Robust Solution of the Multi-Model Singular Linear-Quadratic Optimal Control Problem: Regularization Approach
Abstract
:1. Introduction
- 1.
- denotes the n-dimensional real Euclidean space.
- 2.
- denotes the Euclidean norm either of a vector or of a matrix.
- 3.
- The superscript “T” denotes the transposition of a matrix A, or of a vector x, .
- 4.
- denotes the linear space of n-dimensional vector-valued real functions, square-integrable in the finite interval .
- 5.
- is used for the zero matrix of the dimension , except in the cases where the dimension of the zero matrix is obvious. In such cases, the notation 0 is used for the zero matrix.
- 6.
- is the n-dimensional identity matrix.
- 7.
- , where , , denotes the column block-vector of the dimension with the upper block x and the lower block y.
- 8.
- The inequality , where A and B are quadratic symmetric matrices of the same dimensions, means that the matrix is positive semi-definite.
2. Problem Formulation and Main Definitions
- (i)
- (ii)
- .
3. Regularization of the Optimal Control Problem (1) and (3)
3.1. Multi-Model Cheap Control Problem
3.2. Solvability Conditions of the Optimal Control Problem (1), (5) and (6)
4. Asymptotic Analysis of the Solvability Conditions to the Problem (1), (5) and (6)
4.1. Transformation of the Terminal-Value Problem (9), the Initial-Value Problem (16) and the Optimization Problem (14) and (15)
- AI.
- For any and any , the matrix has the column rank r.
- AII.
- For any and any , .
- AIII.
- For any , .
- AIV.
- The matrix-valued functions , are continuously differentiable in the interval .
- AV.
- The matrix-valued functions , and are twice continuously differentiable in the interval .
4.2. Asymptotic Solution of the Terminal-Value Problem (24)
4.2.1. Obtaining the Boundary Layer Correction
4.2.2. Obtaining the Outer Solution Terms
4.2.3. Control-Theoretic Interpretation of the Terminal-Value Problem (52)
- (i)
- for any , any and any , the initial-value problem (54) with has the unique absolutely continuous solution in the entire interval ;
- (ii)
- .
4.2.4. Obtaining the Boundary Layer Correction Terms and
4.2.5. Justification of the Asymptotic Solution to the Terminal-Value Problem (39)–(41)
4.3. Asymptotic Solution of the Initial-Value Problem (33)
4.3.1. Obtaining the Boundary Layer Corrections and
4.3.2. Obtaining the Outer Solution Terms
4.3.3. Obtaining the Boundary Layer Correction Term
4.3.4. Obtaining the Boundary Layer Correction Term
4.3.5. Justification of the Asymptotic Solution to the Initial-Value Problem (82)
4.4. Transformation of the Optimal Control in the Problem (1), (5) and (6)
4.5. Asymptotic Behaviour of the Solution to the Optimization Problem (35) and (36)
4.6. Asymptotically Suboptimal Control of the Problem (1), (5) and (6)
4.6.1. Formal Construction of the Suboptimal Control
4.6.2. Asymptotic Behaviour of the Solution to the Initial-Value Problem (139)
4.6.3. Time Realization of the Control (138) in the Problem (1), (5) and (6)
4.6.4. Closeness of the Values and
5. Minimizing Sequence of Optimal Control Problem (1) and (3)
6. Illustrative Example
7. Concluding Remarks and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Boltyanskii, V.G.; Poznyak, A.S. The Robust Maximum Principle: Theory and Applications; Birkhauser: New York, NY, USA, 2012. [Google Scholar]
- Fridman, L.; Poznyak, A.; Bejarano, F.J. Robust Output LQ Optimal Control via Integral Sliding Modes; Birkhauser: New York, NY, USA, 2014. [Google Scholar]
- Özmen, A.; Kropat, E.; Weber, G.-W. Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty. Optimization 2017, 66, 2135–2155. [Google Scholar] [CrossRef]
- Savku, E. A stochastic control approach for constrained stochastic differential games with jumps and regimes. Mathematics 2023, 11, 3043. [Google Scholar] [CrossRef]
