.; Takahashi, R.H.; Capetillo-Zarate, E. Intraneuronal Beta-Amyloid Accumulation and Synapse Pathology in Alzheimer’s Disease. Acta Neuropathol. 2010, 119, 523–541. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Posse De Chaves, E. Aβ Internalization by Neurons and Glia. Int. J. Alzheimers Dis. 2011, 2011, 127984. [Google Scholar] [CrossRef] [PubMed]
- Gallego Villarejo, L.; Bachmann, L.; Marks, D.; Brachthäuser, M.; Geidies, A.; Müller, T. Role of Intracellular Amyloid β as Pathway Modulator, Biomarker, and Therapy Target. Int. J. Mol. Sci. 2022, 23, 4656. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.J.; Knauer, M.; Burdick, D.A.; Glabe, C. Intracellular A Beta 1-42 Aggregates Stimulate the Accumulation of Stable, Insoluble Amyloidogenic Fragments of the Amyloid Precursor Protein in Transfected Cells. J. Biol. Chem. 1995, 270, 14786–14792. [Google Scholar] [CrossRef]
- Bahr, B.A.; Hoffman, K.B.; Yang, A.J.; Hess, U.S.; Glabe, C.G.; Lynch, G. Amyloid β Protein Is Internalized Selectively by Hippocampal Field CA1 and Causes Neurons to Accumulate Amyloidogenic Carboxyterminal Fragments of the Amyloid Precursor Protein. J. Comp. Neurol. 1998, 397, 139–147. [Google Scholar] [CrossRef]
- Takahashi, R.H.; Nagao, T.; Gouras, G.K. Plaque Formation and the Intraneuronal Accumulation of β-Amyloid in Alzheimer’s Disease. Pathol. Int. 2017, 67, 185–193. [Google Scholar] [CrossRef]
- Billings, L.M.; Oddo, S.; Green, K.N.; McGaugh, J.L.; LaFerla, F.M. Intraneuronal Aβ Causes the Onset of Early Alzheimer’s Disease-Related Cognitive Deficits in Transgenic Mice. Neuron 2005, 45, 675–688. [Google Scholar] [CrossRef]
- Ochiishi, T.; Kaku, M.; Kiyosue, K.; Doi, M.; Urabe, T.; Hattori, N.; Shimura, H.; Ebihara, T. New Alzheimer’s Disease Model Mouse Specialized for Analyzing the Function and Toxicity of Intraneuronal Amyloid β Oligomers. Sci. Rep. 2019, 9, 17368. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.N.; Abela, A.R.; Do Carmo, S.; Allard, S.; Marks, A.R.; Welikovitch, L.A.; Ducatenzeiler, A.; Chudasama, Y.; Cuello, A.C. Intraneuronal Amyloid Beta Accumulation Disrupts Hippocampal CRTC1-Dependent Gene Expression and Cognitive Function in a Rat Model of Alzheimer Disease. Cereb. Cortex 2017, 27, 1501–1511. [Google Scholar] [CrossRef]
- Welikovitch, L.A.; Do Carmo, S.; Maglóczky, Z.; Malcolm, J.C.; Loke, J.; Klein, W.L.; Freund, T.; Claudio Cuello, A. Early Intraneuronal Amyloid Triggers Neuron-Derived Inflammatory Signaling in APP Transgenic Rats and Human Brain. Proc. Natl. Acad. Sci. USA 2020, 117, 6844–6854. [Google Scholar] [CrossRef]
- Nagele, R.G.; D’Andrea, M.R.; Anderson, W.J.; Wang, H.Y. Intracellular Accumulation of β-Amyloid1-42 in Neurons Is Facilitated by the A7 Nicotinic Acetylcholine Receptor in Alzheimer’s Disease. Neuroscience 2002, 110, 199–211. [Google Scholar] [CrossRef]
- Yang, W.N.; Ma, K.G.; Chen, X.L.; Shi, L.L.; Bu, G.; Hu, X.D.; Han, H.; Liu, Y.; Qian, Y.H. Mitogen-Activated Protein Kinase Signaling Pathways Are Involved in Regulating A7 Nicotinic Acetylcholine Receptor-Mediated Amyloid-β Uptake in SH-SY5Y Cells. Neuroscience 2014, 278, 276–290. [Google Scholar] [CrossRef]
- Saavedra, L.; Mohamed, A.; Ma, V.; Kar, S.; De Chaves, E.P. Internalization of β-Amyloid Peptide by Primary Neurons in the Absence of Apolipoprotein E. J. Biol. Chem. 2007, 282, 35722–35732. [Google Scholar] [CrossRef] [PubMed]
- Gylys, K.H.; Fein, J.A.; Tan, A.M.; Cole, G.M. Apolipoprotein E Enhances Uptake of Soluble but Not Aggregated Amyloid-Beta Protein into Synaptic Terminals. J. Neurochem. 2003, 84, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Gay, E.A.; Bienstock, R.J.; Lamb, P.W.; Yakel, J.L. Structural Determinates for Apolipoprotein E-Derived Peptide Interaction with the α7 Nicotinic Acetylcholine Receptor. Mol. Pharmacol. 2007, 72, 838–849. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.; Nagele, R. Targeting the α7 Nicotinic Acetylcholine Receptor to Reduce Amyloid Accumulation in Alzheimer’s Disease Pyramidal Neurons. Curr. Pharm. Des. 2006, 12, 677–684. [Google Scholar] [CrossRef]
