Changes in Salinity, Mangrove Community Ecology, and Organic Blue Carbon Stock in Response to Cyclones at Indian Sundarbans
Abstract
:1. Introduction
S.N. | Name of Cyclone | Wind Speed (km/h) | Date of Hit | Classification | Reference |
---|---|---|---|---|---|
1. | Fani | 215 | 26 April 2019 | Extremely Severe Cyclonic Storm | [11] |
2. | Bulbul | 110–120 gusting to 135 | 9 November 2019 | Severe Cyclonic Storm | [18] |
3. | Amphan | 155–165 gusting up to 185 | 20 May 2020 | Super Cyclonic Storm | [19] |
4. | Yaas | maximum of 220 | 26 May 2021 | Severe Cyclonic Storm | [15] |
2. Material and Methods
2.1. Study Site
2.2. Biodiversity Assessment
2.3. Salinity Assessment of Tidal Water
2.4. Soil Sampling and Analyses
2.5. Estimation of the Carbon Pool
2.5.1. Elemental Analyzer
2.5.2. Wet Digestion Method
2.5.3. Organic Blue Carbon Pool Assessment
2.6. Statistical Tests
3. Result and Discussion
3.1. Variations in Tidal Water Salinity Profile
3.2. Variations in Mangrove Diversity
3.3. Changes in Carbon Pool and Soil Parameters
4. Cyclones, Salinity Intrusions and Impact on Global Blue Carbon Sink
5. Conservation Consideration and Recommendation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, A.; Naz, A.; Bhattacharyya, S.; Sanyal, P. Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon Manag. 2018, 9, 575–586. [Google Scholar] [CrossRef]
- Kang, N.Y.; Elsner, J.B. Trade-off between intensity and frequency of global tropical cyclones. Nat. Clim. Chang. 2015, 5, 661–664. [Google Scholar] [CrossRef]
- Friess, D.A.; Webb, E.L. Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Glob. Ecol. Biogeogr. 2014, 23, 715–725. [Google Scholar] [CrossRef]
- DasGupta, R.; Shaw, R. Perceptive insight into incentive design and sustainability of participatory mangrove management: A case study from the Indian Sundarbans. J. For. Res. 2017, 28, 815–829. [Google Scholar] [CrossRef]
- Chowdhury, A.; Sanyal, P.; Maiti, S.K. Dynamics of mangrove diversity influenced by climate change and consequent accelerated sea level rise at Indian Sundarbans. Int. J. Glob. Warm 2016, 9, 486–506. [Google Scholar] [CrossRef]
- Asbridge, E.; Lucas, R.; Accad, A.; Dowling, R. Mangrove response to environmental changes predicted under varying climates: Case studies from Australia. Curr. For. Rep. 2015, 1, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.T.; Cottom, G. Plant ecology workbook. Laboratory field production in Andropogan gerardi. Ecology 1956, 31, 488–489. [Google Scholar] [CrossRef]
- Hoppe-Speer, S.C.; Adams, J.B.; Rajkaran, A.; Bailey, D. The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. Aquat. Bot. 2011, 95, 71–76. [Google Scholar] [CrossRef]
- Gong, W.; Shen, J.; Reay, W.G. The hydrodynamic response of the York River estuary to Tropical Cyclone Isabel, 2003. Estuar. Coast Shelf Sci. 2007, 73, 695–710. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.H.; Ritchie, E.A.; Rizwi, F.; Qiao, L. The development and evolution of the Burdekin River estuary freshwater plume during Cyclone Debbie (2017). Estuar. Coast Shelf Sci. 2019, 224, 187–196. [Google Scholar] [CrossRef]