- Ozcan, I.; Zeynep Alparslan Gok, S.; Weber, G.-W. Peer group situations and games with fuzzy uncertainty. J. Ind. Manag. Optim. 2023. [Google Scholar] [CrossRef]
- Kara, G.; Özmen, A.; Weber, G.-W. Stability advances in robust portfolio optimization under parallelepiped uncertainty. Cent. Eur. J. Oper. 2019, 27, 241–261. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Gordon & Breach Science Publishers: New York, NY, USA, 1986. [Google Scholar]
- Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Bell, D.J.; Jacobson, D.H. Singular Optimal Control Problems; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Gabasov, R.; Kirillova, F.M. High order necessary conditions for optimality. SIAM J. Control 1972, 10, 127–168. [Google Scholar] [CrossRef]
- Kelly, H.J. A second variation test for singular extremals. AIAA J. 1964, 2, 26–29. [Google Scholar] [CrossRef]
- Krotov, V.F. Global Methods in Optimal Control Theory; Marsel Dekker: New York, NY, USA, 1996. [Google Scholar]
- McDanell, J.P.; Powers, W.F. Necessary conditions for joining optimal singular and nonsingular subarcs. SIAM J. Control 1971, 9, 161–173. [Google Scholar] [CrossRef]
- Gurman, V.I. Optimal processes of singular control. Autom. Remote Control 1965, 26, 783–792. [Google Scholar]
- Gurman, V.I.; Dykhta, V.A. Singular problems of optimal control and the method of multiple maxima. Autom. Remote Control 1977, 38, 343–350. [Google Scholar]
- Gurman, V.I.; Kang, N.M. Degenerate problems of optimal control. I. Autom. Remote Control 2011, 72, 497–511. [Google Scholar] [CrossRef]
- Gurman, V.I.; Kang, N.M. Degenerate problems of optimal control. II. Autom. Remote Control 2011, 72, 727–739. [Google Scholar] [CrossRef]
- Gurman, V.I.; Kang, N.M. Degenerate problems of optimal control. III. Autom. Remote Control 2011, 72, 929–943. [Google Scholar] [CrossRef]
- Hautus, M.L.J.; Silverman, L.M. System structure and singular control. Linear Algebra Appl. 1983, 50, 369–402. [Google Scholar] [CrossRef]
- Willems, J.C.; Kitapci, A.; Silverman, L.M. Singular optimal oontrol: A geometric approach. SIAM J. Control Optim. 1986, 24, 323–337. [Google Scholar] [CrossRef]
- Geerts, T. All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimial cost. Linear AlgebraAppl. 1989, 116, 135–181. [Google Scholar] [CrossRef]
- Geerts, T. Linear-quadratic control with and without stability subject to general implicit continuous-time systems: Coordinate-free interpretations of the optimal costs in terms of dissipation inequality and linear matrix inequality; existence and uniqueness of optimal controls and state trajectories. Linear Algebra Appl. 1994, 203–204, 607–658. [Google Scholar]
- Zavalishchin, S.T.; Sesekin, A.N. Dynamic Impulse Systems: Theory and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Glizer, V.Y. Solution of a singular optimal control problem with state delays: A cheap control approach. In Optimization Theory and Related Topics, Contemporary Mathematics Series; Reich, S., Zaslavski, A.J., Eds.; American Mathematical Society: Providence, RI, USA, 2012; Volume 568, pp. 77–107. [Google Scholar]
- Glizer, V.Y. Stochastic singular optimal control problem with state delays: Regularization, singular perturbation, and minimizing sequence. SIAM J.Control Optim. 2012, 50, 2862–2888. [Google Scholar] [CrossRef]
- Glizer, V.Y. Singular solution of an infinite horizon linear-quadratic optimal control problem with state delays. In Variational and Optimal Control Problems on Unbounded Domains, Contemporary Mathematics Series; Wolansky, G., Zaslavski, A.J., Eds.; American Mathematical Society: Providence, RI, USA, 2014; Volume 619, pp. 59–98. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; Halsted Press: New York, NY, USA, 1977. [Google Scholar]
- Bikdash, M.U.; Nayfeh, A.H.; Cliff, E.M. Singular perturbation of the time-optimal soft-constrained cheap-control problem. IEEE Trans. Automat. Control 1993, 38, 466–469. [Google Scholar] [CrossRef]
