The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Strains and Growth Conditions
4.2. Isolation of PSII-Enriched Membranes
4.3. Pigment Concentrations
4.4. Carotenoids Composition
4.5. SDS-PAGE and Western Blot Analysis
4.6. Analysis of Redox Forms of Cytochrome b559
4.7. Determination of Metal Content
4.8. O2-Evolving Activity Measurements
4.9. Electron Transfer Rate Measurements
4.10. Chlorophyll Fluorescence Measurements
4.11. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PSII | Photosystem II |
RC | Reaction center |
WOC | Water-oxidizing complex |
LHCII | Light-harvesting complex II |
WT | Wild type |
CA | Carbonic anhydrase |
Chl | chlorophyll |
Car | carotenoids |
α-C | α-carotene |
β-C | β-carotene |
Neo | Neoxanthin |
Lor | Loroxanthin |
Vio | Violaxanthin |
Ant | Antheraxanthin |
Lut | Lutein |
Zea | Zeaxanthin |
Cyt b559 | cytochrome b559 |
LP, IP, HP | low-, intermediate-, high- potential forms of Cyt b559 |
DCPIP | 2,6-dichlorophenolindophenol |
Fv/Fm | maximum quantum yield of PSII |
References
- Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal Structure of Oxygen-Evolving Photosystem II at a Resolution of 1.9 Å. Nature 2011, 473, 55–60. [Google Scholar] [CrossRef]
- Enami, I.; Okumura, A.; Nagao, R.; Suzuki, T.; Iwai, M.; Shen, J.-R. Structures and Functions of the Extrinsic Proteins of Photosystem II from Different Species. Photosynth. Res. 2008, 98, 349–363. [Google Scholar] [CrossRef]
- Ifuku, K.; Noguchi, T. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II. Front. Plant Sci. 2016, 7, 84. [Google Scholar] [CrossRef]
- Khorobrykh, A.A.; Terentyev, V.V.; Zharmukhamedov, S.K.; Klimov, V.V. Redox Interaction of Mn-Bicarbonate Complexes with Reaction Centres of Purple Bacteria. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1245–1251. [Google Scholar] [CrossRef]
- Khorobrykh, A.; Dasgupta, J.; Kolling, D.R.J.; Terentyev, V.; Klimov, V.V.; Dismukes, G.C. Evolutionary Origins of the Photosynthetic Water Oxidation Cluster: Bicarbonate Permits Mn2+ Photo-Oxidation by Anoxygenic Bacterial Reaction Centers. ChemBioChem 2013, 14, 1725–1731. [Google Scholar] [CrossRef]
- Terentyev, V.V.; Shkuropatov, A.Y.; Shkuropatova, V.A.; Shuvalov, V.A.; Klimov, V.V. Investigation of the Redox Interaction between Mn-Bicarbonate Complexes and Reaction Centers from Rhodobacter Sphaeroides R-26, Chromatium Minutissimum, and Chloroflexus Aurantiacus. Biochemistry (Mosc.) 2011, 76, 1360–1366. [Google Scholar] [CrossRef]
- Dismukes, G.C.; Klimov, V.V.; Baranov, S.V.; Kozlov, Y.N.; DasGupta, J.; Tyryshkin, A. The Origin of Atmospheric Oxygen on Earth: The Innovation of Oxygenic Photosynthesis. Proc. Natl. Acad. Sci. USA 2001, 98, 2170–2175. [Google Scholar] [CrossRef]
- Bricker, T.M.; Roose, J.L.; Fagerlund, R.D.; Frankel, L.K.; Eaton-Rye, J.J. The Extrinsic Proteins of Photosystem II. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 121–142. [Google Scholar] [CrossRef]
- Iwai, M.; Roth, M.S.; Niyogi, K.K. Subdiffraction-Resolution Live-Cell Imaging for Visualizing Thylakoid Membranes. Plant J. 2018, 96, 233–243. [Google Scholar] [CrossRef]
