A Product Pose Tracking Paradigm Based on Deep Points Detection
Abstract
:1. Introduction
2. Proposed Approach
3. Preliminary Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry; Final Report of the Industrie 4.0 Working Group; Forschungsunion: Munich, Germany, 2013. [Google Scholar]
- Schläpfer, R.C.; Koch, M.; Merkofer, P. Industry 4.0 Challenges and Solutions for the Digital Transformation and Use of Exponential Technologies; Finance, Audit Tax Consulting Corporate: Zurich, Switzerland, 2015. [Google Scholar]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the Art and Future Trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Wang, K. Intelligent Predictive Maintenance (IPdM) System-Industry 4.0 Scenario. WIT Trans. Eng. Sci. 2016, 113, 259–268. [Google Scholar]
- Subakti, H.; Jiang, J.R. Indoor Augmented Reality Using Deep Learning for Industry 4.0 Smart Factories. In Proceedings of the IEEE Annual Computer Software and Applications Conference, Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 63–68. [Google Scholar]
- Konstantinidis, F.K.; Kansizoglou, I.; Santavas, N.; Mouroutsos, S.G.; Gasteratos, A. MARMA: A Mobile Augmented Reality Maintenance Assistant for Fast-Track Repair Procedures in the Context of Industry 4.0. Machines 2020, 8, 88. [Google Scholar] [CrossRef]
- Olsen, T.L.; Tomlin, B. Industry 4.0: Opportunities and Challenges for Operations Management. Manuf. Serv. Oper. Manag. 2020, 22, 113–122. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of Job Shop Scheduling Research and its New Perspectives Under Industry 4.0. J. Intell. Manuf. 2019, 30, 1809–1830. [Google Scholar] [CrossRef]
- Lambrecht, J. Robust Few-Shot Pose Estimation of Articulated Robots Using Monocular Cameras and Deep-Learning-Based Keypoint Detection. In Proceedings of the IEEE International Conference on Robot Intelligence Technology and Applications, Daejeon, Korea, 1–3 November 2019; pp. 136–141. [Google Scholar]
- Nilwong, S.; Hossain, D.; Kaneko, S.i.; Capi, G. Deep Learning-Based Landmark Detection for Mobile Robot Outdoor Localization. Machines 2019, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLMA System for Monocular, Stereo, and RGB-D cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Bampis, L.; Gasteratos, A.; Boukas, E. CNN-based novelty detection for terrestrial and extra-terrestrial autonomous exploration. IET Cyber-Syst. Robot. 2021. [Google Scholar] [CrossRef]
- Cosenza, C.; Nicolella, A.; Esposito, D.; Niola, V.; Savino, S. Mechanical System Control by RGB-D Device. Machines 2021, 9, 3. [Google Scholar] [CrossRef]
- Xu, H.; Chen, G.; Wang, Z.; Sun, L.; Su, F. RGB-D-Based Pose Estimation of Workpieces with Semantic Segmentation and Point Cloud Registration. Sensors 2019, 19, 1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, J.P.; Roberto, R.; Simões, F.; Almeida, M.; Figueiredo, L.; Teixeira, J.M.; Teichrieb, V. Markerless Tracking System for Augmented Reality in the Automotive Industry. Expert Syst. Appl. 2017, 82, 100–114. [Google Scholar] [CrossRef]
- Pavlakos, G.; Zhou, X.; Chan, A.; Derpanis, K.G.; Daniilidis, K. 6-DOF Object Pose from Semantic Keypoints. In Proceedings of the IEEE International Conference on Robotics and Automation, Marina Bay Sands, Singapore, 29 May–3 June 2017; pp. 2011–2018. [Google Scholar]
- Bampis, L.; Gasteratos, A. Revisiting the Bag-of-Visual-Words Model: A Hierarchical Localization Architecture for Mobile Systems. Robot. Auton. Syst. 2019, 113, 104–119. [Google Scholar] [CrossRef]
- Ni, T.; Shi, Y.; Sun, A.; Ju, B. Simultaneous Identification of Points and Circles: Structure from Motion System in Industry Scenes. Pattern Anal. Appl. 2021, 24, 333–342. [Google Scholar] [CrossRef]
- Haochen, L.; Bin, Z.; Xiaoyong, S.; Yongting, Z. CNN-Based Model for Pose Detection of Industrial PCB. In Proceedings of the IEEE International Conference on Intelligent Computation Technology and Automation, Changsha, China, 9–10 October 2017; pp. 390–393. [Google Scholar]
- Brucker, M.; Durner, M.; Márton, Z.C.; Balint-Benczedi, F.; Sundermeyer, M.; Triebel, R. 6DoF Pose Estimation for Industrial Manipulation Based on Synthetic Data. In International Symposium on Experimental Robotics; Springer: Cham, Switzerland, 2018; pp. 675–684. [Google Scholar]
- Patel, N.; Mukherjee, S.; Ying, L. EREL-Net: A Remedy for Industrial Bottle Defect Detection. In International Conference on Smart Multimedia; Springer: Cham, Switzerland, 2018; pp. 448–456. [Google Scholar]