- Dragan, V.; Halanay, A. Singular perturbations and linear feedback control. Proceedings of the Czechoslovak Conference on Differential Equations and Their Applications (Equadiff IV). In Lecture Notes in Mathematics; Springer: Berlin, Germany, 1979; Volume 703, pp. 86–92. [Google Scholar]
- Glizer, V.Y. Asymptotic solution of a cheap control problem with state delay. Dynam. Control 1999, 9, 339–357. [Google Scholar] [CrossRef]
- Glizer, V.Y. Suboptimal solution of a cheap control problem for linear systems with multiple state delays. J. Dyn. Control Syst. 2005, 11, 527–574. [Google Scholar] [CrossRef]
- Glizer, V.Y.; Fridman, L.M.; Turetsky, V. Cheap suboptimal control of an integral sliding mode for uncertain systems with state delays. IEEE Trans. Automat. Contr. 2007, 52, 1892–1898. [Google Scholar] [CrossRef]
- Glizer, V.Y. Infinite horizon cheap control problem for a class of systems with state delays. J. Nonlinear Convex Anal. 2009, 10, 199–233. [Google Scholar]
- Glizer, V.Y.; Kelis, O. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances. Numer. Algebra Control Optim. 2018, 8, 211–235. [Google Scholar] [CrossRef]
- Jameson, A.; O’Malley, R.E. Cheap control of the time-invariant regulator. Appl. Math. Optim. 1975, 1, 337–354. [Google Scholar] [CrossRef]
- Kokotovic, P.V.; Khalil, H.K.; O’Reilly, J. Singular Perturbation Methods in Control: Analysis and Design; Academic Press: London, UK, 1986. [Google Scholar]
- Kwakernaak, H.; Sivan, R. The maximally achievable accuracy of linear optimal regulators and linear optimal filters. IEEE Trans. Automat. Control 1972, 17, 79–86. [Google Scholar] [CrossRef]
- Mahadevan, R.; Muthukumar, T. Homogenization of some cheap control problems. SIAM J. Math. Anal. 2011, 43, 2211–2229. [Google Scholar] [CrossRef]
- Naidu, D.S. Singular perturbations and time scales in control theory and applications: An overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2002, 9, 233–278. [Google Scholar]
- Naidu, D.S.; Calise, A.J. Singular perturbations and time scales in guidance and control of aerospace systems: A survey. J. Guid. Control Dyn. 2002, 24, 1057–1078. [Google Scholar] [CrossRef]
- O’Malley, R.E.; Jameson, A. Singular perturbations and singular arcs, I. IEEE Trans. Automat. Control 1975, 20, 218–226. [Google Scholar] [CrossRef]
- O’Malley, R.E.; Jameson, A. Singular perturbations and singular arcs, II. IEEE Trans. Automat. Control 1977, 22, 328–337. [Google Scholar] [CrossRef]
- O’Reilly, J. Partial cheap control of the time-invariant regulator. Internat. J. Control 1983, 37, 909–927. [Google Scholar] [CrossRef]
- Saberi, A.; Sannuti, P. Cheap and singular controls for linear quadratic regulators. IEEE Trans. Automat. Control 1987, 32, 208–219. [Google Scholar] [CrossRef]
- Seron, M.M.; Braslavsky, J.H.; Kokotovic, P.V.; Mayne, D.Q. Feedback limitations in nonlinear systems: From Bode integrals to cheap control. IEEE Trans. Automat. Control 1999, 44, 829–833. [Google Scholar] [CrossRef]
- Smetannikova, E.N.; Sobolev, V.A. Regularization of cheap periodic control problems. Automat. Remote Control 2005, 66, 903–916. [Google Scholar] [CrossRef]
- Artstein, Z.; Gaitsgory, V. The value function of singularly perturbed control systems. Appl. Math. Optim. 2000, 41, 425–445. [Google Scholar] [CrossRef]
- Dontchev, A.L. Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems; Springer: Berlin, Germany, 1983. [Google Scholar]
- Dragan, V. On the linear quadratic optimal control for systems described by singularly perturbed Ito differential equations with two fast time scales. Axioms 2019, 8, 30. [Google Scholar] [CrossRef]
- Dragan, V.; Mukaidani, H.; Shi, P. The linear quadratic regulator problem for a class of controlled systems modeled by singularly perturbed Ito differential equations. SIAM J. Control Optim. 2012, 50, 448–470. [Google Scholar] [CrossRef]