- Engel, B.D.; Schaffer, M.; Kuhn Cuellar, L.; Villa, E.; Plitzko, J.M.; Baumeister, W. Native Architecture of the Chlamydomonas Chloroplast Revealed by in Situ Cryo-Electron Tomography. eLife 2015, 4, e04889. [Google Scholar] [CrossRef]
- Polukhina, I.; Fristedt, R.; Dinc, E.; Cardol, P.; Croce, R. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas Reinhardtii. Plant Physiol. 2016, 172, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Wietrzynski, W.; Schaffer, M.; Tegunov, D.; Albert, S.; Kanazawa, A.; Plitzko, J.M.; Baumeister, W.; Engel, B.D. Charting the Native Architecture of Thylakoid Membranes with Single-Molecule Precision. eLife 2020, 9, e53740. [Google Scholar] [CrossRef] [PubMed]
- Tirumani, S.; Gothandam, K.M.; Rao, B.J. Coordination between Photorespiration and Carbon Concentrating Mechanism in Chlamydomonas Reinhardtii: Transcript and Protein Changes during Light-Dark Diurnal Cycles and Mixotrophy Conditions. Protoplasma 2019, 256, 117–130. [Google Scholar] [CrossRef]
- Itakura, A.K.; Chan, K.X.; Atkinson, N.; Pallesen, L.; Wang, L.; Reeves, G.; Patena, W.; Caspari, O.; Roth, R.; Goodenough, U.; et al. A Rubisco-Binding Protein Is Required for Normal Pyrenoid Number and Starch Sheath Morphology in Chlamydomonas Reinhardtii. Proc. Natl. Acad. Sci. USA 2019, 116, 18445–18454. [Google Scholar] [CrossRef]
- Markelova, A.G.; Sinetova, M.P.; Kupriyanova, E.V.; Pronina, N.A. Distribution and Functional Role of Carbonic Anhydrase Cah3 Associated with Thylakoid Membranes in the Chloroplast and Pyrenoid of Chlamydomonas Reinhardtii. Russ. J. Plant Physiol. 2009, 56, 761–768. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Kupriyanova, E.V.; Markelova, A.G.; Allakhverdiev, S.I.; Pronina, N.A. Identification and Functional Role of the Carbonic Anhydrase Cah3 in Thylakoid Membranes of Pyrenoid of Chlamydomonas Reinhardtii. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 1248–1255. [Google Scholar] [CrossRef]
- Dunahay, T.G.; Staehelin, L.A.; Seibert, M.; Ogilvie, P.D.; Berg, S.P. Structural, Biochemical and Biophysical Characterization of Four Oxygen-Evolving Photosystem II Preparations from Spinach. Biochim. Biophys. Acta—Bioenerg. 1984, 764, 179–193. [Google Scholar] [CrossRef]
- Berthold, D.A.; Babcock, G.T.; Yocum, C.F. A Highly Resolved, Oxygen-Evolving Photosystem II Preparation from Spinach Thylakoid Membranes. FEBS Lett. 1981, 134, 231–234. [Google Scholar] [CrossRef]
- Ford, R.C.; Evans, M.C.W. Isolation of a Photosystem 2 Preparation from Higher Plants with Highly Enriched Oxygen Evolution Activity. FEBS Lett. 1983, 160, 159–164. [Google Scholar] [CrossRef]
- Pospíšil, P.; Dau, H. Chlorophyll Fluorescence Transients of Photosystem II Membrane Particles as a Tool for Studying Photosynthetic Oxygen Evolution. Photosynth. Res. 2000, 65, 41–52. [Google Scholar] [CrossRef]
- Petrova, I.O.; Kurashov, V.N.; Semenov, A.Y.; Mamedov, M.D. Manganese-Depleted/Reconstituted Photosystem II Core Complexes in Solution and Liposomes. J. Photochem. Photobiol. B Biol. 2011, 104, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Khorobrykh, A. Hydrogen Peroxide and Superoxide Anion Radical Photoproduction in PSII Preparations at Various Modifications of the Water-Oxidizing Complex. Plants 2019, 8, 329. [Google Scholar] [CrossRef]