- Medeiros, R.; Baglietto-Vargas, D.; Laferla, F.M. The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neurosci. Ther. 2010, 17, 514. [Google Scholar] [CrossRef]
- Roda, A.; Serra-Mir, G.; Montoliu-Gaya, L.; Tiessler, L.; Villegas, S. Amyloid-Beta Peptide and Tau Protein Crosstalk in Alzheimer’s Disease. Neural Regen. Res. 2022, 17, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Li, W.; Benedetti, N.J.; Lee, D.H.S. α7 Nicotinic Acetylcholine Receptors Mediate Beta-Amyloid Peptide-Induced Tau Protein Phosphorylation. J. Biol. Chem. 2003, 278, 31547–31553. [Google Scholar] [CrossRef]
- Hu, M.; Waring, J.F.; Gopalakrishnan, M.; Li, J. Role of GSK-3β Activation and A7 NAChRs in Aβ1–42-Induced Tau Phosphorylation in PC12 Cells. J. Neurochem. 2008, 106, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.A.; O’Riordan, K.J.; Sweatt, J.D.; Dineley, K.T. MAPK Recruitment by β-Amyloid in Organotypic Hippocampal Slice Cultures Depends on Physical State and Exposure Time. J. Neurochem. 2004, 91, 349–361. [Google Scholar] [CrossRef]
- Young, K.F.; Pasternak, S.H.; Rylett, R.J. Oligomeric Aggregates of Amyloid β Peptide 1–42 Activate ERK/MAPK in SH-SY5Y Cells via the A7 Nicotinic Receptor. Neurochem. Int. 2009, 55, 796–801. [Google Scholar] [CrossRef]
- Khezri, M.R.; Yousefi, K.; Esmaeili, A.; Ghasemnejad-Berenji, M. The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer’s Disease: An Overview and Update on New Developments. Cell. Mol. Neurobiol. 2023, 43, 177–191. [Google Scholar] [CrossRef]
- Lauretti, E.; Dincer, O.; Praticò, D. Glycogen Synthase Kinase-3 Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118664. [Google Scholar] [CrossRef] [PubMed]
- Azam, L.; Winzer-Serhan, U.; Leslie, F.M. Co-Expression of A7 and Β2 Nicotinic Acetylcholine Receptor Subunit MRNAs within Rat Brain Cholinergic Neurons. Neuroscience 2003, 119, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Khiroug, S.S.; Harkness, P.C.; Lamb, P.W.; Sudweeks, S.N.; Khiroug, L.; Millar, N.S.; Yakel, J.L. Rat Nicotinic ACh Receptor α7 and β2 Subunits Co-Assemble to Form Functional Heteromeric Nicotinic Receptor Channels. J. Physiol. 2002, 540, 425–434. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Y.; Xue, F.; Simard, A.; DeChon, J.; Li, G.; Zhang, J.; Lucero, L.; Wang, M.; Sierks, M.; et al. A Novel Nicotinic Acetylcholine Receptor Subtype in Basal Forebrain Cholinergic Neurons with High Sensitivity to Amyloid Peptides. J. Neurosci. 2009, 29, 918–929. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Y.; Shen, J.; Steffensen, S.; Wu, J. Functional A7β2 Nicotinic Acetylcholine Receptors Expressed in Hippocampal Interneurons Exhibit High Sensitivity to Pathological Level of Amyloid β Peptides. BMC Neurosci. 2012, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Moretti, M.; Zoli, M.; George, A.A.; Lukas, R.J.; Pistillo, F.; Maskos, U.; Whiteaker, P.; Gotti, C. The Novel A7β2-Nicotinic Acetylcholine Receptor Subtype Is Expressed in Mouse and Human Basal Forebrain: Biochemical and Pharmacological Characterization. Mol. Pharmacol. 2014, 86, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.S.; Zwart, R.; Ursu, D.; Jensen, M.M.; Pinborg, L.H.; Gilmour, G.; Wu, J.; Sher, E.; Mikkelsen, J.D. A7 and Β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes That Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties. PLoS ONE 2015, 10, 0130572. [Google Scholar] [CrossRef]
- George, A.A.; Vieira, J.M.; Xavier-Jackson, C.; Gee, M.T.; Cirrito, J.R.; Bimonte-Nelson, H.A.; Picciotto, M.R.; Lukas, R.J.; Whiteaker, P. Implications of Oligomeric Amyloid-Beta (OAβ42) Signaling through A7β2-Nicotinic Acetylcholine Receptors (NAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline. J. Neurosci. 2021, 41, 555–575. [Google Scholar] [CrossRef]
- George, A.A.; John, S.J.; Lucero, L.M.; Eaton, J.B.; Jaiswal, E.; Christensen, S.B.; Gajewiak, J.; Watkins, M.; Cao, Y.; Olivera, B.M.; et al. Analogs of α-Conotoxin PnIC Selectively Inhibit A7β2- over A7-Only Subtype Nicotinic Acetylcholine Receptors via a Novel Allosteric Mechanism. FASEB J. 2024, 38, e23374. [Google Scholar] [CrossRef]