- Paul, S.; Karan, S.; Bhattacharaya, B.D. Effects of cyclone Fani on the copepod community of the Ganges River estuary of India. Environ. Monit. Assess. 2020, 192, 1–16. [Google Scholar] [CrossRef]
- Chacko, N.; Jayaram, C. Response of the Bay of Bengal to super cyclone Amphan examined using synergistic satellite and in-situ observations. Oceanologia 2022, 64, 131–144. [Google Scholar] [CrossRef]
- Khatun, M.; Garai, S.; Sharma, J.; Singh, R.; Tiwari, S.; Rahaman, S.M. Flood mapping and damage assessment due to the super cyclone Yaas using Google Earth Engine in Purba Medinipur, West Bengal, India. Environ. Monit. Assess. 2022, 194, 869. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Naz, A.; Bhattacharryya, S.; Sanyal, P. Dynamics of salinity intrusion in the surface and ground water of Sundarban Biosphere Reserve, India. IOP Conf. Ser. Earth Environ. Sci. 2021, 944, 012061. [Google Scholar] [CrossRef]
- Paul, S.; Chowdhury, S. Investigation of the character and impact of tropical cyclone Yaas: A study over coastal districts of West Bengal, India. Saf. Extrem. Environ. 2021, 3, 1–17. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Allison, M.A.; Zhao, J.; Li, X.; Comeaux, R.S.; Feagin, R.A.; Kulawardhana, R.W. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast Shelf Sci. 2013, 119, 7–16. [Google Scholar] [CrossRef]
- Curtis, J.T.; McIntosh, R.R. The interrelations of certain analytic and synthetic phytosocialogical characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Hoque, M.E.; Arafat, M.Y.; Uddin, M.N.; Alam, H.M.E.; Ahmed, K.T. Rapid assessment of SST and Chlorophyll concentration variability due to cyclone Bulbul in the Bay of Bengal using remotely sensed satellite image data. Authorea Preprints 2020, ESSOAr. [Google Scholar] [CrossRef]
- Chakma, P.; Akter, A. Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan. In J. Civil Eng. Forum 2021, 7, 267–278. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parson, T.R. A practical handbook of sea-water analysis. J. Fish. Res. Board Can. 1972, 167, 311. [Google Scholar]
- Fang, X.M.; Wang, G.G.; Xu, Z.J.; Zong, Y.Y.; Zhang, X.L.; Li, J.J.; Chen, F.S. Litter addition and understory removal influenced soil organic carbon quality and mineral nitrogen supply in a subtropical plantation forest. Plant Soil 2021, 460, 527–540. [Google Scholar] [CrossRef]
- Castañeda-Moya, E.; Twilley, R.R.; Rivera-Monroy, V.H.; Zhang, K.; Davis, S.E.; Ross, M. Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries Coast. 2010, 33, 45–58. [Google Scholar] [CrossRef]
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Bisutti, I.; Hilke, I.; Raessler, M. Determination of total organic carbon—An overview of current methods. Trends Anal Chem. 2004, 23, 716–726. [Google Scholar] [CrossRef]
- Nóbrega, G.; Ferreira, T.O.; Artur, A.G.; Mendonca, E.; Leão, R.A.D.O.; Teixeira, A.; Otero, X.L. Evaluation of methods for quantifying organic carbon in mangrove soils from semi-arid region. J. Soils Sediments 2015, 15, 282–291. [Google Scholar] [CrossRef]
- Passos, T.R.; Artur, A.G.; Nobrega, G.N.; Otero, X.L.; Ferreira, T.O. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S. Geo-Mar. Lett. 2016, 36, 223–233. [Google Scholar] [CrossRef]