- Rova, M.; Franzen, L.-G.; Fredriksson, P.-O.; Styring, S. Photosystem II in a Mutant of Chlamydomonas Reinhardtii Lacking the 23 KDa PsbP Protein Shows Increased Sensitivity to Photoinhibition in the Absence of Chloride. Photosynth. Res. 1994, 39, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Schiller, H.; Dau, H. Preparation Protocols for High-Activity Photosystem II Membrane Particles of Green Algae and Higher Plants, PH Dependence of Oxygen Evolution and Comparison of the S2-State Multiline Signal by X-Band EPR Spectroscopy. J. Photochem. Photobiol. B Biol. 2000, 55, 138–144. [Google Scholar] [CrossRef]
- Ruffle, S.V.; Wang, J.; Johnston, H.G.; Gustafson, T.L.; Hutchison, R.S.; Minagawa, J.; Crofts, A.; Sayre, R.T. Photosystem II Peripheral Accessory Chlorophyll Mutants in Chlamydomonas Reinhardtii. Biochemical Characterization and Sensitivity to Photo-Inhibition. Plant Physiol. 2001, 127, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Minagawa, J.; Tomo, T.; Sonoike, K.; Ohta, H.; Enami, I. Binding and Functional Properties of the Extrinsic Proteins in Oxygen-Evolving Photosystem II Particle from a Green Alga, Chlamydomonas Reinhardtii Having His-Tagged CP47. Plant Cell Physiol. 2003, 44, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Tokutsu, R.; Kato, N.; Bui, K.H.; Ishikawa, T.; Minagawa, J. Revisiting the Supramolecular Organization of Photosystem II in Chlamydomonas Reinhardtii. J. Biol. Chem. 2012, 287, 31574–31581. [Google Scholar] [CrossRef]
- Burton-Smith, R.N.; Watanabe, A.; Tokutsu, R.; Song, C.; Murata, K.; Minagawa, J. Structural Determination of the Large Photosystem II–Light-Harvesting Complex II Supercomplex of Chlamydomonas Reinhardtii Using Nonionic Amphipol. J. Biol. Chem. 2019, 294, 15003–15013. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Chang, S.; Wang, W.; Wang, J.; Kuang, T.; Han, G.; Shen, J.-R.; Zhang, X. Structure of a C 2 S 2 M 2 N 2 -Type PSII–LHCII Supercomplex from the Green Alga Chlamydomonas Reinhardtii. Proc. Natl. Acad. Sci. USA 2019, 116, 21246–21255. [Google Scholar] [CrossRef]
- Sugiura, M.; Minagawa, J.; Inoue, Y. Properties of Chlamydomonas Photosystem II Core Complex with a His-Tag at the C-Terminus of the D2 Protein. Plant Cell Physiol. 1999, 40, 311–318. [Google Scholar] [CrossRef][Green Version]
- Sugiura, M.; Inoue, Y.; Minagawa, J. Rapid and Discrete Isolation of Oxygen-Evolving His-Tagged Photosystem II Core Complex from Chlamydomonas Reinhardtii by Ni 2+ Affinity Column Chromatography. FEBS Lett. 1998, 426, 140–144. [Google Scholar] [CrossRef][Green Version]
- Blanco-Rivero, A.; Shutova, T.; Román, M.J.; Villarejo, A.; Martinez, F. Phosphorylation Controls the Localization and Activation of the Lumenal Carbonic Anhydrase in Chlamydomonas Reinhardtii. PLoS ONE 2012, 7, e49063. [Google Scholar] [CrossRef]
- Villarejo, A.; Shutova, T.; Moskvin, O.; Forssén, M.; Klimov, V.V.; Samuelsson, G. A Photosystem II-Associated Carbonic Anhydrase Regulates the Efficiency of Photosynthetic Oxygen Evolution. EMBO J. 2002, 21, 1930–1938. [Google Scholar] [CrossRef] [PubMed]