- Chung, W.S.; Baldwin, K.T.; Allen, N.J. Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harb. Perspect. Biol. 2024, 16, a041352. [Google Scholar] [CrossRef]
- Haydon, P.G.; Nedergaard, M. How Do Astrocytes Participate in Neural Plasticity? Cold Spring Harb. Perspect. Biol. 2014, 7, a020438. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.M.; Liddelow, S.A. Emerging Roles of Astrocytes as Immune Effectors in the Central Nervous System. Trends Immunol 2024, 45, 824–836. [Google Scholar] [CrossRef]
- Vasile, F.; Dossi, E.; Rouach, N. Human Astrocytes: Structure and Functions in the Healthy Brain. Brain Struct. Funct. 2017, 222, 2017–2029. [Google Scholar] [CrossRef]
- Gomez-Arboledas, A.; Davila, J.C.; Sanchez-Mejias, E.; Navarro, V.; Nuñez-Diaz, C.; Sanchez-Varo, R.; Sanchez-Mico, M.V.; Trujillo-Estrada, L.; Fernandez-Valenzuela, J.J.; Vizuete, M.; et al. Phagocytic Clearance of Presynaptic Dystrophies by Reactive Astrocytes in Alzheimer’s Disease. Glia 2018, 66, 637–653. [Google Scholar] [CrossRef]
- Perez-Nievas, B.G.; Serrano-Pozo, A. Deciphering the Astrocyte Reaction in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 360417. [Google Scholar] [CrossRef] [PubMed]
- Price, B.R.; Johnson, L.A.; Norris, C.M. Reactive Astrocytes: The Nexus of Pathological and Clinical Hallmarks of Alzheimer’s Disease. Ageing Res. Rev. 2021, 68, 101335. [Google Scholar] [CrossRef]
- Xiu, J.; Nordberg, A.; Zhang, J.T.; Guan, Z.Z. Expression of Nicotinic Receptors on Primary Cultures of Rat Astrocytes and Up-Regulation of the α7, α4 and Beta2 Subunits in Response to Nanomolar Concentrations of the Beta-Amyloid Peptide(1-42). Neurochem. Int. 2005, 47, 281–290. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Z.; Han, B.; Xiang, X.; Huang, W.; Yao, H. Revisiting Astrocytic Calcium Signaling in the Brain. Fundam. Res. 2024, 4, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.F.; Araque, A. Astrocyte Regulation of Neural Circuit Activity and Network States. Glia 2022, 70, 1455–1466. [Google Scholar] [CrossRef]
- Rangel-Gomez, M.; Alberini, C.M.; Deneen, B.; Drummond, G.T.; Manninen, T.; Sur, M.; Vicentic, A. Neuron–Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J. Neurosci. 2024, 44, e1231242024. [Google Scholar] [CrossRef] [PubMed]
- Papouin, T.; Dunphy, J.M.; Tolman, M.; Dineley, K.T.; Haydon, P.G. Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron 2017, 94, 840–854.e7. [Google Scholar] [CrossRef]
- Takata, N.; Mishima, T.; Hisatsune, C.; Nagai, T.; Ebisui, E.; Mikoshiba, K.; Hirase, H. Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity in Vivo. J. Neurosci. 2011, 31, 18155–18165. [Google Scholar] [CrossRef]
- Navarrete, M.; Perea, G.; de Sevilla, D.F.; Gómez-Gonzalo, M.; Núñez, A.; Martín, E.D.; Araque, A. Astrocytes Mediate in Vivo Cholinergic-Induced Synaptic Plasticity. PLoS Biol. 2012, 10, e1001259. [Google Scholar] [CrossRef]
- Ma, W.; Si, T.; Wang, Z.; Wen, P.; Zhu, Z.; Liu, Q.; Wang, J.; Xu, F.; Li, Q. Astrocytic A4-Containing NAChR Signaling in the Hippocampus Governs the Formation of Temporal Association Memory. Cell Rep. 2023, 42, 112674. [Google Scholar] [CrossRef]
- Araque, A.; Martín, E.D.; Perea, G.; Arellano, J.I.; Buño, W. Synaptically Released Acetylcholine Evokes Ca2+ Elevations in Astrocytes in Hippocampal Slices. J. Neurosci. 2002, 22, 2443–2450. [Google Scholar] [CrossRef]
- Catlin, M.C.; Kavanagh, T.J.; Costa, L.G. Muscarinic Receptor-Induced Calcium Responses in Astroglia. Cytometry 2000, 41, 123–132. [Google Scholar] [CrossRef]