- Chen, X.; Chen, Y.; You, B.; Xie, J.; Najjaran, H. Detecting 6D Poses of Target Objects From Cluttered Scenes by Learning to Align the Point Cloud Patches With the CAD Models. IEEE Access 2020, 8, 210640–210650. [Google Scholar] [CrossRef]
- Konstantindis, F.K.; Gasteratos, A.; Mouroutsos, S.G. Vision-Based Product Tracking Method for Cyber-Physical Production Systems in Industry 4.0. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Krakow, Poland, 16–18 October 2018; pp. 1–6. [Google Scholar]
- Botta, A.; Quaglia, G. Performance Analysis of Low-Cost Tracking System for Mobile Robots. Machines 2020, 8, 29. [Google Scholar] [CrossRef]
- Santavas, N.; Kansizoglou, I.; Bampis, L.; Karakasis, E.; Gasteratos, A. Attention! A Lightweight 2D Hand Pose Estimation Approach. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Melnichuk, O.; Melnichuk, L.; Venger, Y.; Torchynska, T.; Korsunska, N.; Khomenkova, L. Effect of Plasmon–Phonon Interaction on the Infrared Reflection Spectra of MgxZn1-xO/Al2O3 Structures. J. Mater. Sci. Mater. Electron. 2020, 31, 7539–7546. [Google Scholar] [CrossRef]
- Melcher, R.; Martins, S.; Travitzky, N.; Greil, P. Fabrication of Al2O3-Based Composites by Indirect 3D-Printing. Mater. Lett. 2006, 60, 572–575. [Google Scholar] [CrossRef]
- Huang, S.; Ye, C.; Zhao, H.; Fan, Z. Additive Manufacturing of Thin Alumina Ceramic Cores Using Binder-Jetting. Addit. Manuf. 2019, 29, 100802. [Google Scholar] [CrossRef]
- Lorenzo-Martin, C.; Ajayi, O.; Hartman, K.; Bhattacharya, S.; Yacout, A. Effect of Al2O3 Coating on Fretting Wear Performance of Zr Alloy. Wear 2019, 426, 219–227. [Google Scholar] [CrossRef]
- Misra, V.C.; Chakravarthy, Y.; Khare, N.; Singh, K.; Ghorui, S. Strongly Adherent Al2O3 Coating on SS 316L: Optimization of Plasma Spray Parameters and Investigation of Unique Wear Resistance Behaviour Under Air and Nitrogen Environment. Ceram. Int. 2020, 46, 8658–8668. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Pleiss, G.; Van Der Maaten, L.; Weinberger, K. Convolutional Networks with Dense Connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Zhang, R. Making Convolutional Networks Shift-Invariant Again. In Proceedings of the International Conference on Machine Learning, Los Angeles, CA, USA, 9–15 June 2019; pp. 7324–7334. [Google Scholar]
- Gao, X.S.; Hou, X.R.; Tang, J.; Cheng, H.F. Complete Solution Classification for the Perspective-Three-Point Problem. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 930–943. [Google Scholar]
- Kubíčková, H.; Jedlička, K.; Fiala, R.; Beran, D. Indoor Positioning Using PnP Problem on Mobile Phone Images. Int. J. Geo-Inf. 2020, 9, 368. [Google Scholar] [CrossRef]
- Faessler, M.; Mueggler, E.; Schwabe, K.; Scaramuzza, D. A Monocular Pose Estimation System Based on Infrared LEDs. In Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 907–913. [Google Scholar]
- Simon, T.; Joo, H.; Matthews, I.; Sheikh, Y. Hand Keypoint Detection in Single Images Using Multiview Bootstrapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1145–1153. [Google Scholar]
- Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar]
- Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin, D.; Panozzo, D. ABC: A Big CAD Model Dataset for Geometric Deep Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9601–9611. [Google Scholar]
- Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.; et al. Mixed Precision Training. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Bampis, L.; Amanatiadis, A.; Gasteratos, A. Fast Loop-Closure Detection Using Visual-Word-Vectors from Image Sequences. Int. J. Robot. Res. 2018, 37, 62–82. [Google Scholar] [CrossRef]
Number of transformed instances | 50 | 100 | 150 | 200 | 250 | 300 |
IoU (%) among the detected points |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bampis, L.; Mouroutsos, S.G.; Gasteratos, A. A Product Pose Tracking Paradigm Based on Deep Points Detection. Machines 2021, 9, 112. https://doi.org/10.3390/machines9060112
Bampis L, Mouroutsos SG, Gasteratos A. A Product Pose Tracking Paradigm Based on Deep Points Detection. Machines. 2021; 9(6):112. https://doi.org/10.3390/machines9060112
Chicago/Turabian StyleBampis, Loukas, Spyridon G. Mouroutsos, and Antonios Gasteratos. 2021. "A Product Pose Tracking Paradigm Based on Deep Points Detection" Machines 9, no. 6: 112. https://doi.org/10.3390/machines9060112
APA StyleBampis, L., Mouroutsos, S. G., & Gasteratos, A. (2021). A Product Pose Tracking Paradigm Based on Deep Points Detection. Machines, 9(6), 112. https://doi.org/10.3390/machines9060112