Dynamics of Spring Regrowth and Comparative Production Performance of 50 Autumn-Sown Alfalfa Cultivars in the Coastal Saline Soil of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Site
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.4. Data Analysis
2.4.1. Boston Matrix Method
2.4.2. Subordinate Function Value
3. Results
3.1. Alfalfa Growth Period and Forage Yield
3.2. Plant Height
3.3. Canopy Area
3.4. Growth Rate
3.5. Comprehensive Evaluation
4. Discussion
4.1. Forage Yield and Yield Components
4.2. Major Factors Influencing Production Adaptability of Alfalfa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, W.Q.; Yang, Y.; Fu, T.C.; Xie, G.H. Estimation of livestock excrement and its biogas production potential in China. J. Clean. Prod. 2019, 229, 1158–1166. [Google Scholar] [CrossRef]
- CRSY. China Rural Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2020. [Google Scholar]
- Feng, X.L.; Qiu, H.G.; Pan, J.; Tang, J.J. The impact of climate change on livestock production in pastoral areas of China. Sci. Total Environ. 2021, 770, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Lu, T.; Gao, H.; Miao, Z.; Guo, C.H. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J. Sci. Food Agric. 2019, 99, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netthisinghe, A.; Woosley, P.; Rowland, N.; Willian, T.; Gilfillen, B. Alfalfa forage production and nutritive value, fermentation characteristics and hygienic quality of ensilage, and soil properties after broiler litter amendment. Agronomy 2021, 11, 701. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.L. Analysis of research hotspots in saline-alkali land in China. J. North Agric. 2020, 48, 130–134. [Google Scholar]
- Feng, X.H.; An, P.; Li, X.G.; Guo, K.; Yang, C.; Liu, X.J. Spatiotemporal heterogeneity of soil water and salinity after establishment of dense-foliage tamarix chinensis on coastal saline land. Ecol. Eng. 2018, 121, 104–113. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yang, C.; Ren, A.Y.; Guo, K.; Feng, X.H.; Li, J.S.; Liu, X.J.; Sun, H.Y.; Wang, J.L. The evapotranspiration of tamarix and its response to environmental factors in coastal saline land of China. Water 2019, 11, 2273. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.Y.; Zhang, Z.Y.; Zhu, C.L.; Zhai, Y.M.; Lu, P.R. Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Sci. Hortic. 2019, 250, 405–413. [Google Scholar] [CrossRef]
- Li, J.S.; Hussain, T.; Feng, X.H.; Guo, K.; Chen, H.Y.; Yang, C.; Liu, X.J. Comparative study on the resistance of suaeda glauca and suaeda salsa to drought, salt, and alkali stresses. Ecol. Eng. 2019, 140, 1–9. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Kang, S.Z.; Ding, R.S.; Du, T.S.; Tong, L.; Li, S. The dynamic yield response factor of alfalfa improves the accuracy of dual crop coefficient approach under water and salt stress. Water 2020, 12, 1224. [Google Scholar] [CrossRef]
- Tucak, M.; Cupic, T.; Horvat, D.; Popovic, S.; Krizmanic, G.; Ravlic, M. Variation of phytoestrogen content and major agronomic traits in alfalfa (Medicago sativa L.) populations. Agronomy 2020, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Cavero, J.; Faci, J.M.; Medina, E.T.; Martine, C. Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate. Agric. Water Manag. 2017, 191, 184–192. [Google Scholar] [CrossRef] [Green Version]