- Oikawa, H.; Nakamichi, N.; Kambe, Y.; Ogura, M.; Yoneda, Y. An Increase in Intracellular Free Calcium Ions by Nicotinic Acetylcholine Receptors in a Single Cultured Rat Cortical Astrocyte. J. Neurosci. Res. 2005, 79, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Patti, L.; Raiteri, L.; Grilli, M.; Zappettini, S.; Bonanno, G.; Marchi, M. Evidence That α7 Nicotinic Receptor Modulates Glutamate Release from Mouse Neocortical Gliosomes. Neurochem. Int. 2007, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Salamone, A.; Mura, E.; Zappettini, S.; Grilli, M.; Olivero, G.; Preda, S.; Govoni, S.; Marchi, M. Inhibitory Effects of Beta-Amyloid on the Nicotinic Receptors Which Stimulate Glutamate Release in Rat Hippocampus: The Glial Contribution. Eur. J. Pharmacol. 2014, 723, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.J.; Bennett, M.L.; Foo, L.C.; Wang, G.X.; Chakraborty, C.; Smith, S.J.; Barres, B.A. Astrocyte Glypicans 4 and 6 Promote Formation of Excitatory Synapses via GluA1 AMPA Receptors. Nature 2012, 486, 410–414. [Google Scholar] [CrossRef]
- Christopherson, K.S.; Ullian, E.M.; Stokes, C.C.A.; Mullowney, C.E.; Hell, J.W.; Agah, A.; Lawler, J.; Mosher, D.F.; Bornstein, P.; Barres, B.A. Thrombospondins Are Astrocyte-Secreted Proteins That Promote CNS Synaptogenesis. Cell 2005, 120, 421–433. [Google Scholar] [CrossRef]
- Chung, W.S.; Allen, N.J.; Eroglu, C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb. Perspect. Biol. 2015, 7, a020370. [Google Scholar] [CrossRef]
- Allen, N.J.; Eroglu, C. Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017, 96, 697–708. [Google Scholar] [CrossRef]
- Oyabu, K.; Takeda, K.; Kawano, H.; Kubota, K.; Watanabe, T.; Harata, N.C.; Katsurabayashi, S.; Iwasaki, K. Presynaptically Silent Synapses Are Modulated by the Density of Surrounding Astrocytes. J. Pharmacol. Sci. 2020, 144, 76–82. [Google Scholar] [CrossRef]
- Wang, X.; Lippi, G.; Carlson, D.M.; Berg, D.K. Activation of A7-Containing Nicotinic Receptors on Astrocytes Triggers AMPA Receptor Recruitment to Glutamatergic Synapses. J. Neurochem. 2013, 127, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Pabst, M.; Braganza, O.; Dannenberg, H.; Hu, W.; Pothmann, L.; Rosen, J.; Mody, I.; van Loo, K.; Deisseroth, K.; Becker, A.J.; et al. Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus. Neuron 2016, 90, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Maurer, S.V.; Williams, C.L. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front. Immunol. 2017, 8, 1489. [Google Scholar] [CrossRef]
- Zhang, K.; Förster, R.; He, W.; Liao, X.; Li, J.; Yang, C.; Qin, H.; Wang, M.; Ding, R.; Li, R.; et al. Fear Learning Induces A7-Nicotinic Acetylcholine Receptor-Mediated Astrocytic Responsiveness That Is Required for Memory Persistence. Nat. Neurosci. 2021, 24, 1686–1698. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Kosuri, P.; Arancio, O. Picomolar Amyloid-β Peptides Enhance Spontaneous Astrocyte Calcium Transients. J. Alzheimers Dis. 2014, 38, 49–62. [Google Scholar] [CrossRef]
- Pirttimaki, T.M.; Codadu, N.K.; Awni, A.; Pratik, P.; Nagel, D.A.; Hill, E.J.; Dineley, K.T.; Parri, H.R. A7 Nicotinic Receptor-Mediated Astrocytic Gliotransmitter Release: Aβ Effects in a Preclinical Alzheimer’s Mouse Model. PLoS ONE 2013, 8, e81828. [Google Scholar] [CrossRef]
- Talantova, M.; Sanz-Blasco, S.; Zhang, X.; Xia, P.; Akhtar, M.W.; Okamoto, S.I.; Dziewczapolski, G.; Nakamura, T.; Cao, G.; Pratt, A.E.; et al. Aβ Induces Astrocytic Glutamate Release, Extrasynaptic NMDA Receptor Activation, and Synaptic Loss. Proc. Natl. Acad. Sci. USA 2013, 110, E2518–E2527. [Google Scholar] [CrossRef]
- Hardingham, G.E.; Bading, H. Synaptic versus Extrasynaptic NMDA Receptor Signalling: Implications for Neurodegenerative Disorders. Nat. Rev. Neurosci. 2010, 11, 682–696. [Google Scholar] [CrossRef]
- Escamilla, S.; Sáez-Valero, J.; Cuchillo-Ibáñez, I. NMDARs in Alzheimer’s Disease: Between Synaptic and Extrasynaptic Membranes. Int. J. Mol. Sci. 2024, 25, 10220. [Google Scholar] [CrossRef]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Wu, J.; Zhu, C.; Hui, Y.; Han, Y.; Huang, Z.; Ellsworth, K.; Fan, W. A7 Nicotinic Acetylcholine Receptor-Mediated Neuroprotection against Dopaminergic Neuron Loss in an MPTP Mouse Model via Inhibition of Astrocyte Activation. J. Neuroinflammation 2012, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Kalashnyk, O.; Lykhmus, O.; Oliinyk, O.; Komisarenko, S.; Skok, M. A7 Nicotinic Acetylcholine Receptor-Specific Antibody Stimulates Interleukin-6 Production in Human Astrocytes through P38-Dependent Pathway. Int. Immunopharmacol. 2014, 23, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; McIntire, J.; Ryan, S.; Dunah, A.; Loring, R. Anti-Inflammatory Effects of Astroglial A7 Nicotinic Acetylcholine Receptors Are Mediated by Inhibition of the NF-ΚB Pathway and Activation of the Nrf2 Pathway. J. Neuroinflammation 2017, 14, 192. [Google Scholar] [CrossRef]