- Shutova, T.; Kenneweg, H.; Buchta, J.; Nikitina, J.; Terentyev, V.; Chernyshov, S.; Andersson, B.; Allakhverdiev, S.I.; Klimov, V.V.; Dau, H.; et al. The Photosystem II-Associated Cah3 in Chlamydomonas Enhances the O2 Evolution Rate by Proton Removal. EMBO J. 2008, 27, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ohta, H.; Enami, I. Cross-Reconstitution of the Extrinsic Proteins and Photosystem II Complexes from Chlamydomonas Reinhardtii and Spinacia Oleracea. Photosynth. Res. 2005, 84, 239–244. [Google Scholar] [CrossRef]
- Roose, J.L.; Wegener, K.M.; Pakrasi, H.B. The Extrinsic Proteins of Photosystem II. Photosynth. Res. 2007, 92, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Caffarri, S.; Croce, R.; Cattivelli, L.; Bassi, R. A Look within LHCII: Differential Analysis of the Lhcb1−3 Complexes Building the Major Trimeric Antenna Complex of Higher-Plant Photosynthesis. Biochemistry 2004, 43, 9467–9476. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, J.; Takahashi, Y. Structure, Function and Assembly of Photosystem II and Its Light-Harvesting Proteins. Photosynth. Res. 2004, 82, 241–263. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Tokutsu, R.; Kim, E.; Minagawa, J. Four Distinct Trimeric Forms of Light-Harvesting Complex II Isolated from the Green Alga Chlamydomonas Reinhardtii. Photosynth. Res. 2019, 142, 195–201. [Google Scholar] [CrossRef]
- Terentyev, V.V.; Shukshina, A.K.; Shitov, A.V. Carbonic Anhydrase CAH3 Supports the Activity of Photosystem II under Increased PH. Biochim. Biophys. Acta—Bioenerg. 2019, 1860, 582–590. [Google Scholar] [CrossRef]
- Shitov, A.V.; Pobeguts, O.V.; Smolova, T.N.; Allakhverdiev, S.I.; Klimov, V.V. Manganese-Dependent Carboanhydrase Activity of Photosystem II Proteins. Biochemistry (Mosc.) 2009, 74, 509–517. [Google Scholar] [CrossRef]
- Ignatova, L.; Zhurikova, E.; Ivanov, B. The Presence of the Low Molecular Mass Carbonic Anhydrase in Photosystem II of C3 Higher Plants. J. Plant Physiol. 2019, 232, 94–99. [Google Scholar] [CrossRef]
- Shitov, A.V.; Terentyev, V.V.; Zharmukhamedov, S.K.; Rodionova, M.V.; Karacan, M.; Karacan, N.; Klimov, V.V.; Allakhverdiev, S.I. Is Carbonic Anhydrase Activity of Photosystem II Required for Its Maximum Electron Transport Rate? Biochim. Biophys. Acta—Bioenerg. 2018, 1859, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, N.N.; Ignatova, L.K.; Fedorchuk, T.P.; Ivanov, B.N. Carbonic Anhydrases in Photosynthetic Cells of Higher Plants. Biochemistry (Mosc.) 2015, 80, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, N.N.; Fedorchuk, T.P.; Terentyev, V.V.; Dymova, O.V.; Naydov, I.A.; Golovko, T.K.; Borisova-Mubarakshina, M.M.; Ivanov, B.N. The Role of Carbonic Anhydrase α-CA4 in the Adaptive Reactions of Photosynthetic Apparatus: The Study with α-CA4 Knockout Plants. Protoplasma 2020, 257, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Ciarke, A.K.; Chen, Z.Y.; Hugghins, S.Y.; Park, Y.I.; Husic, H.D.; Moroney, J.V.; Samuelsson, G. A Novel α-Type Carbonic Anhydrase Associated with the Thylakoid Membrane in Chlamydomonas Reinhardtii Is Required for Growth at Ambient CO2. EMBO J. 1998, 17, 1208–1216. [Google Scholar] [CrossRef]
- Niyogi, K.K.; Bjorkman, O.; Grossman, A.R. The Roles of Specific Xanthophylls in Photoprotection. Proc. Natl. Acad. Sci. USA 1997, 94, 14162–14167. [Google Scholar] [CrossRef]