- McDonald, I.; Baral, R.; Min, D. Effects of alfalfa and alfalfa-grass mixtures with nitrogen fertilization on dry matter yield and forage nutritive value. J. Anim. Sci. Technol. 2021, 63, 305–318. [Google Scholar] [CrossRef]
- Li, D.Z.; Zhang, Q.; Xu, Q.; Zhang, Z.F.; Liu, N.F.; Zeng, N.B.; Hu, L.X. Effects of waterlogging on root phenotype in seedling stage of alfalfa with different fall dormancy. Acta Agrestia Sin. 2020, 28, 420–428. [Google Scholar]
- Mantino, A.; Tozzini, C.; Enrico, B.; Mele, M.; Ragaglini, G. Competition for light affects alfalfa biomass production more than its nutritive value in an olive-based alley-cropping system. Forests 2021, 12, 233. [Google Scholar] [CrossRef]
- Wang, L.L.; Xie, J.H.; Luo, Z.Z.; Niu, Y.N.; Coulter, J.A.; Zhang, R.Z.; Li, L.L. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China. Agric. Water Manag. 2021, 234, 1–9. [Google Scholar] [CrossRef]
- Sanz, A.; Erice, G.; Aguirreolea, J.; Munoz, F.; Sanchez, M.; Irigoyen, J.J. Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with sinorhizobium meliloti strain. J. Plant Physiol. 2012, 169, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Atumo, T.T.; Jones, C.S. Varietal differences in yield and nutritional quality of alfalfa (Medicago sativa) accessions during 20 months after planting in Ethiopia. Trop. Grassl.-Forrajes Trop. 2021, 9, 89–96. [Google Scholar] [CrossRef]
- Jun, F.; Yu, G.; Wang, Q.J.; Malhi, S.S.; Li, Y.Y. Mulching effects on water storage in soil and its depletion by alfalfa in the loess plateau of northwestern China. Agric. Water Manag. 2014, 138, 10–16. [Google Scholar] [CrossRef]
- Ren, L.; Bennett, J.A.; Coulman, B.; Liu, J.S.; Biligetu, B. Forage yield trend of alfalfa cultivars in the Canadian prairies and its relation to environmental factors and harvest management. Grass Forage Sci. 2020, 76, 390–396. [Google Scholar] [CrossRef]
- Djaman, K.; Owen, C.; Koudahe, K.; Neill, M. Evaluation of different fall dormancy-rating alfalfa cultivars for forage yield in a semiarid environment. Agronomy 2020, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Atis, I.; Celiktas, N.; Can, E.; Yilmaz, S. The effects of cutting intervals and seeding rates on forage yield and quality of alfalfa. Turk. J. Field Crops 2019, 24, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Geren, H.; Kavut, Y.T.; Unlu, H.B. Effect of different cutting intervals on the forage yield and some silage quality characteristics of giant king grass (Pennisetum hybridum) under Mediterranean climatic conditions. Turk. J. Field Crops 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Yang, X.F.; Liang, Q.W.; Na, R.S.; Chen, L.L.; Lv, N.; Wang, Q.; Pan, X.L.; Zhao, H. Grown and root characteristics of alfalfa in the sowing year. J. Gansu Agric. Univ. 2016, 51, 121–126. [Google Scholar]
- Tian, Y.L.; Zhang, Y.X.; Wang, X.G.; Cong, B.M.; Zhu, A.M. Effects of autumn sowing period on growth characteristics of alfalfa in horchin sandy land. J. Inn. Mong. Univ. Natl. 2019, 34, 331–356. [Google Scholar]
- Shi, S.L.; Nan, L.L.; Smith, K.F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.Y.; Du, X.Y.; Cheng, G.Y.; Shi, F.C.; Shi, F.C.; Wang, Y.X. Temporal-spatial evolution analysis on low carbon city performance in the context of China. Environ. Impact. Asses. 2021, 90, 1–11. [Google Scholar] [CrossRef]