- Revathikumar, P.; Bergqvist, F.; Gopalakrishnan, S.; Korotkova, M.; Jakobsson, P.-J.; Lampa, J.; Le Maître, E. Immunomodulatory Effects of Nicotine on Interleukin 1β Activated Human Astrocytes and the Role of Cyclooxygenase 2 in the Underlying Mechanism. J. Neuroinflammation 2016, 13, 256. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare Mannelli, L.; Tenci, B.; Zanardelli, M.; Failli, P.; Ghelardini, C. A7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity. Neural Plast. 2015, 2015, 396908. [Google Scholar] [CrossRef]
- Abramov, A.Y.; Canevari, L.; Duchen, M.R. Beta-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase. J. Neurosci. 2004, 24, 565–575. [Google Scholar] [CrossRef]
- Abramov, A.Y.; Canevari, L.; Duchen, M.R. Calcium Signals Induced by Amyloid Beta Peptide and Their Consequences in Neurons and Astrocytes in Culture. Biochim. Biophys. Acta 2004, 1742, 81–87. [Google Scholar] [CrossRef]
- González-Reyes, R.E.; Nava-Mesa, M.O.; Vargas-Sánchez, K.; Ariza-Salamanca, D.; Mora-Muñoz, L. Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front. Mol. Neurosci. 2017, 10, 314479. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, N.; Wang, K.W.; Zhang, Z.Y.; Wang, Y. Identification of A7 Nicotinic Acetylcholine Receptor on Hippocampal Astrocytes Cultured in Vitro and Its Role on Inflammatory Mediator Secretion. Neural Regen. Res. 2012, 7, 1709–1714. [Google Scholar] [CrossRef]
- Kamynina, A.V.; Holmström, K.M.; Koroev, D.O.; Volpina, O.M.; Abramov, A.Y. Acetylcholine and Antibodies against the Acetylcholine Receptor Protect Neurons and Astrocytes against Beta-Amyloid Toxicity. Int. J. Biochem. Cell Biol. 2013, 45, 899–907. [Google Scholar] [CrossRef]
- Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and Non-Immune Functions. Immunity 2021, 54, 2194–2208. [Google Scholar] [CrossRef] [PubMed]
- Michell-Robinson, M.A.; Touil, H.; Healy, L.M.; Owen, D.R.; Durafourt, B.A.; Bar-Or, A.; Antel, J.P.; Moore, C.S. Roles of Microglia in Brain Development, Tissue Maintenance and Repair. Brain 2015, 138, 1138–1159. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Wang, L.; Ji, C.F.; Gu, S.F.; Yin, Q.; Zuo, J. The Role of A7nAChR-Mediated Cholinergic Anti-Inflammatory Pathway in Immune Cells. Inflammation 2021, 44, 821–834. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, W.J.; Ulloa, L. The α7 Nicotinic Acetylcholine Receptor as a Pharmacological Target for Inflammation. Br. J. Pharmacol. 2007, 151, 915–929. [Google Scholar] [CrossRef]
- De Simone, R.; Ajmone-Cat, M.A.; Carnevale, D.; Minghetti, L. Activation of α7 Nicotinic Acetylcholine Receptor by Nicotine Selectively Up-Regulates Cyclooxygenase-2 and Prostaglandin E2 in Rat Microglial Cultures. J. Neuroinflammation 2005, 2, 4. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Y.; Bian, H.; Guo, L.; Zhu, H. Activation of the A7 Nicotinic Receptor Promotes Lipopolysaccharide-Induced Conversion of M1 Microglia to M2. Am. J. Transl. Res. 2017, 9, 971. [Google Scholar]
- King, J.R.; Gillevet, T.C.; Kabbani, N. A G Protein-Coupled A7 Nicotinic Receptor Regulates Signaling and TNF-α Release in Microglia. FEBS Open Bio 2017, 7, 1350–1361. [Google Scholar] [CrossRef]
- Morioka, N.; Tokuhara, M.; Nakamura, Y.; Idenoshita, Y.; Harano, S.; Zhang, F.F.; Hisaoka-Nakashima, K.; Nakata, Y. Primary Cultures of Rat Cortical Microglia Treated with Nicotine Increases in the Expression of Excitatory Amino Acid Transporter 1 (GLAST) via the Activation of the A7 Nicotinic Acetylcholine Receptor. Neuroscience 2014, 258, 374–384. [Google Scholar] [CrossRef]
- Morioka, N.; Harano, S.; Tokuhara, M.; Idenoshita, Y.; Zhang, F.F.; Hisaoka-Nakashima, K.; Nakata, Y. Stimulation of A7 Nicotinic Acetylcholine Receptor Regulates Glutamate Transporter GLAST via Basic Fibroblast Growth Factor Production in Cultured Cortical Microglia. Brain Res. 2015, 1625, 111–120. [Google Scholar] [CrossRef]