- Rozainah, M.Z.; Nazri, M.N.; Sofawi, A.B.; Hemati, Z.; Juliana, W.A. Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Mar. Pollut. Bull. 2018, 137, 237–245. [Google Scholar] [CrossRef]
- Howard, J.; Hoyt, S.; Isensee, K.; Pidgeon, E.; Telszewski, M. Coastal Blue Carbon: Methods for Assessing Carbon Stock and Emission Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, TX, USA, 2014. [Google Scholar]
- Mandal, U.K.; Nayak, D.B.; Mullick, S.; Samui, A.; Jana, A.K.; Mahanta, K.; Raut, S.; Roy, S.; Burman, D. Trend analysis of weather parameters over Indian Sundarbans. J. Agrometeorol. 2019, 21, 307–315. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R.P.; Dash, P.; Kumar, R. Impact of tropical cyclone “Fani” on land, ocean, atmospheric and meteorological parameters. Mar. Pollut. Bull. 2021, 162, 111844. [Google Scholar] [CrossRef]
- Ball, M.C. Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Funct. Plant Biol. 1988, 15, 447–464. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Meir, P.; Sack, L.; Evans, J.R.; Oliveira, R.S.; Ball, M.C. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: Integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant Cell Environ. 2017, 40, 1576–1591. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Sutradhar, T.; Begam, M.M.; Mukherjee, C.; Chatterjee, K.; Basak, S.K.; Ray, K. Effects of nutrient limitation, salinity increase, and associated stressors on mangrove forest cover, structure, and zonation across Indian Sundarbans. Hydrobiologia 2019, 842, 191–217. [Google Scholar] [CrossRef]
- Ball, M.C. Interactive effects of salinity and irradiance on growth: Implications for mangrove forest structure along salinity gradients. Trees 2002, 16, 126–139. [Google Scholar] [CrossRef]
- Latha, R.; SrinivasRao, C.; Sr Subramanium, H.M.; Eganathan, P.; Swaminathan, M.S. Approaches to breeding for salinity tolerance—A case study on Porteresia coarctata. Ann. Appl. Boil. 2004, 144, 177–184. [Google Scholar] [CrossRef]
- Takemura, T.; Hanagata, N.; Sugihara, K.; Baba, S.; Karube, I.; Dubinsky, Z. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot. 2000, 68, 15–28. [Google Scholar] [CrossRef]
- Allen, J.A.; Krauss, K.W.; Hauff, R.D. Factors limiting the intertidal distribution of the mangrove species Xylocarpus granatum. Oecologia 2003, 135, 110–121. [Google Scholar] [CrossRef]
- Schmitz, N.; Verheyden, A.; Beeckman, H.; Kairo, J.G.; Koedam, N. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Ann. Bot. 2006, 98, 1321–1330. [Google Scholar] [CrossRef]
- Levin, D.A.; Francisco-Ortega, J.; Jansen, R.K. Hybridization and the extinction of rare plant species. Conser. Boil. 1996, 10, 10–16. [Google Scholar] [CrossRef]
- Macamo, C.C.F.; Massuanganhe, E.; Nicolau, D.K.; Bandeira, S.O.; Adams, J.B. Mangrove’s response to cyclone Eline (2000): What is happening 14 years later. Aquat. Bot. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Aung, T.T.; Mochida, Y.; Than, M.M. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manag. 2013, 293, 103–113. [Google Scholar] [CrossRef]
- Badola, R.; Hussain, S.A. Valuing ecosystem functions: An empirical study on the storm protection function of Bhitarkanika mangrove ecosystem, India. Environ. Conserv. 2005, 32, 85–92. [Google Scholar] [CrossRef]