- Zhan, J.S.; Liu, M.M.; Su, X.S.; Zhan, K.; Zhang, C.G.; Zhao, G.Q. Effects of alfalfa flavonoids on the production performance immune system, and ruminal fermentation of dairy cows. Asian-Australas. J. Anim. Sci. 2017, 30, 1416–1424. [Google Scholar] [CrossRef]
- Shen, Y.X.; Jiang, H.X.; Zhai, G.Y.; Cai, Q.S. Effects of cutting height on shoot regrowth and forage yield of alfalfa (Medicago sativa L.) in a short-term cultivation system. Grassl. Sci. 2013, 59, 73–79. [Google Scholar] [CrossRef]
- Zhang, T.J.; Long, R.C.; Zhao, Z.X.; Lv, H.G.; Yan, X.D.; Yang, Q.C.; Kang, J.M. Evaluation on yield of different alfalfa cultivars in Hebei area. Chin. J. Grassl. 2018, 40, 35–42. [Google Scholar]
- Zhao, Z.X.; Liu, Q.S.; Huang, S.F.; Liu, Z.; Xu, Y.P.; Yan, X.D. Production performance comparison of alfalfa cultivars in cangzhou area of Hebei province. Chin. J. Grassl. 2021, 43, 92–100. [Google Scholar]
- Teixeira, E.I.; Moot, D.J.; Brown, H.E.; Fletcher, A.L. The dynamics of lucerne (Medicago sativa L.) yield components in response to defoliation frequency. Eur. J. Agron. 2007, 26, 394–400. [Google Scholar] [CrossRef]
- Li, Y.; Qi, W.W.; Li, S.Y.; Zhao, D.D.; Li, J.Y.; Ma, H.Y. Seed germination and seedling growth of Medicago sativa in response to the variations of temperature, light, and burial depth. Chin. J. Ecol. 2018, 40, 332–339. [Google Scholar]
- Wassie, M.; Zhang, W.H.; Zhang, Q.; Ji, K.; Chen, L. Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy 2019, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Anower, M.R.; Boe, A.; Auger, D.; Mott, I.W.; Peel, M.D.; Xu, P.; Kanchupati, P.; Wu, Y. Comparative drought response in eleven diverse alfalfa accessions. J. Agron. Crop Sci. 2017, 203, 1–13. [Google Scholar] [CrossRef]
- Shah, S.S.; Shi, L.X.; Li, Z.J.; Ren, G.X.; Zhou, B.W.; Qin, P.Y. Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in northeast China. Agronomy 2020, 10, 1908. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Pecetti, L.; Abdelguerfi, A.; Bouizgaren, A.; Carroni, A.M.; Hayek, T.; Hammadi, M.; Mezni, M. Adaptation of landrace and variety germplasm and selection strategies for lucerne in the Mediterranean basin. Field Crop Res. 2011, 120, 283–291. [Google Scholar] [CrossRef]
- Achir, C.; Annicchiarico, P.; Pecetti, L.; Khelifi, H.E.; Hammedi, M.; Abdelguerfi, A.; Meriem, L. Adaptation patterns of sixteen alfalfa (Medicago sativa L.) cultivars across contrasting environments of algeria and implications for the crop improvement. Ital. J. Agron. 2020, 15, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Wang, L.L.; Luo, Z.Z.; Li, L.L.; Niu, Y.N.; Cai, L.Q.; Xie, J.H. Meta-analysis of alfalfa yield and WUE response to growing ages in China. Acta Prataculture Sin. 2020, 29, 27–38. [Google Scholar]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M. Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci. 2005, 45, 297–304. [Google Scholar] [CrossRef]
- Attram, J.; Acharya, S.N.; Woods, S.A.; Smith, E.; Thomas, J.E. Yield and net return from alfalfa cultivars under irrigation in Southern Alberta. Can. J. Plant Sci. 2015, 96, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Na, J.; Huang, L.H.; Yan, Y.M.; Lu, Z.; Huang, J.X. Response of alfalfa yield and quality to mowing frequency and fertilization in saline-sodic land of the western songnen plain. J. Agric. Resour. Environ. 2020, 38, 882–890. [Google Scholar]