- Baroli, I.; Do, A.D.; Yamane, T.; Niyogi, K.K. Zeaxanthin Accumulation in the Absence of a Functional Xanthophyll Cycle Protects Chlamydomonas Reinhardtii from Photooxidative Stress. Plant Cell 2003, 15, 992–1008. [Google Scholar] [CrossRef]
- Jahns, P.; Holzwarth, A.R. The Role of the Xanthophyll Cycle and of Lutein in Photoprotection of Photosystem II. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 182–193. [Google Scholar] [CrossRef]
- Crofts, J.; Horton, P. Dissipation of Excitation Energy by Photosystem II Particles at Low PH. Biochim. Biophys. Acta—Bioenerg. 1991, 1058, 187–193. [Google Scholar] [CrossRef]
- Kaminskaya, O.; Shuvalov, V.A.; Renger, G. Two Reaction Pathways for Transformation of High Potential Cytochrome B559 of PS II into the Intermediate Potential Form. Biochim. Biophys. Acta—Bioenerg. 2007, 1767, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Mamedov, F.; Gadjieva, R.; Styring, S. Oxygen-Induced Changes in the Redox State of the Cytochrome b 559 in Photosystem II Depend on the Integrity of the Mn Cluster. Physiol. Plant. 2007, 131, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Nagao, R.; Noguchi, T.; Nield, J.; Sato, F.; Ifuku, K. The N-Terminal Sequence of the Extrinsic PsbP Protein Modulates the Redox Potential of Cyt B559 in Photosystem II. Sci. Rep. 2016, 6, 21490. [Google Scholar] [CrossRef]
- Kaminskaya, O.; Kern, J.; Shuvalov, V.A.; Renger, G. Extinction Coefficients of Cytochromes B559 and C550 of Thermosynechococcus Elongatus and Cyt B559/PS II Stoichiometry of Higher Plants. Biochim. Biophys. Acta—Bioenerg. 2005, 1708, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Savchenko, T.; Yanykin, D.; Khorobrykh, A.; Terentyev, V.; Klimov, V.; Dehesh, K. The Hydroperoxide Lyase Branch of the Oxylipin Pathway Protects against Photoinhibition of Photosynthesis. Planta 2017, 245, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.M.; Cruz, J.A.; Kanazawa, A. Balancing the Central Roles of the Thylakoid Proton Gradient. Trends Plant Sci. 2003, 8, 27–32. [Google Scholar] [CrossRef]
- Takizawa, K.; Cruz, J.A.; Kanazawa, A.; Kramer, D.M. The Thylakoid Proton Motive Force in Vivo. Quantitative, Non-Invasive Probes, Energetics, and Regulatory Consequences of Light-Induced Pmf. Biochim. Biophys. Acta—Bioenerg. 2007, 1767, 1233–1244. [Google Scholar] [CrossRef]
- Tikhonov, A.N. PH-Dependent Regulation of Electron Transport and ATP Synthesis in Chloroplasts. Photosynth. Res. 2013, 116, 511–534. [Google Scholar] [CrossRef]
- Vershubskii, A.V.; Trubitsin, B.V.; Priklonskii, V.I.; Tikhonov, A.N. Lateral Heterogeneity of the Proton Potential along the Thylakoid Membranes of Chloroplasts. Biochim. Biophys. Acta—Biomembr. 2017, 1859, 388–401. [Google Scholar] [CrossRef]