- Patel, N.T.; Gupta, A.; Pandey, A.N. Salinity tolerance of Avicennia marina (Forssk.) Vierh. from Gujarat coasts of India. Aquat. Bot. 2010, 93, 9–16. [Google Scholar] [CrossRef]
- Smith, R.L.; Smith, T.M.; Hickman, G.C.; Hickman, S.M. Elements of Ecology; No. 577 S6E5 1998; Benjamin Cummings: Menlo Parie, CA, USA, 1998. [Google Scholar]
- Naskar, S.; Palit, P.K. Anatomical and physiological adaptations of mangroves. Wetl. Ecol. Manag. 2015, 23, 357–370. [Google Scholar] [CrossRef]
- Chowdhury, A.; Naz, A.; Dasgupta, R.; Maiti, S.K. Blue Carbon: Comparison of Chronosequences from Avicennia marina Plantation and Proteresia coarctata Dominated Mudflat, at the World’s Largest Mangrove Wetland. Sustainability 2022, 15, 368. [Google Scholar] [CrossRef]
- Lo’pez-Hoffman, L.; Anten, N.P.R.; Martinez-Ramos, M.; Ackerly, D.D. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 2007, 150, 545–556. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ball, M.C.; Choat, B.; Engelbrecht, B.M.; Holbrook, N.M.; Feller, I.C. Linking physiological processes with mangrove forest structure: Phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ. 2006, 29, 793–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M.; Zimmer, M.; Ahmed, I.; Donato, D.; Kanzaki, M.; Xu, M. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nat. Commun. 2021, 12, 3875. [Google Scholar] [CrossRef]
- Wang, H.; Gilbert, J.A.; Zhu, Y.; Yang, X. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Sci. Total Environ. 2018, 631, 1342–1349. [Google Scholar] [CrossRef]
- Chambers, L.G.; Davis, S.E.; Troxler, T.; Boyer, J.N.; Downey-Wall, A.; Scinto, L.J. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 2014, 726, 195–211. [Google Scholar] [CrossRef]
- Rao, R.G.; Woitchik, A.F.; Goeyens, L.; Van Riet, A.; Kazungu, J.; Dehairs, F. Carbon, nitrogen contents and stable carbon isotope abundance in mangrove leaves from an east African coastal lagoon (Kenya). Aquat. Bot. 1994, 47, 175–183. [Google Scholar] [CrossRef]
- Hossain, M.; Siddique, M.R.H.; Saha, S.; Abdullah, S.M. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetl. Ecol. Manag. 2015, 23, 765–774. [Google Scholar] [CrossRef]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Yang, K.; Wu, L.; Huang, G.; Santoso, A.; Ng, B.; Yamagata, T. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Chang. 2021, 11, 27–32. [Google Scholar] [CrossRef]
- Roose, S.; Ajayamohan, R.S.; Ray, P.; Mohan, P.R.; Mohanakumar, K. ENSO influence on Bay of Bengal cyclogenesis confined to low latitudes. NPJ Clim. Atmos 2022, 5, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; He, H.; Zhang, W.Z.; Tian, D. Upper Ocean response to tropical cyclones: A review. Geosci. Lett. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Seriño, M.N.; Ureta, J.C.; Baldesco, J.; Galvez, K.J.; Predo, C.; Seriño, E.K. Valuing the Protection Service Provided by Mangroves in Typhoon-Hit Areas in the Philippines; Research Report No. 2017-RR19; Economy and Environment Program for Southeast Asia (EEPSEA): Manila, Philippines, 2017; ISBN 978-621-8041-52-3. [Google Scholar]
- Singh, P.; Bengtsson, L. Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. J. Hydrol. 2005, 300, 140–154. [Google Scholar] [CrossRef]