- Wang, C.Z.; Ma, B.L.; Yan, X.B.; Han, J.F.; Guo, Y.X.; Wang, Y.H.; Li, P. Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment. Agron. J. 2009, 101, 1146–1152. [Google Scholar] [CrossRef]
- Yan, Y.F.; Liu, Q.; Guo, R.; Sun, Q.Z.; Fang, S.S.; Liu, Z.Y. The preliminary assessment of fall dormancy of different alfalfa cultivars and initial analysis of their yield trait. Chin. J. Grassl. 2016, 38, 1–7. [Google Scholar]
- Avci, M.; Hatipoglu, R.; Cinar, S.; Kilicalp, N. Assessment of yield and quality characteristics of alfalfa (Medicago sativa L.) cultivars with different fall dormancy rating. Legume Res. 2017, 41, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Li, H.; Mi, F.G.; Yu, J.; Wang, X.T.; Meng, K.; Jia, Z.Y.; Wang, Q.Z. Comparison of production performance and winter survival rate of different fall dormancy alfalfa varieties. Acta Prataculture Sin. 2019, 28, 82–92. [Google Scholar]
No. | Cultivar’s Name | Code | Fall Dormaney Grade | Seed Source | Origin |
---|---|---|---|---|---|
1 | Guochan No.1 | AC1 | 2 | Beijing Rytway Ecotechnology Co., Ltd. | China |
2 | Magnum401 | AC2 | 4 | Beijing Clover Seed Industry Co., Ltd. | America |
3 | Tango | AC3 | 8 | Beijing Clover Seed Industry Co., Ltd. | Canada |
4 | WL525HQ | AC4 | 8.2 | Beijing Rytway Ecotechnology Co., Ltd. | America |
5 | Magnum2 | AC5 | 4 | Beijing Clover Seed Industry Co., Ltd. | America |
6 | Inster | AC6 | 4 | Beijing Clover Seed Industry Co., Ltd. | Canada |
7 | WL343 | AC7 | 4 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
8 | Womu No.1 | AC8 | 3 | Beijing Clover Seed Industry Co., Ltd. | China |
9 | Saidi No.7 | AC9 | 7 | Jiangxi Scarecrow Agriculture Park | Australia |
10 | Alfalfa | AC10 | 3 | Jiangxi Scarecrow Agriculture Park | Australia |
11 | Australia Queen | AC11 | 2 | Jiangxi Scarecrow Agriculture Park | Canada |
12 | Low TA | AC12 | 6 | Jiangxi Scarecrow Agriculture Park | Australia |
13 | Athena | AC13 | 7 | Jiangxi Scarecrow Agriculture Park | Australia |
14 | FDA No.10 | AC14 | 10 | Jiangxi Scarecrow Agriculture Park | Australia |
15 | WL168HQ | AC15 | 2 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
16 | Southern Hemisphere | AC16 | 6 | Jiangxi Scarecrow Agriculture Park | America |
17 | WL366HQ | AC17 | 5 | Beijing Rytway Ecotechnology Co., Ltd. | America |
18 | WL712HQ | AC18 | 10.2 | Beijing Rytway Ecotechnology Co., Ltd. | America |
19 | Seniti | AC19 | 5 | Jiangxi Scarecrow Agriculture Park | France |
20 | Ladino | AC20 | 4 | Beijing Rytway Ecotechnology Co., Ltd. | Australia |
21 | WL903HQ | AC21 | 9.5 | Beijing Rytway Ecotechnology Co., Ltd. | America |
22 | WL298HQ | AC22 | 1 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
23 | Magnum7-1 | AC23 | 4 | Beijing Clover Seed Industry Co., Ltd. | America |
24 | SK4030 | AC24 | 4 | Beijing Clover Seed Industry Co., Ltd. | Canada |
25 | WL440 | AC25 | 6 | Beijing Rytway Ecotechnology Co., Ltd. | America |
26 | Weston | AC26 | 8 | Beijing Clover Seed Industry Co., Ltd. | America |
27 | Vienna | AC27 | 4 | Jiangxi Scarecrow Agriculture Park | Canada |
28 | WL319HQ | AC28 | 3 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
29 | Ameri graze 37CR | AC29 | 2 | Beijing Clover Seed Industry Co., Ltd. | America |
30 | Magnum551 | AC30 | 5 | Beijing Clover Seed Industry Co., Ltd. | America |
31 | Magnum601 | AC31 | 6 | Beijing Clover Seed Industry Co., Ltd. | America |
32 | AC Caribou | AC32 | 3 | Beijing Clover Seed Industry Co., Ltd. | Canada |