- Morioka, N.; Hisaoka-Nakashima, K.; Nakata, Y. Regulation by Nicotinic Acetylcholine Receptors of Microglial Glutamate Transporters: Role of Microglia in Neuroprotection. In Nicotinic Acetylcholine Receptor Signaling in Neuroprotection; Springer: Singapore, 2018; pp. 73–82. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, Y.; Li, Q.; Chen, C.; Chen, H.; Song, Y.; Hua, F.; Zhang, Z. Beta-Amyloid Activates NLRP3 Inflammasome via TLR4 in Mouse Microglia. Neurosci. Lett. 2020, 736, 135279. [Google Scholar] [CrossRef] [PubMed]
- Pyo, H.; Jou, I.; Jung, S.; Hong, S.; Joe, E.H. Mitogen-Activated Protein Kinases Activated by Lipopolysaccharide and Beta-Amyloid in Cultured Rat Microglia. Neuroreport 1998, 9, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Bachstetter, A.D.; Xing, B.; de Almeida, L.; Dimayuga, E.R.; Watterson, D.M.; Van Eldik, L.J. Microglial P38α MAPK Is a Key Regulator of Proinflammatory Cytokine Up-Regulation Induced by Toll-like Receptor (TLR) Ligands or Beta-Amyloid (Aβ). J. Neuroinflammation 2011, 8, 79. [Google Scholar] [CrossRef]
- Michelucci, A.; Heurtaux, T.; Grandbarbe, L.; Morga, E.; Heuschling, P. Characterization of the Microglial Phenotype under Specific Pro-Inflammatory and Anti-Inflammatory Conditions: Effects of Oligomeric and Fibrillar Amyloid-β. J. Neuroimmunol. 2009, 210, 3–12. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, X.; Schultzberg, M.; Hjorth, E. Differential Regulation of Resolution in Inflammation Induced by Amyloid-Β42 and Lipopolysaccharides in Human Microglia. J. Alzheimer’s Dis. 2014, 43, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Soo, Y.K.; Hwan, G.L.; Kim, S.U.; Yong, B.L. Activation of Nicotinic Acetylcholine Receptor Prevents the Production of Reactive Oxygen Species in Fibrillar Beta Amyloid Peptide (1-42)-Stimulated Microglia. Exp. Mol. Med. 2008, 40, 11–18. [Google Scholar] [CrossRef]
- Shi, S.; Liang, D.; Bao, M.; Xie, Y.; Xu, W.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 Inhibits Neuroinflammation via A7 NAChR Activation of the JAK2/STAT3 and PI3K/AKT Pathways. J. Alzheimer’s Dis. 2016, 50, 859–871. [Google Scholar] [CrossRef]
- Cantone, A.F.; Burgaletto, C.; Di Benedetto, G.; Pannaccione, A.; Secondo, A.; Bellanca, C.M.; Augello, E.; Munafò, A.; Tarro, P.; Bernardini, R.; et al. Taming Microglia in Alzheimer’s Disease: Exploring Potential Implications of Choline Alphoscerate via A7 NAChR Modulation. Cells 2024, 13, 309. [Google Scholar] [CrossRef]
- Takata, K.; Amamiya, T.; Mizoguchi, H.; Kawanishi, S.; Kuroda, E.; Kitamura, R.; Ito, A.; Saito, Y.; Tawa, M.; Nagasawa, T.; et al. α7 Nicotinic Acetylcholine Receptor-Specific Agonist DMXBA (GTS-21) Attenuates Aβ Accumulation through Suppression of Neuronal γ-Secretase Activity and Promotion of Microglial Amyloid-β Phagocytosis and Ameliorates Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. Neurobiol. Aging 2018, 62, 197–209. [Google Scholar] [CrossRef]
- Takata, K.; Kitamura, Y.; Saeki, M.; Terada, M.; Kagitani, S.; Kitamura, R.; Fujikawa, Y.; Maelicke, A.; Tomimoto, H.; Taniguchi, T.; et al. Galantamine-Induced Amyloid-{beta} Clearance Mediated via Stimulation of Microglial Nicotinic Acetylcholine Receptors. J. Biol. Chem. 2010, 285, 40180–40191. [Google Scholar] [CrossRef]
- Maelicke, A.; Samochocki, M.; Jostock, R.; Fehrenbacher, A.; Ludwig, J.; Albuquerque, E.X.; Zerlin, M. Allosteric Sensitization of Nicotinic Receptors by Galantamine, a New Treatment Strategy for Alzheimer’s Disease. Biol. Psychiatry 2001, 49, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, A.; Suzuki, S.; Iwahara, N.; Hisahara, S.; Kawamata, J.; Suzuki, H.; Yamauchi, A.; Takata, K.; Kitamura, Y.; Shimohama, S. Temporal Changes of CD68 and A7 Nicotinic Acetylcholine Receptor Expression in Microglia in Alzheimer’s Disease-like Mouse Models. J. Alzheimer’s Dis. 2015, 44, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, R.; Ferreira, E.; Knowles, S.; Fux, C.; Rodin, A.; Winslow, W.; Oddo, S. Lifelong Choline Supplementation Ameliorates Alzheimer’s Disease Pathology and Associated Cognitive Deficits by Attenuating Microglia Activation. Aging Cell 2019, 18, e13037. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Hoyle, E.; Dempster, E.; Schalkwyk, L.C.; Collier, D.A. Performance Deficit of A7 Nicotinic Receptor Knockout Mice in a Delayed Matching-to-Place Task Suggests a Mild Impairment of Working/Episodic-like Memory. Genes Brain Behav. 2006, 5, 433–440. [Google Scholar] [CrossRef]