- Carter, H.N.; Schmidt, S.W.; Hirons, A.C. An international assessment of mangrove management: Incorporation in integrated coastal zone management. Diversity 2015, 7, 74–104. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Sarker, S.K.; Friess, D.A.; Kamruzzaman, M.; Jacobs, M.; Islam, M.A.; Pretzsch, H. Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. Sci. Total Environ. 2022, 853, 158662. [Google Scholar] [CrossRef]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The global flood protection benefits of mangroves. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Paul, A.R. Bangladesh Sundarbans: Present status of the environment and biota. Diversity 2015, 7, 242–269. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Raha, A.K.; Mitra, A. Ecotourism revenue in Sunderban Tiger Reserve. Techno Int. J. Health Eng. Manag. Sci. 2018, 2, 29–34. [Google Scholar]
- Segaran, T.C.; Azra, M.N.; Lananan, F.; Burlakovs, J.; Vincevica-Gaile, Z.; Rudovica, V.; Satyanarayana, B. Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature. Forests 2023, 14, 421. [Google Scholar] [CrossRef]
- Friess, D.A.; Adame, M.F.; Adams, J.B.; Lovelock, C.E. Mangrove forests under climate change in a 2 C world. Wiley Interdiscip. Rev. Clim. Chang. 2022, 13, e792. [Google Scholar] [CrossRef]
- Chowdhury, A.; Naz, A.; Maiti, S.K. Variations in soil blue carbon sequestration between natural mangrove metapopulations and a mixed mangrove plantation: A case study from the world’s largest contiguous mangrove forest. Life 2023, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Bosire, J.O.; Dahdouh-Guebas, F.; Kairo, J.G.; Koedam, N. Colonization of non-planted mangrove species into restored mangrove stands in Gazi Bay, Kenya. Aquat. Bot. 2003, 76, 267–279. [Google Scholar] [CrossRef]
- Van Der Stocken, T.; Wee, A.; De Ryck, D.J.R.; Vanschoenwinkel, B.; Friess, D.A.; Dahdouh-Guebas, F.; Simard, M.; Koedam, N.; Webb, E.L. A general framework for propagule dispersal in mangroves. Biol. Rev. 2019, 94, 1547–1575. [Google Scholar] [CrossRef] [Green Version]
Species | Family | Abbreviation | 2017 | 2018 | 2019 | 2020 | 2021 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RD | A/F | RD | A/F | RD | A/F | RD | A/F | RD | A/F | |||
Acanthus ilicifolius L. | Acanthaceae | AI | 9.38 | 0.09 | 9.4 | 0.09 | 6.82 | 0.07 | 8.49 | 0.08 | 5.23 | 0.08 |
Aegialitis rotundiflia Roxb. | Plumbaginaceae | AR | 9.94 | 0.10 | 10.3 | 0.10 | 9.59 | 0.10 | 7.31 | 0.07 | 5.56 | 0.06 |
Aegiceras corniculatum (L.) Blanco | Primulaceae | AC | 5.25 | 0.05 | 5.0 | 0.05 | 6.61 | 0.07 | 8.09 | 0.08 | 8.17 | 0.08 |
Avicennia alba Blume | Acanthaceae | AA | 13.32 | 0.13 | 11.4 | 0.11 | 8.10 | 0.08 | 10.27 | 0.10 | 1.63 | 0.05 |
Avicennia marina (Forssk.) Vierh. | Acanthaceae | AM | 12.20 | 0.12 | 15.3 | 0.15 | 16.63 | 0.17 | 23.10 | 0.23 | 31.70 | 0.32 |
Avicennia officinalis L. | Acanthaceae | AO | 6.00 | 0.06 | 9.0 | 0.09 | 7.89 | 0.08 | 10.46 | 0.10 | 6.54 | 0.07 |
Bruguiera gymnorrhiza (L.) Lam. | Rhizophoraceae | BG | 4.50 | 0.05 | 1.8 | 0.02 | 1.07 | 0.02 | 1.18 | 0.04 | 0.00 | - |
Bruguiera cylindrica (L.) Blume | Rhizophoraceae | BC | 0.75 | 0.01 | 0.2 | 0.01 | 0.00 | - | 0.00 | - | 0.00 | - |