33 | Spade | AC33 | 1 | Beijing Clover Seed Industry Co., Ltd. | Canada |
34 | WL358HQ | AC34 | 4 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
35 | SK4020 | AC35 | 4 | Beijing Clover Seed Industry Co., Ltd. | Canada |
36 | Phabulous | AC36 | 4 | Beijing Clover Seed Industry Co., Ltd. | Canada |
37 | Spade | AC37 | 4 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
38 | Magnum7-2 | AC38 | 4 | Beijing Clover Seed Industry Co., Ltd. | America |
39 | Eureka | AC39 | 8 | Jiangxi Scarecrow Agriculture Park | Australia |
40 | WL656HQ | AC40 | 9.3 | Beijing Rytway Ecotechnology Co., Ltd. | America |
41 | Khan | AC41 | 4 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
42 | WL354HQ | AC42 | 3 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
43 | SK3010 | AC43 | 2.5 | Beijing Clover Seed Industry Co., Ltd. | Canada |
44 | Magnum7-3 | AC44 | 4 | Beijing Clover Seed Industry Co., Ltd. | America |
45 | 4015 | AC45 | 4 | Beijing Clover Seed Industry Co., Ltd. | America |
46 | Algonguin | AC46 | 2 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
47 | Pioneer | AC47 | 3 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
48 | Surprise | AC48 | 4 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
49 | Vision | AC49 | 4 | Beijing Clover Seed Industry Co., Ltd. | Canada |
50 | WL363HQ | AC50 | 5 | Beijing Rytway Ecotechnology Co., Ltd. | Canada |
Cultivar’s Name | Sowing Time | Seedling Emergence | Early Flowering | First Cutting |
---|---|---|---|---|
Guochan No.1 | 15 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
Magnum401 | 15 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
Tango | 15 August 2019 | 21 August 2019 | 10 May 2020 | 12 May 2020 |
WL525HQ | 15 August 2019 | 20 August 2019 | 11 May 2020 | 12 May 2020 |
Magnum2 | 15 August 2019 | 21 August 2019 | 14 May 2020 | 15 May 2020 |
Inster | 15 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
WL343 | 15 August 2019 | 24 August 2019 | 14 May 2020 | 16 May 2020 |
Womu No.1 | 15 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
Saidi No.7 | 15 August 2019 | 21 August 2019 | 16 May 2020 | 17 May 2020 |
Alfalfa | 15 August 2019 | 21 August 2019 | 17 May 2020 | 18 May 2020 |
Australia Queen | 15 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
Low TA | 15 August 2019 | 21 August 2019 | 10 May 2020 | 12 May 2020 |
Athena | 15 August 2019 | 21 August 2019 | 10 May 2020 | 12 May 2020 |
FDA No.10 | 16 August 2019 | 21 August 2019 | 10 May 2020 | 12 May 2020 |
WL168HQ | 16 August 2019 | 24 August 2019 | 14 May 2020 | 16 May 2020 |
Southern Hemisphere | 16 August 2019 | 22 August 2019 | 11 May 2020 | 12 May 2020 |
WL366HQ | 16 August 2019 | 24 August 2019 | 11 May 2020 | 12 May 2020 |
WL712HQ | 16 August 2019 | 24 August 2019 | 14 May 2020 | 16 May 2020 |
Seniti | 16 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
Ladino | 16 August 2019 | 26 August 2019 | 11 May 2020 | 12 May 2020 |
WL903HQ | 16 August 2019 | 23 August 2019 | 10 May 2020 | 12 May 2020 |
WL298HQ | 16 August 2019 | 23 August 2019 | 10 May 2020 | 12 May 2020 |
Magnum7-1 | 16 August 2019 | 23 August 2019 | 15 May 2020 | 16 May 2020 |
SK4030 | 16 August 2019 | 26 August 2019 | 15 May 2020 | 17 May 2020 |
WL440 | 16 August 2019 | 23 August 2019 | 15 May 2020 | 16 May 2020 |
Weston | 16 August 2019 | 23 August 2019 | 14 May 2020 | 16 May 2020 |
Vienna | 16 August 2019 | 21 August 2019 | 14 May 2020 | 16 May 2020 |