- Hoyle, E.; Genn, R.F.; Fernandes, C.; Stolerman, I.P. Impaired Performance of α7 Nicotinic Receptor Knockout Mice in the Five-Choice Serial Reaction Time Task. Psychopharmacology 2006, 189, 211–223. [Google Scholar] [CrossRef]
- Levin, E.D.; Petro, A.; Rezvani, A.H.; Pollard, N.; Christopher, N.C.; Strauss, M.; Avery, J.; Nicholson, J.; Rose, J.E. Nicotinic α7- or Beta2-Containing Receptor Knockout: Effects on Radial-Arm Maze Learning and Long-Term Nicotine Consumption in Mice. Behav. Brain Res. 2009, 196, 207–213. [Google Scholar] [CrossRef]
- Tropea, M.R.; Li Puma, D.D.; Melone, M.; Gulisano, W.; Arancio, O.; Grassi, C.; Conti, F.; Puzzo, D. Genetic Deletion of A7 Nicotinic Acetylcholine Receptors Induces an Age-Dependent Alzheimer’s Disease-like Pathology. Prog. Neurobiol. 2021, 206, 102154. [Google Scholar] [CrossRef]
- Hernandez, C.M.; Kayed, R.; Zheng, H.; Sweatt, J.D.; Dineley, K.T. Loss of α7 Nicotinic Receptors Enhances Beta-Amyloid Oligomer Accumulation, Exacerbating Early-Stage Cognitive Decline and Septohippocampal Pathology in a Mouse Model of Alzheimer’s Disease. J. Neurosci. 2010, 30, 2442–2453. [Google Scholar] [CrossRef]
- Dziewczapolski, G.; Glogowski, C.M.; Masliah, E.; Heinemann, S.F. Deletion of the α7 Nicotinic Acetylcholine Receptor Gene Improves Cognitive Deficits and Synaptic Pathology in a Mouse Model of Alzheimer’s Disease. J. Neurosci. 2009, 29, 8805–8815. [Google Scholar] [CrossRef]
- Nordberg, A.; Hellström-Lindahl, E.; Lee, M.; Johnson, M.; Mousavi, M.; Hall, R.; Perry, E.; Bednar, I.; Court, J. Chronic Nicotine Treatment Reduces Beta-Amyloidosis in the Brain of a Mouse Model of Alzheimer’s Disease (APPsw). J. Neurochem. 2002, 81, 655–658. [Google Scholar] [CrossRef]
- Figueiredo, C.P.; Clarke, J.R.; Ledo, J.H.; Ribeiro, F.C.; Costa, C.V.; Melo, H.M.; Mota-Sales, A.P.; Saraiva, L.M.; Klein, W.L.; Sebollela, A.; et al. Memantine Rescues Transient Cognitive Impairment Caused by High-Molecular-Weight Aβ Oligomers but Not the Persistent Impairment Induced by Low-Molecular-Weight Oligomers. J. Neurosci. 2013, 33, 9626–9634. [Google Scholar] [CrossRef] [PubMed]
- Madhu, P.; Mukhopadhyay, S. Preferential Recruitment of Conformationally Distinct Amyloid-β Oligomers by the Intrinsically Disordered Region of the Human Prion Protein. ACS Chem. Neurosci. 2020, 11, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Selkoe, D.J. A Mechanistic Hypothesis for the Impairment of Synaptic Plasticity by Soluble Aβ Oligomers from Alzheimer’s Brain. J. Neurochem. 2020, 154, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, S.; Xu, H.; Walsh, D.M.; Selkoe, D.J. Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate. J. Neurosci. 2017, 37, 152–163. [Google Scholar] [CrossRef]
Brain Region | Method | Results | Reference |
---|---|---|---|
frontal cortex (superior frontal gyrus) | ISH | no change | [60] |
frontal cortex (superior frontal gyrus) | ISH | no change | [57] |
frontal cortex (anterior cingulate) | α-BTX binding (AR) | no change | [52] |
frontal cortex | α-BTX binding (homogenates) | no change | [50] |
frontal cortex | α-BTX binding (homogenates) | no change | [53] |
frontal cortex (mid-frontal cortex) | α-BTX binding (homogenates) | no change | [54] |
frontal cortex (superior frontal cortex) | MLA binding (homogenates) | no change (MCI or mild-moderate AD) | [71] |
frontal cortex | WB | decreased in AD | [58] |
frontal cortex | IHC | decreased in AD (and negatively correlated with Aβ) | [72] |