Ceriops decandra (Griff.) Ding Hou | Rhizophoraceae | CD | 4.69 | 0.05 | 3.1 | 0.03 | 3.20 | 0.03 | 2.17 | 0.03 | 1.96 | 0.02 |
Excoecaria agallocha L. | Euphorbiaceae | EA | 5.63 | 0.06 | 4.5 | 0.05 | 10.87 | 0.11 | 6.32 | 0.06 | 7.52 | 0.08 |
Phoenix padulosa Roxb. | Arecaceae | PP | 3.00 | 0.03 | 2.0 | 0.02 | 2.13 | 0.03 | 1.18 | 0.04 | 1.63 | 0.05 |
Proteresia corctata (Roxb.) Tateoka | Poaceae | PC | 12.57 | 0.13 | 12.6 | 0.13 | 13.43 | 0.13 | 11.85 | 0.12 | 16.01 | 0.16 |
Rhizophora mucronata Lam. | Rhizophoraceae | RM | 0.56 | 0.01 | 0.4 | 0.01 | 1.18 | 0.01 | 1.38 | 0.02 | 0.00 | - |
Sonneretia caseolaris (L.) Engl. | Lythraceae | SC | 4.32 | 0.04 | 4.0 | 0.04 | 3.62 | 0.04 | 0.00 | - | 0.65 | 0.02 |
Suaeda maritima (L.) Dumort. | Amaranthaceae | SM | 6.38 | 0.06 | 10.5 | 0.10 | 8.32 | 0.08 | 8.09 | 0.08 | 13.40 | 0.13 |
Xylocarpus granatum K.D. Koenig | Meliaceae | XG | 0.94 | 0.01 | 0.5 | 0.01 | 0.21 | 0.01 | 0.00 | - | 0.00 | - |
Xylocarpus moluccensis K.D. Koenig | Meliaceae | XM | 0.56 | 0.01 | 0.2 | 0.01 | 0.21 | 0.01 | 0.00 | - | 0.00 | - |
Year | 2017 | 2018 | 2019 | 2020 | 2021 | Formula |
---|---|---|---|---|---|---|
Shannon Index of Diversity | 2.561 | 2.45 | 2.451 | 2.294 | 2.064 | |
Simpson’s Dominance | 0.083 | 0.094 | 0.093 | 0.114 | 0.159 | |
Simpson’s Diversity | 0.917 | 0.906 | 0.907 | 0.886 | 0.841 |
Year | pH | SOCW (%) | SOCEA (g kg−1) | BD (g/cm3) | Available N (mg kg−1) | Available P (mg kg−1) | Salinity (ppt) |
---|---|---|---|---|---|---|---|
2017 | 7.2 ± 0.15 | 0.82 a ± 0.12 | 21.1 b ± 1.6 | 1.37 ± 0.15 | 75.9 b ± 6.28 | 6.17 b ± 0.35 | 8.54 b ± 0.45 |
2018 | 7.3 ± 0.21 | 0.93 a ± 0.16 | 22.4 b ± 1.9 | 1.30 ± 0.10 | 74.63 b ± 7.97 | 6.13 b ± 0.29 | 9.23 b ± 0.87 |
2019 | 7.3 ± 0.10 | 0.99 a ± 0.19 | 14.9 a ± 2 | 1.32 ± 0.03 | 71.13 b ± 6.86 | 4.87 a ± 0.70 | 10.5 b ± 0.70 |
2020 | 7.4 ± 0.12 | 1.70 b ± 0.17 | 14.5 a ± 1.4 | 1.28 ± 0.10 | 54 a ± 8.11 | 4.37 a ± 0.32 | 10.77 a ± 1.42 |
2021 | 7.5 ± 0.15 | 1.63 b ± 0.15 | 12.6 a ± 1.4 | 1.23 ± 0.25 | 52.83 a ± 7.35 | 4.13 a ± 0.35 | 11.17 a ± 1.35 |
F value | 1.426 | 20.91 | 21.13 | 0.336 | 7.17 | 15.08 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, A.; Naz, A.; Sharma, S.B.; Dasgupta, R. Changes in Salinity, Mangrove Community Ecology, and Organic Blue Carbon Stock in Response to Cyclones at Indian Sundarbans. Life 2023, 13, 1539. https://doi.org/10.3390/life13071539
Chowdhury A, Naz A, Sharma SB, Dasgupta R. Changes in Salinity, Mangrove Community Ecology, and Organic Blue Carbon Stock in Response to Cyclones at Indian Sundarbans. Life. 2023; 13(7):1539. https://doi.org/10.3390/life13071539
Chicago/Turabian StyleChowdhury, Abhiroop, Aliya Naz, Seema B. Sharma, and Rajarshi Dasgupta. 2023. "Changes in Salinity, Mangrove Community Ecology, and Organic Blue Carbon Stock in Response to Cyclones at Indian Sundarbans" Life 13, no. 7: 1539. https://doi.org/10.3390/life13071539
APA StyleChowdhury, A., Naz, A., Sharma, S. B., & Dasgupta, R. (2023). Changes in Salinity, Mangrove Community Ecology, and Organic Blue Carbon Stock in Response to Cyclones at Indian Sundarbans. Life, 13(7), 1539. https://doi.org/10.3390/life13071539