- Commet, A.; Boswell, N.; Yocum, C.F.; Popelka, H. PH Optimum of the Photosystem II H2O Oxidation Reaction: Effects of PsbO, the Manganese-Stabilizing Protein, Cl-Retention, and Deprotonation of a Component Required for O2 evolution Activity. Biochemistry 2012, 51, 3808–3818. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.N.; Rutherford, A.W.; Krieger, A. A Change in the Midpoint Potential of the Quinone QA in Photosystem II Associated with Photoactivation of Oxygen Evolution. Biochim. Biophys. Acta—Bioenerg. 1995, 1229, 202–207. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Tsuchiya, T.; Watabe, K.; Kojima, A.; Los, D.A.; Tomo, T.; Klimov, V.V.; Mimuro, M. Redox Potentials of Primary Electron Acceptor Quinone Molecule (QA)- and Conserved Energetics of Photosystem II in Cyanobacteria with Chlorophyll a and Chlorophyll D. Proc. Natl. Acad. Sci. USA 2011, 108, 8054–8058. [Google Scholar] [CrossRef] [PubMed]
- Shibamoto, T.; Kato, Y.; Sugiura, M.; Watanabe, T. Redox Potential of the Primary Plastoquinone Electron Acceptor Q A in Photosystem II from Thermosynechococcus Elongatus Determined by Spectroelectrochemistry. Biochemistry 2009, 48, 10682–10684. [Google Scholar] [CrossRef]
- Lazar, D. Chlorophyll a Fluorescence Induction1. Biochim. Biophys. Acta 1999, 1412, 1–28. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration; Papageorgiou, G.C.G., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Stirbet, A.; Riznichenko, G.Y.; Rubin, A.B. Modeling Chlorophyll a Fluorescence Transient: Relation to Photosynthesis. Biochemistry (Mosc.) 2014, 79, 291–323. [Google Scholar] [CrossRef]
- Heredia, P.; De Las Rivas, J. Fluorescence Induction of Photosystem II Membranes Shows the Steps till Reduction and Protonation of the Quinone Pool. J. Plant Physiol. 2003, 160, 1499–1506. [Google Scholar] [CrossRef]
- Rehman, A.U.; Kodru, S.; Vass, I. Chloramphenicol Mediates Superoxide Production in Photosystem II and Enhances Its Photodamage in Isolated Membrane Particles. Front. Plant Sci. 2016, 7, 479. [Google Scholar] [CrossRef]
- Hanson, D.T.; Franklin, L.A.; Samuelsson, G.; Badger, M.R. The Chlamydomonas Reinhardtii Cia3 Mutant Lacking a Thylakoid Lumen-Localized Carbonic Anhydrase Is Limited by CO2 Supply to Rubisco and Not Photosystem II Function in Vivo. Plant Physiol. 2003, 132, 2267–2275. [Google Scholar] [CrossRef] [PubMed]
- Vetoshkina, D.V.; Kozuleva, M.A.; Terentyev, V.V.; Zhurikova, E.M.; Borisova-Mubarakshina, M.M.; Ivanov, B.N. Comparison of State Transitions of the Photosynthetic Antennae in Arabidopsis and Barley Plants upon Illumination with Light of Various Intensity. Biochemistry (Mosc.) 2019, 84, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Leoni, C.; Pietrzykowska, M.; Kiss, A.Z.; Suorsa, M.; Ceci, L.R.; Aro, E.-M.; Jansson, S. Very Rapid Phosphorylation Kinetics Suggest a Unique Role for Lhcb2 during State Transitions in Arabidopsis. Plant J. 2013, 76, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Kirst, H.; Garcia-Cerdan, J.G.; Zurbriggen, A.; Ruehle, T.; Melis, A. Truncated Photosystem Chlorophyll Antenna Size in the Green Microalga Chlamydomonas Reinhardtii upon Deletion of the TLA3-CpSRP43 Gene. Plant Physiol. 2012, 160, 2251–2260. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tu, W.; Liu, Y.; Sun, R.; Liu, C.; Yang, C. The N-Terminal Domain of Lhcb Proteins Is Critical for Recognition of the LHCII Kinase. Biochim. Biophys. Acta—Bioenerg. 2016, 1857, 79–88. [Google Scholar] [CrossRef][Green Version]