- Fridman, E. Decomposition of linear optimal singularly-perturbed systems with aftereffect. Automat. Remote Control 1990, 51, 1518–1527. [Google Scholar]
- Gajic, Z.; Lim, M.-T. Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques; Marsel Dekker Inc.: New York, NY, USA, 2001. [Google Scholar]
- Glizer, V.Y. Correctness of a constrained control Mayer’s problem for a class of singularly perturbed functional-differential systems. Control Cybernet. 2008, 37, 329–351. [Google Scholar]
- Kokotovic, P.; Yackel, R. Singular perturbation of linear regulators: Basic theorems. IEEE Trans. Automat. Control 1972, 17, 29–37. [Google Scholar] [CrossRef]
- Kuehn, C. Multiple Time Scale Dynamics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Lange, C.G.; Miura, R.M. Singular perturbation analysis of boundary-value problems for differential-difference equations. Part V: Small shifts with layer behavior. SIAM J. Appl. Math. 1994, 54, 249–272. [Google Scholar] [CrossRef]
- Mukaidani, H.; Dragan, V. Control of deterministic and stochastic systems with several small parameters—A survey. Ann. Acad. Rom. Sci. Ser. Math. Its Appl. 2009, 1, 112–158. [Google Scholar]
- Naidu, D.S. Singular Perturbation Methodology in Control Systems; The Institution of Engineering and Technology: Edison, NJ, USA, 1988. [Google Scholar]
- Pena, M.L. Asymptotic expansion for the initial value problem of the sunflower equation. J.Math. Anal. Appl. 1989, 143, 471–479. [Google Scholar] [CrossRef]
- Reddy, P.; Sannuti, P. Optimal control of a coupled-core nuclear reactor by a singular perturbation method. IEEE Trans. Automat. Control 1975, 20, 766–769. [Google Scholar] [CrossRef]
- Yackel, R.; Kokotovic, P. A boundary layer method for the matrix Riccati equation. IEEE Trans. Automat. Control 1973, 18, 17–24. [Google Scholar] [CrossRef]
- Glizer, V.Y.; Kelis, O. Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems: Regularization Approach; Birkhauser: Basel, Switzerland, 2022. [Google Scholar]
- Sibuya, Y. Some global properties of matrices of functions of one variable. Math. Ann. 1965, 161, 67–77. [Google Scholar] [CrossRef]
- Vasil’eva, A.B.; Butuzov, V.F.; Kalachev, L.V. The Boundary Function Method for Singular Perturbation Problems; SIAM Books: Philadelphia, PA, USA, 1995. [Google Scholar]
- Schwartz, L. Analyse Mathematique: Cours; Hermann: Paris, France, 1967. [Google Scholar]
- Hartman, P. Ordinary Differential Equations; John Willey & Sons: New York, NY, USA, 1964. [Google Scholar]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control; Hemisphere: New York, NY, USA, 1975. [Google Scholar]
- Fichtenholz, G.M. The Fundamentals of Mathematical Analysis; Pergamon: Oxford, UK, 1965; Volume 1. [Google Scholar]
- Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G. Matrix Riccati Equations in Control and Systems Theory; Birkhauser: Basel, Switzerland, 2003. [Google Scholar]
- Beavis, B.; Dobbs, I. Optimization and Stability Theory for Economic Analysis; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glizer, V.Y. Robust Solution of the Multi-Model Singular Linear-Quadratic Optimal Control Problem: Regularization Approach. Axioms 2023, 12, 955. https://doi.org/10.3390/axioms12100955
Glizer VY. Robust Solution of the Multi-Model Singular Linear-Quadratic Optimal Control Problem: Regularization Approach. Axioms. 2023; 12(10):955. https://doi.org/10.3390/axioms12100955
Chicago/Turabian StyleGlizer, Valery Y. 2023. "Robust Solution of the Multi-Model Singular Linear-Quadratic Optimal Control Problem: Regularization Approach" Axioms 12, no. 10: 955. https://doi.org/10.3390/axioms12100955
APA StyleGlizer, V. Y. (2023). Robust Solution of the Multi-Model Singular Linear-Quadratic Optimal Control Problem: Regularization Approach. Axioms, 12(10), 955. https://doi.org/10.3390/axioms12100955