WL319HQ | 16 August 2019 | 22 August 2019 | 14 May 2020 | 16 May 2020 |
Ameri graze 37CR | 16 August 2019 | 22 August 2019 | 15 May 2020 | 16 May 2020 |
Magnum551 | 16 August 2019 | 26 August 2019 | 15 May 2020 | 16 May 2020 |
Magnum601 | 16 August 2019 | 26 August 2019 | 10 May 2020 | 12 May 2020 |
AC Caribou | 16 August 2019 | 22 August 2019 | 10 May 2020 | 12 May 2020 |
Spade | 16 August 2019 | 27 August 2019 | 14 May 2020 | 16 May 2020 |
WL358HQ | 16 August 2019 | 26 August 2019 | 11 May 2020 | 12 May 2020 |
SK4020 | 16 August 2019 | 27 August 2019 | 14 May 2020 | 16 May 2020 |
Phabulous | 16 August 2019 | 23 August 2019 | 14 May 2020 | 16 May 2020 |
Spade | 16 August 2019 | 26 August 2019 | 14 May 2020 | 16 May 2020 |
Magnum7-2 | 16 August 2019 | 25 August 2019 | 14 May 2020 | 16 May 2020 |
Eureka | 16 August 2019 | 24 August 2019 | 11 May 2020 | 12 May 2020 |
WL656HQ | 16 August 2019 | 26 August 2019 | 14 May 2020 | 12 May 2020 |
Khan | 17 August 2019 | 25 August 2019 | 14 May 2020 | 16 May 2020 |
WL354HQ | 17 August 2019 | 27 August 2019 | 14 May 2020 | 16 May 2020 |
SK3010 | 16 August 2019 | 25 August 2019 | 14 May 2020 | 16 May 2020 |
Magnum7-3 | 16 August 2019 | 26 August 2019 | 14 May 2020 | 16 May 2020 |
4015 | 17 August 2019 | 25 August 2019 | 14 May 2020 | 16 May 2020 |
Algonguin | 17 August 2019 | 25 August 2019 | 14 May 2020 | 16 May 2020 |
Pioneer | 17 August 2019 | 24 August 2019 | 15 May 2020 | 16 May 2020 |
Surprise | 17 August 2019 | 25 August 2019 | 15 May 2020 | 16 May 2020 |
Vision | 17 August 2019 | 25 August 2019 | 14 May 2020 | 16 May 2020 |
WL363HQ | 17 August 2019 | 27 August 2019 | 15 May 2020 | 16 May 2020 |
Cultivar Name | Forage Yield (t ha−1) | Rank | Cultivar Name | Forage Yield (t ha−1) | Rank |
---|---|---|---|---|---|
Guochan No.1 | 32.7 ± 1.7 a | 1 | Weston | 29.5 ± 3.1 abcdefg | 21 |
Magnum401 | 29.8 ± 2.5 abcdef | 17 | Vienna | 24.5 ± 3.2 fg | 48 |
Tango | 26.1 ± 2.6 bcdefg | 42 | WL319HQ | 24.9 ± 2.1 efg | 46 |
WL525HQ | 28.0 ± 2.6 abcdef | 32 | Ameri graze 37CR | 28.4 ± 2.3 abcdefg | 30 |
Magnum2 | 31.4 ± 2.5 ab | 4 | Magnum551 | 28.5 ± 3.7 abcdefg | 29 |
Inster | 30.5 ± 4.1 abcdef | 11 | Magnum601 | 24.2 ± 6.3 g | 50 |
WL343 | 31.4 ± 3.6 ab | 3 | AC Caribou | 30.0 ± 3.1 abcdefg | 16 |
Womu No.1 | 29.8 ± 2.1 abcdef | 18 | Spade | 29.1 ± 2.1 abcdefg | 25 |
Saidi No.7 | 30.4 ± 1.4 abcdef | 12 | WL358HQ | 29.4 ± 2.6 abcdefg | 22 |
Alfalfa | 31.0 ± 3.2 abcd | 7 | SK4020 | 24.9 ± 3.9 efg | 47 |
Australia Queen | 25.3 ± 1.8 cdefg | 44 | Phabulous | 26.2 ± 3.6 bcdefg | 41 |
Low TA | 29.7 ± 3.1 abcdefg | 19 | Spade | 30.2 ± 3.3 abcdefg | 13 |
Athena | 31.7 ± 3.6 ab | 2 | Magnum7-2 | 25.7 ± 3.0 bcdefg | 43 |
FDA No.10 | 29.7 ± 4.1 abcdefg | 20 | Eureka | 27.4 ± 3.2 abcdefg | 34 |
WL168HQ | 30.1 ± 2.3 abcdefg | 15 | WL656HQ | 30.1 ± 3.1 abcdefg | 14 |
Southern Hemisphere | 28.0 ± 2.2 abcdefg | 33 | Khan | 29.1 ± 1.9 abcdefg | 24 |
WL366HQ | 28.4 ± 4.4 abcdefg | 31 | WL354HQ | 28.7 ± 2.4 abcdefg | 27 |
WL712HQ | 30.9 ± 2.9 abcde | 8 | SK3010 | 27.0 ± 1.0 abcdefg | 37 |
Seniti | 25.2 ± 1.6 defg | 45 | Magnum7-3 | 28.8 ± 2.9 abcdefg | 26 |
Ladino | 26.8 ± 2.5 abcdefg | 39 | 4015 | 30.9 ± 2.9 abcde | 9 |
WL903HQ | 31.3 ± 2.7 abc | 5 | Algonguin | 29.1 ± 2.8 abcdefg | 23 |
WL298HQ | 31.3 ± 3.8 abc | 6 | Pioneer | 27.4 ± 1.9 abcdefg | 35 |
Magnum7-1 | 26.9 ± 2.6 abcdefg | 38 | Surprise | 27.4 ± 3.0 abcdefg | 36 |