- Shin, W.-S.; Lee, B.; Kang, N.K.; Kim, Y.-U.; Jeong, W.-J.; Kwon, J.-H.; Jeong, B.; Chang, Y.K. Complementation of a Mutation in CpSRP43 Causing Partial Truncation of Light-Harvesting Chlorophyll Antenna in Chlorella Vulgaris. Sci. Rep. 2017, 7, 17929. [Google Scholar] [CrossRef] [PubMed]
- Drop, B.; Webber-Birungi, M.; Yadav, S.K.N.; Filipowicz-Szymanska, A.; Fusetti, F.; Boekema, E.J.; Croce, R. Light-Harvesting Complex II (LHCII) and Its Supramolecular Organization in Chlamydomonas Reinhardtii. Biochim. Biophys. Acta—Bioenerg. 2014, 1837, 63–72. [Google Scholar] [CrossRef]
- Shim, H.; Cao, J.; Debrunner, P.G. Purification of Highly Active Oxygen-Evolving Photosystem II from Chlamydomonas Reinhardtii. Photosynth. Res. 1990, 26, 223–228. [Google Scholar] [CrossRef]
- Dall’Osto, L.; Fiore, A.; Cazzaniga, S.; Giuliano, G.; Bassi, R. Different Roles of α- and β-Branch Xanthophylls in Photosystem Assembly and Photoprotection. J. Biol. Chem. 2007, 282, 35056–35068. [Google Scholar] [CrossRef]
- Young, A.J.; Britton, G. The Distribution of α-Carotene in the Photosynthetic Pigment-Protein Complexes of Higher Plants. Plant Sci. 1989, 64, 179–183. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. Biochim. Biophys. Acta—Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 350–382. [Google Scholar]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.M. The Molar Extinction Coefficient of 2,6-Dichlorophenol Indophenol. Biochim. Biophys. Acta—Gen. Subj. 1964, 86, 194–197. [Google Scholar] [CrossRef]
Chl a, μg | Chl b, μg | Chl a/Chl b | Car, μg | Chl/Car | |
---|---|---|---|---|---|
WT | 714.3 ± 7.2 a | 285.6 ± 2.7 b | 2.5 ± 0.01 c | 208.7 ± 1.1 e | 3.4 ± 0.02 g |
cia3 | 722.6 ± 11.7 a | 276.7 ± 4.8 b | 2.6 ± 0.01 d | 201.9 ± 3.3 f | 3.6 ± 0.01 h |
Neo + Lor | Vio | Ant | Lut | Zea | α-C | β-C | |
---|---|---|---|---|---|---|---|
WT | 11.5 ± 0.8 a | 10.1 ± 0.2 b | 2.1 ± 0.06 d | 37.6 ± 0.8 e | 1.0 ± 0.06 g | 2.3 ± 0.06 i | 35.5 ± 1.0 k |
cia3 | 12.3 ± 0.8 a | 14.7 ± 1.1 c | 1.9 ± 0.11 d | 30.1 ± 0.6 f | 1.3 ± 0.07 h | 1.4 ± 0.05 j | 37.7 ± 1.4 e,k |
WT | cia3 | spinach | |
---|---|---|---|
Chl/RC | 295 ± 2 a | 303 ± 8 a | 212 ± 2 b |
Mn/RC | 3.52 ± 0.29 c | 3.36 ± 0.20 c | – |
1 – Vj | Area, % | |||
---|---|---|---|---|
pH 6.5 | pH 7.0 | pH 6.5 | pH 7.0 | |
WT | 0.420 ± 0.009 a | 0.399 ± 0.007 b | 100 ± 2 * | 90.7 ± 4 |
cia3 | 0.409 ± 0.007 ab | 0.376 ± 0.003 c | 66.1 ± 3 | 49.5 ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terentyev, V.V.; Shukshina, A.K.; Ashikhmin, A.A.; Tikhonov, K.G.; Shitov, A.V. The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii. Life 2020, 10, 63. https://doi.org/10.3390/life10050063
Terentyev VV, Shukshina AK, Ashikhmin AA, Tikhonov KG, Shitov AV. The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii. Life. 2020; 10(5):63. https://doi.org/10.3390/life10050063
Chicago/Turabian StyleTerentyev, Vasily V., Anna K. Shukshina, Aleksandr A. Ashikhmin, Konstantin G. Tikhonov, and Alexandr V. Shitov. 2020. "The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii" Life 10, no. 5: 63. https://doi.org/10.3390/life10050063
APA StyleTerentyev, V. V., Shukshina, A. K., Ashikhmin, A. A., Tikhonov, K. G., & Shitov, A. V. (2020). The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii. Life, 10(5), 63. https://doi.org/10.3390/life10050063