frontal cortex (superior frontal gyrus) | IHC | decreased labeling intensity and reduced density of α7 protein-expressing neurons, ratio of strongly α7 protein-expressing to α7 mRNA-expressing cells was reduced in AD compared to controls | [60] |
frontal cortex (superior frontal gyrus) | IHC | decreased labeling intensity and decrease in the number of α7 immunoreactive neurons in AD | [57] |
hippocampus | mRNA | increased in AD | [49] |
hippocampus | α-BTX binding (homogenate membranes) | decreased in AD | [49] |
hippocampus | α-BTX binding (AR) | no change | [52] |
hippocampus and subiculum | α-BTX binding (AR) | no change | [73] |
hippocampus | WB | decreased in AD | [55] |
hippocampus | IHC | increased % of astrocytes expressing α7 in familial and sporadic AD compared to age-matched controls | [51] |
hippocampus | IHC | decreased labeling intensity and number of α7-positive neurons in AD | [51] |
hippocampus | IHC | decreased in AD (and negatively correlated with Aβ) | [72] |
hippocampus | IHC | increased % of astrocytes expressing α7 in AD | [74] |
hippocampus | IHC | no change in α7-positive neurons in CA1, CA2, CA3, CA4, and entorhinal cortex and decrease in layer 2 subiculum. | [75] |
hippocampus | IHC | increased number of α7-positive astrocytes throughout hippocampal layers, subiculum, and entorhinal cortex in AD | [75] |
temporal cortex | mRNA | no change | [76] |
temporal cortex (mid-temporal gyrus) | α-BTX binding (homogenates) | decreased in AD | [50] |
temporal cortex | α-BTX binding (AR) | no change | [52] |
temporal cortex | α-BTX binding (homogenate membranes) | no change | [49] |
temporal cortex | α-BTX binding (homogenate membranes) | decreased in familial AD (APPswe) but not sporadic AD compared to respective age-matched controls | [51] |
temporal cortex | WB | no change | [59] |
temporal cortex (superior temporal gyrus) | WB | decreased in AD | [56] |
temporal cortex (superior temporal gyrus) | WB | decreased in AD | [57] |
temporal cortex | WB | no change | [55] |
temporal cortex | IHC | number of α7+ cells reduced in AD (but remaining positive neurons exhibit intense labeling) | [61] |
temporal cortex (entorhinal cortex) | IHC | increased % of astrocytes expressing α7 in AD | [74] |
temporal cortex (entorhinal cortex) | IHC | increased α7 content in astrocytes in AD | [77] |
temporal cortex | IHC | increased % of astrocytes expressing α7nAChR in familial and sporadic AD compared to age-matched controls (and higher in familial than sporadic AD). | [51] |
temporal cortex | IHC | decreased labeling intensity and number of α7-positive neurons in AD | [51] |
temporal cortex | IHC | decreased in AD (and negatively correlated with Aβ) | [72] |
nucleus basalis | mRNA (single cell and tissue homogenates) | no change in MCI, increased in mild-moderate AD compared to controls and MCI and inversely correlated with cognitive test scores | [62] |
caudate nucleus | mRNA (homogenates) | no change in MCI or mild-moderate AD | [62] |
cerebellum | mRNA | no change | [49] |
cerebellum | α-BTX binding (membranes) | increased in AD | [49] |
cerebellum | WB | no change | [58] |
multiple | 18F-ASEM PET | increased availability in multiple brain regions in MCI (striatum, hippocampus, temporal cortex, occipital cortex, cingulate cortex, frontal cortex, parietal cortex, cerebellum, and basal forebrain) | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rennie, K. Neuronal and Glial α7 Nicotinic Acetylcholine Receptors: Role in Alzheimer’s Disease Pathophysiology. Life 2025, 15, 1032. https://doi.org/10.3390/life15071032
Rennie K. Neuronal and Glial α7 Nicotinic Acetylcholine Receptors: Role in Alzheimer’s Disease Pathophysiology. Life. 2025; 15(7):1032. https://doi.org/10.3390/life15071032
Chicago/Turabian StyleRennie, Kerry. 2025. "Neuronal and Glial α7 Nicotinic Acetylcholine Receptors: Role in Alzheimer’s Disease Pathophysiology" Life 15, no. 7: 1032. https://doi.org/10.3390/life15071032
APA StyleRennie, K. (2025). Neuronal and Glial α7 Nicotinic Acetylcholine Receptors: Role in Alzheimer’s Disease Pathophysiology. Life, 15(7), 1032. https://doi.org/10.3390/life15071032