SK4030 | 24.5 ± 2.9 fg | 49 | Vision | 26.4 ± 2.4 bcdefg | 40 |
WL440 | 30.5 ± 2.6 abcdef | 10 | WL363HQ | 28.7 ± 2.2 abcdefg | 28 |
Agronomic Traits | Total Annual Yield | Plant Height | Canopy Area |
---|---|---|---|
Plant height | 0.164 | ||
Canopy area | 0.237 | 0.926 ** | |
Growth rate | −0.300 * | 0.312 * | 0.140 |
No. | Plant Height (cm) | Canopy Area (m2) | Growth Rate (cm d−1) | No. | Plant Height (cm) | Canopy Area (m2) | Growth Rate (cm d−1) |
---|---|---|---|---|---|---|---|
1 | 55.0 ± 12.9 abcd | 0.19 ± 0.10 ab | 2.0 ± 0.6 a | 26 | 57.2 ± 6.6 abcd | 0.22 ± 0.05 ab | 2.3 ± 1.0 a |
2 | 53.5 ± 10.0 abcd | 0.18 ± 0.09 abc | 2.0 ± 0.7 a | 27 | 45.2 ± 16.1 d | 0.16 ± 0.10 abc | 1.8 ± 1.1 a |
3 | 55.4 ± 9.6 abcd | 0.21 ± 0.06 ab | 1.8 ± 0.7 a | 28 | 50.5 ± 10.5 abcd | 0.17 ± 0.08 abc | 2.1 ± 0.7 a |
4 | 60.2 ± 8.2 abcd | 0.20 ± 0.09 ab | 2.1 ± 0.9 a | 29 | 55.5 ± 9.7 abcd | 0.18 ± 0.06 abc | 2.2 ± 0.8 a |
5 | 56.7 ± 10.6 abcd | 0.20 ± 0.07 ab | 1.9 ± 0.6 a | 30 | 55.6 ± 9.0 abcd | 0.19 ± 0.06 ab | 2.4 ± 1.1 a |
6 | 54.4 ± 9.0 abcd | 0.20 ± 0.05 ab | 1.8 ± 0.4 a | 31 | 59.0 ± 8.2 abcd | 0.20 ± 0.05 ab | 2.0 ± 0.7 a |
7 | 55.4 ± 9.8 abcd | 0.21 ± 0.05 ab | 1.8 ± 0.5 a | 32 | 54.9 ± 8.8 abcd | 0.20 ± 0.07 ab | 2.2 ± 1.3 a |
8 | 55.1 ± 10.4 abcd | 0.20 ± 0.07 ab | 1.8 ± 0.6 a | 33 | 56.2 ± 9.8 abcd | 0.20 ± 0.06 ab | 2.0 ± 0.7 a |
9 | 57.7 ± 10.1 abcd | 0.20 ± 0.09 ab | 2.0 ± 0.6 a | 34 | 57.0 ± 7.3 abcd | 0.21 ± 0.05 ab | 2.0 ± 1.1 a |
10 | 29.9 ± 9.6 e | 0.09 ± 0.10 c | 1.3 ± 1.0 a | 35 | 52.4 ± 9.7 abcd | 0.19 ± 0.05 ab | 1.8 ± 0.5 a |
11 | 48.0 ± 9.5 abcd | 0.13 ± 0.07 bc | 2.2 ± 1.7 a | 36 | 54.9 ± 7.3 abcd | 0.20 ± 0.05 ab | 2.2 ± 0.9 a |
12 | 46.3 ± 15.2 bcd | 0.15 ± 0.10 abc | 1.9 ± 1.1 a | 37 | 58.3 ± 9.7 abcd | 0.23 ± 0.05 a | 1.9 ± 0.8 a |
13 | 60.9 ± 7.3 abc | 0.24 ± 0.05 a | 1.9 ± 1.0 a | 38 | 58.2 ± 7.3 abcd | 0.22 ± 0.05 ab | 2.4 ± 1.5 a |
14 | 61.7 ± 11.5 a | 0.24 ± 0.06 a | 1.7 ± 0.5 a | 39 | 58.3 ± 8.6 abcd | 0.23 ± 0.05 a | 1.9 ± 1.0 a |
15 | 51.1 ± 16.6 abcd | 0.18 ± 0.09 ab | 1.5 ± 0.5 a | 40 | 60.9 ± 7.1 abc | 0.24 ± 0.04 a | 1.6 ± 0.9 a |
16 | 61.5 ± 11.6 ab | 0.24 ± 0.06 a | 1.9 ± 0.4 a | 41 | 46.2 ± 19.4 cd | 0.18 ± 0.08 abc | 2.1 ± 0.8 a |
17 | 56.1 ± 9.8 abcd | 0.21 ± 0.06 ab | 1.9 ± 0.6 a | 42 | 55.5 ± 7.7 abcd | 0.20 ± 0.05 ab | 2.1 ± 0.7 a |
18 | 60.6 ± 8.3 abc | 0.23 ± 0.06 a | 1.9 ± 0.9 a | 43 | 57.5 ± 8.7 abcd | 0.20 ± 0.06 ab | 2.5 ± 0.8 a |
19 | 56.1 ± 8.6 abcd | 0.21 ± 0.05 ab | 2.2 ± 0.7 a | 44 | 58.3 ± 6.8 abcd | 0.21 ± 0.06 ab | 2.5 ± 0.9 a |
20 | 59.9 ± 7.1 abcd | 0.23 ± 0.05 a | 2.4 ± 1.1 a | 45 | 59.4 ± 7.3 abcd | 0.22 ± 0.06 ab | 2.3 ± 0.8 a |
21 | 61.4 ± 8.5 abc | 0.24 ± 0.05 a | 1.7 ± 0.8 a | 46 | 56.9 ± 10.8 abcd | 0.20 ± 0.07 ab | 2.3 ± 0.4 a |
22 | 60.7 ± 7.0 abc | 0.23 ± 0.05 a | 2.0 ± 0.8 a | 47 | 55.7 ± 10.5 abcd | 0.20 ± 0.06 ab | 2.1 ± 0.5 a |
23 | 53.4 ± 9.5 abcd | 0.19 ± 0.06 ab | 2.1 ± 1.1 a | 48 | 56.9 ± 9.0 abcd | 0.21 ± 0.05 ab | 2.1 ± 0.4 a |
24 | 48.4 ± 11.0 abcd | 0.16 ± 0.07 abc | 2.2 ± 1.0 a | 49 | 57.6 ± 10.3 abcd | 0.21 ± 0.07 ab | 2.2 ± 0.7 a |
25 | 62.0 ± 9.6 a | 0.24 ± 0.06 a | 2.1 ± 0.8 a | 50 | 55.8 ± 9.8 abcd | 0.20 ± 0.06 ab | 2.5 ± 0.9 a |
Code | Plant Height | Canopy Area | Growth Rate | Annual Yield | Evaluation | Rank |
---|---|---|---|---|---|---|
AC1 | 0.42 | 0.49 | 0.52 | 0.50 | 1.93 | 34 |
AC2 | 0.52 | 0.50 | 0.43 | 0.39 | 1.84 | 40 |
AC3 | 0.55 | 0.59 | 0.31 | 0.38 | 1.83 | 41 |
AC4 | 0.52 | 0.60 | 0.33 | 0.26 | 1.71 | 47 |
AC5 | 0.53 | 0.41 | 0.49 | 0.40 | 1.83 | 42 |
AC6 | 0.56 | 0.52 | 0.43 | 0.47 | 1.98 | 27 |
AC7 | 0.53 | 0.54 | 0.55 | 0.44 | 2.06 | 20 |
AC8 | 0.51 | 0.49 | 0.35 | 1.54 | 2.89 | 1 |
AC9 | 0.53 | 0.57 | 0.56 | 0.37 | 2.03 | 22 |
AC10 | 0.31 | 0.28 | 0.44 | 0.49 | 1.52 | 49 |
AC11 | 0.40 | 0.41 | 0.34 | 0.35 | 1.50 | 50 |
AC12 | 0.36 | 0.37 | 0.38 | 0.75 | 1.86 | 39 |
AC13 | 0.59 | 0.62 | 0.35 | 0.51 | 2.07 | 19 |
AC14 | 0.64 | 0.61 | 0.42 | 0.31 | 1.98 | 28 |
AC15 | 0.54 | 0.51 | 0.30 | 0.38 | 1.73 | 45 |
AC16 | 0.66 | 0.61 | 0.48 | 0.37 | 2.12 | 14 |
AC17 | 0.56 | 0.55 | 0.37 | 0.41 | 1.89 | 37 |
AC18 | 0.49 | 0.57 | 0.38 | 0.49 | 1.93 | 35 |
AC19 | 0.68 | 0.65 | 0.43 | 0.36 | 2.12 | 15 |
AC20 | 0.82 | 0.75 | 0.38 | 0.38 | 2.33 | 7 |
AC21 | 0.55 | 0.56 | 0.47 | 0.36 | 1.94 | 31 |
AC22 | 0.68 | 0.64 | 0.32 | 0.45 | 2.09 | 17 |
AC23 | 0.31 | 0.38 | 0.45 | 0.91 | 2.05 | 21 |
AC24 | 0.65 | 0.43 | 0.55 | 0.45 | 2.08 | 18 |
AC25 | 0.61 | 0.61 | 0.51 | 0.92 | 2.65 | 2 |
AC26 | 0.70 | 0.70 | 0.32 | 0.72 | 2.44 | 3 |
AC27 | 0.43 | 0.34 | 0.34 | 0.84 | 1.95 | 30 |
AC28 | 0.63 | 0.51 | 0.26 | 0.48 | 1.88 | 38 |
AC29 | 0.55 | 0.44 | 0.34 | 0.48 | 1.81 | 43 |
AC30 | 0.59 | 0.56 | 0.35 | 0.53 | 2.03 | 23 |
AC31 | 0.63 | 0.46 | 0.38 | 0.55 | 2.02 | 25 |
AC32 | 0.50 | 0.48 | 0.39 | 0.52 | 1.89 | 36 |
AC33 | 0.50 | 0.47 | 0.47 | 0.50 | 1.94 | 32 |
AC34 | 0.69 | 0.44 | 0.59 | 0.47 | 2.19 | 13 |
AC35 | 0.67 | 0.57 | 0.47 | 0.57 | 2.28 | 9 |
AC36 | 0.61 | 0.51 | 0.40 | 0.72 | 2.24 | 10 |
AC37 | 0.54 | 0.56 | 0.38 | 0.55 | 2.03 | 24 |
AC38 | 0.46 | 0.54 | 0.29 | 0.64 | 1.93 | 33 |
AC39 | 0.60 | 0.55 | 0.62 | 0.42 | 2.19 | 12 |
AC40 | 0.53 | 0.55 | 0.43 | 0.59 | 2.10 | 16 |
AC41 | 0.62 | 0.48 | 0.55 | 0.57 | 2.22 | 11 |
AC42 | 0.71 | 0.65 | 0.47 | 0.55 | 2.38 | 5 |
AC43 | 0.48 | 0.41 | 0.30 | 0.51 | 1.70 | 48 |
AC44 | 0.57 | 0.52 | 0.34 | 0.36 | 1.79 | 44 |
AC45 | 0.79 | 0.64 | 0.50 | 0.44 | 2.37 | 6 |
AC46 | 0.47 | 0.41 | 0.64 | 0.49 | 2.01 | 26 |
AC47 | 0.56 | 0.48 | 0.38 | 0.30 | 1.72 | 46 |
AC48 | 0.68 | 0.52 | 0.67 | 0.56 | 2.43 | 4 |
AC49 | 0.68 | 0.60 | 0.44 | 0.60 | 2.32 | 8 |
AC50 | 0.69 | 0.55 | 0.39 | 0.34 | 1.97 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Fang, D.; Ameen, A.; Li, X.; Guo, K.; Liu, X.; Han, L. Dynamics of Spring Regrowth and Comparative Production Performance of 50 Autumn-Sown Alfalfa Cultivars in the Coastal Saline Soil of North China. Life 2021, 11, 1436. https://doi.org/10.3390/life11121436
Wang S, Fang D, Ameen A, Li X, Guo K, Liu X, Han L. Dynamics of Spring Regrowth and Comparative Production Performance of 50 Autumn-Sown Alfalfa Cultivars in the Coastal Saline Soil of North China. Life. 2021; 11(12):1436. https://doi.org/10.3390/life11121436
Chicago/Turabian StyleWang, Shichao, Dong Fang, Asif Ameen, Xiaolin Li, Kai Guo, Xiaojing Liu, and Lipu Han. 2021. "Dynamics of Spring Regrowth and Comparative Production Performance of 50 Autumn-Sown Alfalfa Cultivars in the Coastal Saline Soil of North China" Life 11, no. 12: 1436. https://doi.org/10.3390/life11121436
APA StyleWang, S., Fang, D., Ameen, A., Li, X., Guo, K., Liu, X., & Han, L. (2021). Dynamics of Spring Regrowth and Comparative Production Performance of 50 Autumn-Sown Alfalfa Cultivars in the Coastal Saline Soil of North China. Life, 11(12), 1436. https://doi.org/10.3390/life11121436